Skip to Main content Skip to Navigation
Journal articles

Model selection for degradation modeling and prognosis with health monitoring data

Abstract : Health monitoring data are increasingly collected and widely used for reliability assessment and lifetime pre- diction. They not only provide information about degradation state but also could trace failure mechanisms of assets. The selection of a deterioration model that optimally fits in with health monitoring data is an important issue. It can enable a more precise asset health prognostic and help reducing operation and maintenance costs. Therefore, this paper aims to address the problem of degradation model selection including goals, procedure and evaluation criteria. Focusing on continuous degradation modeling including some currently used Lévy processes, the performance of classical and prognostic criteria are discussed through numerous numerical examples. We also investigate in what circumstances which methods perform better than others. The efficiency of a new hybrid criterion is highlighted that allows to take into account the information of goodness-of-fit of observation data when evaluating prognostic measure.
Document type :
Journal articles
Complete list of metadata

Cited literature [57 references]  Display  Hide  Download
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Wednesday, October 3, 2018 - 11:25:50 AM
Last modification on : Tuesday, December 1, 2020 - 10:46:10 AM
Long-term archiving on: : Friday, January 4, 2019 - 1:50:25 PM


Files produced by the author(s)




Thi Phuong Khanh Nguyen, Mitra Fouladirad, Antoine Grall. Model selection for degradation modeling and prognosis with health monitoring data. Reliability Engineering and System Safety, Elsevier, 2018, 169, pp.105-116. ⟨10.1016/j.ress.2017.08.004⟩. ⟨hal-01886819⟩



Record views


Files downloads