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Abstract
This paper presents new deviation inequalities that are valid uniformly in time under adaptive
sampling in a multi-armed bandit model. The deviations are measured using the Kullback-Leibler
divergence in a given one-dimensional exponential family, and may take into account several arms at
a time. They are obtained by constructing for each arm a mixture martingale based on a hierarchical
prior, and by multiplying those martingales. Our deviation inequalities allow us to analyze stopping
rules based on generalized likelihood ratios for a large class of sequential identification problems.
We establish asymptotic optimality of sequential tests generalising the track-and-stop method to
problems beyond best arm identification. We further derive sharper stopping thresholds, where the
number of arms is replaced by the newly introduced pure exploration problem rank. We construct
tight confidence intervals for linear functions and minima/maxima of the vector of arm means.
Keywords: mixture methods, test martingales, multi-armed bandits, best arm identification,
adaptive sequential testing

1. Introduction

We are interested in making decisions under uncertainty in its myriad forms, including sequential
allocation and hypothesis testing problems. In this paper our goal is the design of tight confidence
regions that are valid uniformly in time, as well as the design of efficient stopping rules for a large
class of sequential tests.

We will develop our results in the standard multi-armed bandit model with independent one-
dimensional exponential family arms that are parameterised by their means µ = (µ1, . . . , µK). In
this setup, samples X1, X2 . . . are sequentially gathered from the different arms: Xt is drawn from
the distribution that has mean µAt where At ∈ {1, . . . ,K} is the arm selected at round t. Our
techniques all make use of self-normalised sums, which are defined after t rounds by

K∑
a=1

Na(t)d(µ̂a(t), µa). (1)

Here Na(t) and µ̂a(t) are the observation count and empirical mean of arm a after t rounds, and
d(µ, λ) ≥ 0 is the relative entropy (Kullback-Leibler divergence) from the exponential family
distribution with mean µ to that with mean λ. The more the empirical means deviate from the
true means, the larger the self-normalised sum. Note that the self-normalised sum equals the log
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likelihood ratio ln `(X1,...,Xt;µ̂(t))
`(X1,...,Xt;µ) , where `(X1, . . . , Xt;λ) is the likelihood of the observations under

a bandit model whose vector of means is λ.
The proposed analyses of the sequential procedures discussed in this paper all rely on a tight

control of the deviations of self-normalized sums of the form (1), which inform us about possible
values of the means. Our main result is the construction of explicit threshold functions T (x) =
x+ o(x) (we obtain different constants under different assumptions) for which, under any sampling
rule (effecting the Na(t) sampling counts), any bandit model µ and any confidence δ ∈ (0, 1), the
self-normalised sum is with high probability bounded by

Pµ

{
∃t ∈ N :

K∑
a=1

[
Na(t)d(µ̂a(t), µa)−O(ln lnNa(t))

]
≥ KT

(
ln 1

δ

K

)}
≤ δ. (2)

The salient features of this result are that it is uniform in time, respects the information geometry
(KL) intrinsic to the exponential family, and combines in the strong summation sense the evidence
from multiple arms. Moreover, at the moderate price of a weighted union bound we may apply the
bound to any arbitrary subset of the arms, and thereby control the model-selection trade off between
the amount of evidence on the left and the magnitude of the threshold on the right.

We may recognise two well-known statistical effects (i.e. fundamental barriers) in the form of
the bound (2). First, the Law of the Iterated Logarithm informs us (at least in the Gaussian case)
that, upon proper normalisation, the self-normalised deviation lim supNa(t)→∞

Na(t)d(µ̂a(t),µa)
ln lnNa(t) is a

universal constant a.s., whence the correction in the sum. Moreover, Wilk’s phenomenon (see de la
Peña et al., 2009, Chapter 17) informs us that twice the self-normalised sum (1) is asymptotically
pivotal, with χ2

K distribution. The K degrees of freedom are reflected in the perspective scaling of
the threshold in (2). In this work we obtain essentially tight threshold functions by building suitable
martingales. We will show that a threshold function T satisfying (2) can be obtained by exhibiting
a martingale that multiplicatively dominates exp (λ [Na(t)d(µ̂a(t), µa)−O(ln lnNa(t))]) for a
suitable λ ∈ (0, 1). Our results will be obtained by leveraging some particular martingales called
mixture martingales that have this property.

On the applications side, deviation inequalities of the form (2) allow us to analyze a stopping rule
based on a Generalized Likelihood Ratio statistic for generic sequential identification problems. We
notably show that under some assumptions on the identification problem itself, such stopping rules
combined with a suitable sampling rule are (asymptotically) optimal in terms of sample complexity.
Moreover, we provide refined stopping criteria for some particular tests that replace the number of
arms K by a new notion of rank. Then, the sum form of the left-hand quantity in the above result
allows us to build confidence regions that exclude the configuration of all (many) empirical estimates
µ̂a(t) being far from their means µa simultaneously. We show how this effect yields improved
confidence intervals for functions of the mean µ in the cases of linear functions and minima. The
intuition behind these ideas is visualised in Figure 1.

1.1 Related Work

Stochastic multi-armed bandit models can be traced back to the work of Thompson (1933) motivated
by clinical trials. They were later studied by Robbins (1952); Lai and Robbins (1985) who introduced
the regret minimization objective: the samples X1, . . . , Xt are seen as reward and the goal is to
find a sequential strategy to maximize the (expected) cumulated reward, which is equivalent to
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by projecting the confidence regions on the black normal vec-
tor. The interval between the blue tangents (for Box) strictly
contains that between the orange tangents (for Sum).

Figure 1: Visual two-arm comparison of confidence regions and implied confidence intervals. A
union bound over traditional per-arm confidence intervals gives the “Box” region. Our new bound
(2) results in a confidence region of the egg-shape marked “Sum”.

minimizing some notion of regret. Several algorithms exist for this problem and we refer to Bubeck
and Cesa-Bianchi (2012) for a survey.

In the meantime, pure-exploration problems in bandit models have also received increased
attention Even-Dar et al. (2006); Bubeck et al. (2011). In this context, the goal is to identify as
quickly and accurately as possible the arm with the largest mean, relinquishing the incentive to
maximize the sum of rewards. In the fixed-confidence setting, the minimal number of samples needed
to identify the best arm with accuracy larger than 1 − δ when arms belong to a one-dimensional
family has been identified by Garivier and Kaufmann (2016), in a regime of small values of δ.
Their Track-and-Stop algorithm is shown to asymptotically attain this optimal sample complexity.
Extensions of this best arm identification problem in which one should decide quickly and accurately
something about the means of the arms have been studied recently Huang et al. (2017); Chen et al.
(2017). In this work, we propose new stopping rules for those general adaptive decision making
problems, as well as a generalization of the Tracking rule to attain optimal sample complexity.

Due to the sequential nature of the data collection process, the analysis of virtually any bandit al-
gorithm relies on deviation inequalities that can take into account the random number of observations
from each arm. Such self-normalized deviation inequalities have been mostly obtained by carefully
using martingales, either with a so-called peeling trick (see, e.g. Cappé et al. 2013) or with the
“method of mixtures” that has been popularized by de la Peña et al. (2004, 2009). Mixture martingales
have indeed been used to obtain self-normalized deviation inequalities, e.g. by Abbasi-Yadkori et al.
(2011); Howard et al. (2018) (see also our detailed discussion in Section 2.3). In this work we
propose new prior constructions, as well as a central assumption under which deviation inequalities
can be obtained.

The self-normalized deviation inequalities that we propose in this paper generalize in several
directions existing results from the literature. First, the particular case of Gaussian distributions and
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a subset of size 1 has been treated by Robbins (1970); Robbins and Siegmund (1970), also building
on mixture martingales. Using an appropriate (complicated) continuous prior, they obtain a threshold
that is shown to have the right asymptotic rate in t, ln(1 + ln(t)) which is compatible with the Law
of the Iterated Logarithm. More recently, time-uniform inequalities for the one-armed Gaussian case
have also been obtained independently by Jamieson et al. (2014), Kaufmann et al. (2016) and Zhao
et al. (2016). Those inequalities also have the right ln(1 + ln(t)) dependency in t.

Beyond Gaussian distributions, Garivier and Cappé (2011) and Magureanu et al. (2014) propose
deviation inequalities expressed in KL-divergence that are uniform over a fixed time interval t ∈
{1, . . . , n}, respectively for a single arm and for the subset S = {1, . . . ,K}. Our results provide
uniform deviations over the whole time range (t ∈ N). Moreover, a detailed comparison in Section 4
shows that our bounds are essentially tighter in the presence of multiple arms.

1.2 Outline

The paper is structured as follows. In Section 2 we set forth our general method to obtain deviation
inequalities in bandit models and formally introduce mixture martingales. We then present two
different mixture-martingale constructions that yield threshold functions for the Gaussian and Gamma
special cases (Section 3) and for general exponential families (Section 4). We integrate these results
with the Track-and-Stop strategy to obtain an asymptotically optimal algorithm for generic sequential
identification problems (Section 5). We then develop refined applications to stopping rules for
sequential testing (Section 6) and for projected confidence intervals (Section 7).

2. Martingales and Deviation Inequalities for Exponential Family Bandit Models

In this section, we formally introduce the stochastic processes for which we want to obtain deviation
inequalities. We then present a general method for obtaining deviation inequalities for any such
stochastic process. It relies on the crucial assumption that one can find martingales multiplicatively
dominating exponential transforms of the process. We further introduce the general class of martin-
gales that we shall exhibit in order to obtain the particular deviation results of this paper, namely
mixture martingales.

2.1 Exponential Family Bandit Models

A one-parameter canonical exponential family is a class P of probability distributions characterized
by a set Θ ⊂ R of natural parameters, a strictly convex and twice-differentiable function b : Θ→ R
(called the log-partition function) and a reference measure m. It is defined as

P =
{
νθ, θ ∈ Θ : νθ has density fθ(x) = exθ−b(θ) with respect to m

}
.

Example of exponential families include the set of Bernoulli distribution, Poisson distributions,
Gaussian distribution with known variance or Gamma distributions with known shape parameter.
For any exponential family P it can be shown that the mean µ(θ) of the distribution νθ satisfies
µ(θ) = ḃ(θ). Observe that µ is a strictly increasing function of the natural parameter θ hence
distributions in P can be alternatively parameterized by their means.

We adopt this parameterization in this paper. Letting I := ḃ(Θ) be the set of possible mean
parameters, for all µ ∈ I we define νµ to be the distribution in P that has mean µ. We also define
the Kullback-Leibler divergence between two distributions in P as a function of their means by
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d(µ, µ′) := KL
(
νµ, νµ

′
)

=

∫
ln
fḃ−1(µ)(x)

fḃ−1(µ′)(x)
fḃ−1(µ)(x) dm(x).

This divergence function has a closed form expression in the classical exponential families mentioned
above. For example for Gaussian distribution with variance σ2 one has d(µ, µ′) = (µ− µ′)2/(2σ2)
and for Bernoulli distributions d(µ, µ′) = µ ln(µ/µ′) + (1 − µ) ln((1 − µ)/(1 − µ′)). Further
examples can be found in Cappé et al. (2013).

An exponential family bandit model is a sequence of K probability distributions νµ1 , . . . , νµk

that belong to some one-dimensional canonical exponential family P: it can be fully parametrized
by the vector of means µ = (µ1, . . . , µK) ∈ IK . In a bandit model, data is collected sequentially:
an arm At is selected at round t and a sample Xt from the distribution νµAt is observed. We
denote by Na(t) =

∑t
s=1 1(As=a) the number of selections of arm a in the first t rounds and

Sa(t) =
∑t

s=1Xt1(As=a) the sum of these observations. The empirical mean of the observations
obtained from arm a up to round t is therefore defined as µ̂a(t) = Sa(t)/Na(t) once Na(t) 6= 0. We
let Ft = σ(A1, X1, . . . , At, Xt) be the filtration generated by the observations gathered after the first
t rounds and assume the sampling rule is such thatAt is mesurable with respect to σ(Ft−1, Ut) where
Ut is a uniform random variable that is independent from Ft−1 (allowing randomized algorithms).

In this paper, our objective is to prove time-uniform deviation inequalities for sums involving the
terms Na(t)d(µ̂a(t), µa) (or some one-sided versions of these). The price for uniformity in time will
be some ln ln(Na(t)) term and we shall for example obtain deviation inequalities for sums of the
entries of a stochastic processX(t) = {Xa(t)}Ka=1 of the form

Xa(t) = Na(t)d(µ̂a(t), µa)− c ln(d+ lnNa(t)) (3)

for some constants c and d. We now describe a general method to obtain time-uniform deviation
inequalities for any arm-dependent stochastic processX(t).

2.2 A General Method for Obtaining Deviation Inequalities

Let X(t) = {Xa(t)}Ka=1 be a stochastic process indexed by arms. Here we introduce a central
assumption under which it is easy to obtain deviation inequalities for sums of the marginals ofX(t)
by combining the Doob inequality for martingales with the Cramér-Chernoff method. For this reason,
we call such processes g-DCC (in reference to the Doob-Cramér-Chernoff trio). We will also follow
Shafer et al. (2011) in calling any non-negative martingale M(t) ≥ 0 of unit initial value M(0) = 1
a test martingale.

Definition 1 Let g : Λ → R be a function defined on a non-empty interval Λ ⊆ R. A stochastic
processX(t) = {Xa(t)}Ka=1 is called g-DCC if it satisfies the following properties.

1. For any arm a and λ ∈ Λ there exists a test martingale Mλ
a (t) such that

∀t ∈ N, Mλ
a (t) ≥ eλXa(t)−g(λ). (∗)

2. For any subset S ⊆ {1, . . . ,K} and for any λ ∈ Λ, the product
∏
a∈SM

λ
a (t) is a martingale.

Remark 2 To calibrate what to expect for g, we can use knowledge of the asymptotic distribution
of the Xa(t) given in (3). In our applications, Wilk’s phenomenon (see de la Peña et al., 2009,
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Chapter 17) tells us that 2Xa(t) is asymptotically (for Na(t)→∞) χ2 distributed. For 2Y ∼ χ2,
we have eλY = (1− λ)−1/2. This strongly suggests (and this is what we will find) that g(λ) should
be at least 1

2 ln(1− λ), plus a mild additional cost for uniformity in time. For this reason we will
refer to gχ2(λ) = 1

2 ln(1− λ) as the “ideal function”.

For a g-DCC stochastic processX(t) = {Xa(t)}Ka=1, we provide a general deviation inequality
for the sum of the marginals Xa(t) over any subset of arms. The threshold is related to the function
g through the following quantities.

Definition 3 For g : Λ→ R+, we define for all x > 0,

Cg(x) := min
λ∈Λ

g(λ) + x

λ
.

We also define the convex conjugate of g, g∗(x) := maxλ∈Λ (λx− g(λ)).

With these functions in hand, we can now state our g-DCC deviation inequality.

Lemma 4 Fix S ⊆ {1, . . . ,K}. LetX(t) = {Xa(t)}Ka=1 be a g-DCC stochastic process. Then

∀x > 0, P

(
∃t ∈ N :

∑
a∈S

Xa(t) ≥ |S|Cg
(
x

|S|

))
≤ e−x,

∀u > 0, P

(
∃t ∈ N :

∑
a∈S

Xa(t) > u

)
≤ exp

(
−|S|g∗

(
u

|S|

))
.

Proof Fix λ ∈ Λ. AsX(t) is g-DCC (see Definition 1), we find

P

(
∃t ∈ N :

∑
a∈S

Xa(t) > u

)
= P

(
∃t ∈ N : eλ[

∑
a∈S Xa(t)] > eλu

)
≤ P

(
∃t ∈ N :

∏
a∈S

Mλ
a (t) > eλu−|S|g(λ)

)
.

As
∏
a∈SM

λ
a (t) is a test martingale, it follows from Doob’s inequality that

P

(
∃t ∈ N :

∑
a∈S

Xa(t) > u

)
≤ e−[λu−|S|g(λ)] (4)

Equivalently, one can also establish that for all x > 0, for all λ ∈ Λ,

P

(
∃t ∈ N :

∑
a∈S

Xa(t) >
|S|g(λ) + x

λ

)
≤ e−x (5)

Picking the best possible λ in (5) yields the first inequality in Lemma 4 while picking the best
possible λ in (4) yields the second inequality.
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The deviation inequalities given in Lemma 4 are either expressed in terms of the threshold
function Cg or in terms of the convex conjugate g∗. Depending on g, one of these two quantities
might be easier to compute that the other one. Note that if g∗ is well-behaved, the threshold function
can be obtained by inverting g∗, as stated below.

Proposition 5 Assume g∗ is increasing. For all u ∈ g∗(R+), Cg(u) = (g∗)−1(u).

Proof As g∗ is increasing on R+, the inverse function (g∗)−1 is well defined on I := g∗(R+). From
the definitions of Cg and g∗, it is easy to check that

∀x > 0, g∗(Cg(x)) ≥ x and Cg(g∗(x)) ≤ x.

These two inequalities respectively yield that for all u ∈ I, (g∗)−1(u) ≤ Cg(u) and Cg(u) ≤
(g∗)−1(u), which concludes the proof.

If the function g is strictly convex (which will be the case for all the examples studied later in
this paper), it is also possible to compute Cg directly (either in closed form or numerically using e.g.
binary search) by using the following observation.

Proposition 6 If g is C1 and strictly convex, the derivative of G(λ) = g(λ)+x
λ has at most one zero,

given by the solution to
λg′(λ)− g(λ) = x. (6)

2.3 Mixture Martingales

Introducing the cumulant generating function φµ(η) := lnEX∼νµ
[
eηX

]
for all µ ∈ I, it holds for

all η ∈ R that
Zηa (t) := exp (ηSa(t)− φµa(η)Na(t)) (7)

is a test martingale with respect to the filtration Ft, for any sampling rule. Indeed, when At = a
we have E [Zηa (t)|At,Ft−1] = Zηa (t − 1)E

[
eηXt−φµa (η)

∣∣At,Ft−1

]
= Zηa (t − 1), and the same

trivially holds when At 6= a. So by the tower rule E [Zηa (t)|Ft−1] = E [E [Zηa (t)|At,Ft−1]|Ft−1] =
Zηa (t− 1). More generally, for any probability distribution π, the mixture martingale

Zπa (t) :=

∫
Zηa (t) dπ(η) (8)

is also a test martingale, as can be seen by applying Tonelli’s theorem

E [Zπa (t)|At,Ft−1] =

∫
E [Zηa (t)|At,Ft−1]︸ ︷︷ ︸

=Zηa (t−1)

dπ(η) = Zπa (t− 1).

Finally, given a family of priors π = {πa}Ka=1, the product martingale ZπS (t) :=
∏
a∈S Z

πa
a (t) is

also a test martingale with respect to Ft, for any subset S. Namely, when At ∈ S we have

E [ZπS (t)|At,Ft−1] = ZπS\{At}(t− 1)E
[
Z
πAt
At

(t)
∣∣∣At,Ft−1

]
︸ ︷︷ ︸

=Z
πAt
At

(t−1)

= ZπS (t− 1),
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and the same result holds trivially when At /∈ S . The martingale property follows by the tower rule.
Hence, a sufficient condition to establish that a stochastic processX(t) is g-DCC is to exhibit for all
λ ∈ Λ a family of priors πa,λ such that Mλ

a (t) := Z
πa,λ
a (t) satisfies (∗). This is how we proceed in

the next sections. By exhibiting two different types of hierarchical priors, we first prove deviation
inequalities for Gaussian and Gamma distributions in Section 3, followed by a broader result that
applies to any exponential family in Section 4 .

Related work. The first use of such a mixture martingale can be traced back to the work of
Robbins (1970) which considers the martingale

∫
exp

(
ηSt − η2σ2

2 t
)

dπ(η) where St is a sum of
t i.i.d. standard Gaussian random variables and π is a Gaussian prior. This martingale coincides
with our Zπa for a single standard Gaussian arm a. It is used to obtain a deviation inequality for St
that is uniform in time and compatible with the Law of the Iterated Logarithm: St is compared to a
threshold that grows like

√
2t ln ln(t). This “method of mixtures” has then been popularized by de la

Peña et al. (2004, 2009) who use it to prove self-normalized deviation inequalities for more general
stochastic processes. It has later been used by Balsmubramani (2015) who propose time-uniform
Hoeffding or Bernstein deviation inequalities and by Abbasi-Yadkori et al. (2011) who propose
a self-normalized deviation inequality for a vector-valued martingale applied to the linear bandit
problem. Most of these works present mixture martingales with specific choices of continuous priors
for which the corresponding mixture can be either computed in closed form or well-approximated.
In this paper, we will rely on some hierarchical priors. The recent work by Howard et al. (2018)
is also of note, as it studies in great detail the power of elementary martingales for bounding the
probability of crossing linear thresholds. We develop mixture martingale methods for obtaining
curved thresholds, as hinted at in (Howard et al., 2018, Section 4.3).

3. Deviation Inequalities for Gaussian and Gamma Distributions

We first propose a general assumption for an exponential family under which a deviation inequality
for a sum over multiple arms of the quantities Na(t)d(µ̂a(t), µa) can be obtained though Lemma 4.
This assumption implies that for all a and t ≥ 1 there exists a prior distribution for which the
corresponding mixture martingale exactly attains eλtd(µ̂a(t),µa) and such that one can control the
variation of the prior corresponding to two different time steps.

Assumption 7 For every λ ∈]0, 1[, µ ∈ I , there exists a family of functions (pλ,µt )t≥1 such that, for
every t ≥ 1,

∀x ∈ I,
∫
pλ,µt (η)eηtx−φµ(η)t dη = eλtd(x,µ). (9)

Moreover, for every 1 ≤ n1 ≤ n2 and every η ∈ R,

pλ,µn1
(η) ≥

√
n1

n2
pλ,µn2

(η). (10)

Theorem 8 Assume that Assumption 7 is satisfied and let

C0(t, λ) := sup
µ∈I

∫
pλ,µt (η) dη.

8
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Fix η > 0, c > 1 and define

g0(λ, η, c) = ln

[ ∞∑
i=1

1

iλcζ(λc)
C0

(
(1 + η)i−1, λ

)]
.

The stochastic process Xa(t) = Na(t)d(µ̂a(t), µa)− c ln
(
ln(1 + ξ) + lnNa(t)

)
is gη,c-DCC where

gη,c : (c−1, 1] −→ R+

λ 7→ g0(λ, η, c) + 1
2 ln(1 + ξ) + λc ln

(
1

ln(1+ξ)

)
+ ln ζ(λc).

Theorem 8 directly provides a deviation inequality using Lemma 4. It thus remains to find
sequences of priors satisfying Assumption 7. We now discuss two examples, Gaussian and Gamma
distributions, for which we were able to exhibit such priors. One can note that finding functions pλ,µt
is closely related to computing a (bilateral) inverse Laplace transform. Indeed, if q is the inverse
Laplace transform of eλtd(x,µ), meaning that ∀x :

∫∞
−∞ q(s)e

−sx ds = eλtd(x,µ), the assumption is

satisfied for pλ,µt (η) = tq(−ηt)eφµ(η)t. However, computing such inverse Laplace transforms is not
easy beyond Gaussian or Gamma distributions.
Proof For i = 1, 2, . . . we introduce grid points Ti = (1 + ξ)i−1 with prior weights γi = 1

iλcζ(λc)

and define the (un-normalized) martingale

M̃λ
a (t) :=

∞∑
i=1

γi

∫
pλ,µaTi

(η)eηSa(t)−φµa (η)Na(t) dη,

that satisfies M̃λ
a (0) = exp(g0(λ, η, c)).

For Na(t) ∈ [Ti, Ti+1[, we first bound the martingale from below by one of its terms, and then
make use of Assumption 7.

M̃λ
a (t) ≥ γi

∫
pλ,µaTi

(η)eηSa(t)−φµa (η)Na(t) dη

≥

√
Ti

Na(t)
γi

∫
pλ,µaNa(t)(η)eηSa(t)−φµa (η)Na(t) dη

=

√
Ti

Na(t)
γi exp (λNa(t)d (µ̂a(t), µa))

≥
√

1

1 + ξ
γi exp (λNa(t)d (µ̂a(t), µa)) ,

where the last inequality uses Na(t) ≤ Ti+1 and Ti/Ti+1 = 1/(1 + ξ), due to the geometric grid.
Introducing the normalised martingale Mλ

a (t) = M̃λ
a (t)/M̃λ

a (0) and further using the expression
of γi yields, for all t such that Na(t) ∈ [Ti, Ti+1[,

Mλ
a (t) ≥ M̃λ

a (t)e−g0(λ,ξ,c) = eλNa(t)d(µ̂a(t),µa)−g0(λ,ξ,c)− 1
2

ln(1+ξ)−ln ζ(λc)−λc ln(i).

Finally, using that i ≤ 1 + ln(Na(t))/ ln(1 + ξ) yields the desired

Mλ
a (t) ≥ exp (λXa(t)− gξ,c(λ)) .

It remains to check the case Na(t) = 0. Then Xa(t) = −∞, so clearly Mλ
a (t) = 1 > e−λ∞.

9
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Remark 9 We use as our correction function c ln(4 + lnNa(t)), which is vacuous when Na(t) = 0
because lnNa(t) = −∞. Most algorithms for bandits avoid considering this situation, and start
by pulling all arms once. In some scenarios, especially with many arms, it may be desirable to
include the case Na(t) = 0. There is no essential bottleneck, and one could adjust the analysis to,
for example, replace it by c ln(4 + ln(1 +Na(t))).

3.1 Application to Gaussian Distributions

In the Gaussian case, direct computations show that Assumption 7 holds for the choice

pλ,µt (η) =
1√

1− λ
1√

2πσ2
t

exp

(
− η2

2σ2
t

)
,

where σ2
t = λ

t(1−λ) . As a consequence C0(t, λ) = 1√
1−λ and g0(λ, ξ, c) = −1

2 ln (1− λ). Note that
the inequality (10) is actually an equality. Using Theorem 8, one can prove the following.

Corollary 10 Introducing for all a the process Xa(t) = Na(t)d(µ̂a(t), µa) − 2 ln(4 + lnNa(t)),
the stochastic processX(t) is gG-DCC where

gG :]1/2, 1] −→ R
λ 7→ 2λ− 2λ ln (4λ) + ln ζ(2λ)− 1

2 ln (1− λ) .

Hence for every subset S and x > 0,

P

(
∃t ∈ N :

∑
a∈S

Na(t)d (µ̂a(t), µa) ≥
∑
a∈S

2 ln(4 + lnNa(t)) + |S|CgG
(
x

|S|

))
≤ e−x.

Proof of Corollary 10 By Theorem 8, picking c = 2, for every ξ > 0 and λ ∈]1/2, 1[ there exists
a test martingale Mλ,ξ

a (t) such that

∀t ∈ N, Mλ,ξ
a (t) ≥ eλ[Na(t)d(µ̂a(t),µa)−fξ(Na(t))]−gξ(λ)

with

fξ(s) = 2 ln(ln(1 + ξ) + ln(s))

gξ(λ) =
1

2
ln(1 + ξ) + 2λ ln

(
1

ln(1 + ξ)

)
+ ln ζ(2λ)− 1

2
ln (1− λ)

It can be checked that the choice of ξ leading to the smallest gξ function is ln(1 + ξ) = 4λ. Denoting
by ξ∗(λ) this value, it holds that

gG(λ) = gξ∗(λ)(λ) = 2λ− 2λ ln (4λ) + ln ζ(2λ)− 1

2
ln (1− λ) .

For every λ ∈]1/2, 1[, observe that fξ∗(λ)(s) ≤ 2 ln(4 + ln s). Hence, there exists a test martingale

Mλ
a (t) = M

λ,ξ∗(λ)
a (t) such that

∀t ∈ N, Mλ
a (t) ≥ eλ[Na(t)d(µ̂a(t),µa)−2 ln(4+ln(Na(t)))]−gG(λ),

which concludes the proof.

10
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3.2 Application to Gamma Distributions

A Gamma distribution with shape parameter α and mean µ has density at z > 0 given by

fα,µ(z) =
e
−αz

µ

(
αz
µ

)α
zΓ(α)

.

We recover the Exponential distribution for α = 1. More generally, the set of Gamma distributions
with a known shape α form a one-parameter exponential family for which

d(µ, µ′) = α

(
µ

µ′
− 1− ln

µ

µ′

)
and φµ(η) = α ln

(
α

α− µη

)
for η < α/µ.

Next we show that the family of functions

pλt (η) :=
µ

α

(αt/e)λαt

Γ(λαt)

(
1− ηµ

α

)−αt (
λ− ηµ

α

)λαt−1

+
. (11)

leads to suitable “priors”.

Proposition 11 The family of functions defined in (11) satisfies Assumption 7.

Proof Proving (9) is equivalent to checking that for all x > 0,

µ

α

(
αtx

µ

)λαt 1

Γ(λαt)

∫ λα
µ

−∞

(
λ− ηµ

α

)λαt−1
eηtx dη = e

λαtx
µ

which can be done using change of variables to y = tx
(
αλ
µ − η

)
and the definition of the Gamma

function Γ(z) =
∫∞

0 xz−1e−x dx. Now let us check condition (10). The condition is trivially
satisfied for η ≥ λα

µ , as both sides are zero. So assume η is smaller. Then

ln
pλn1

(η)

pλn2
(η)

= ln

µ
α

(αn1/e)λαn1

Γ(λαn1)

(
1− ηµ

α

)−αn1
(
λ− ηµ

α

)λαn1−1

µ
α

(αn2/e)λαn2

Γ(λαn2)

(
1− ηµ

α

)−αn2
(
λ− ηµ

α

)λαn2−1

= ln
Γ(λαn2)(αn2/e)

−λαn2

Γ(λαn1)(αn1/e)−λαn1
+ α(n2 − n1)

(
ln
(

1− ηµ

α

)
− λ ln

(
λ− ηµ

α

))
≥ 1

2
ln

(
n1

n2

)
+ α(n2 − n1)

(
λ lnλ+ ln

(
1− ηµ

α

)
− λ ln

(
λ− ηµ

α

))
≥ 1

2
ln

(
n1

n2

)
.

For the first inequality we used that the approximation error ln(Γ(x))− x ln(x) + x− 1
2 ln

(
2π
x

)
is a

decreasing function of x ∈ R+ (as can be easily verified by a plot), so that in particular

ln
Γ(λαn2)

Γ(λαn1)
≥ 1

2
ln

(
n1

n2

)
+ λαn2 ln(λαn2/e)− λαn1 ln(λαn1/e).

For the second inequality we use that the expression above switches from decreasing to increasing at
η = 0, and is hence minimised there. Plugging in the value η = 0 gives the result.

11
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Corollary 12 Introducing for all a the process Xa(t) = Na(t)d(µ̂a(t), µa) − 2 ln(4 + lnNa(t)),
the stochastic processX(t) is gΓ-DCC where

gΓ :]1/2, 1] −→ R
λ 7→ 2λ− 2λ ln (4λ) + ln ζ(2λ)− ln (1− λ) .

Hence for every subset S and x > 0,

P

(
∃t ∈ N :

∑
a∈S

Na(t)d (µ̂a(t), µa) ≥
∑
a∈S

2 ln(4 + lnNa(t)) + |S|CgΓ

(
x

|S|

))
≤ e−x.

Proof of Corollary 12 In order to evaluate the function g0(λ, ξ, c) featured in Theorem 8, we first
compute

C0(t, λ) =
Γ((1− λ)αt)

Γ(αt)
(αt/e)λαt(1− λ)−(1−λ)αt.

To see this, perform the variable substitution z = αλ−ηµ
α−ηµ ∈ [0, 1] to render this a standard Beta

integral

C0(t, λ) =
(αt/e)λαt

Γ(λαt)

∫ λα
µ

−∞

(
1− ηµ

α

)−αt (
λ− ηµ

α

)λαt−1 µ

α
dη

=
(αt/e)λαt

Γ(λαt)

∫ 1

0

(
1− λ− z

1− z

)−αt(
λ− λ− z

1− z

)λαt−1 1− λ
(1− z)2

dz

=
(αt/e)λαt

Γ(λαt)
(1− λ)−(1−λ)αt

∫ 1

0
zλαt−1 (1− z)(1−λ)αt−1 dz

= (αt/e)λαt (1− λ)−(1−λ)αt Γ((1− λ)αt)

Γ(αt)

Proposition 13 C0(t, λ) is decreasing in t ∈ R+.

Proof Let ψ(0)(x) = ∂ ln Γ(x)
∂x . The derivative of lnC0(t, λ) w.r.t. t is negative iff

(1− λ)ψ(0)((1− λ)αt)− (1− λ) ln((1− λ)αt) < ψ(0)(αt)− ln(αt).

Now this follows from the fact that xψ(0)(x)− x lnx can be checked to be an increasing function of
x ∈ R+.

We find that C0(t, λ) decreases from 1
1−λ at t→ 0 to 1√

1−λ for t→∞. For the former, we use

C0(t, λ) =
Γ((1− λ)αt)

Γ(αt)
(αt/e)λαt(1− λ)−(1−λ)αt

=
1

1− λ
((1− λ)αt)Γ((1− λ)αt)

(αt)Γ(αt)
(αt/e)λαt(1− λ)−(1−λ)αt

=
1

1− λ
Γ(1 + (1− λ)αt)

Γ(1 + αt)
(αt/e)λαt(1− λ)−(1−λ)αt

12
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The claimed limit for t → 0 now follows by taking the limit of each factor, using Γ(1) = 1 and
tt → 1. For the latter, the first-order Stirling’s approximation Γ(z) ∼

√
2πe−zzz−

1
2 yields

C0(t, λ) ∼ 1√
1− λ

when t→∞

Finally, we have that for all λ ∈]0, 1[ and t ∈ N,

C0(t, λ) ∈
[

1√
1− λ

;
1

1− λ

]
.

It follows that for all ξ > 0, −1
2 ln(1− λ) ≤ g0(λ, ξ, c) ≤ − ln(1− λ). We might be able to show

that g0 is actually closer to −1
2 ln(1 − λ) as the Stirling approximation is known to be good for

moderate values of t. However using Theorem 8 (and picking c = 2) one can already prove that for
every ξ > 0 and λ ∈]c−1, 1[, there exists a test martingale Mλ,ξ

a (t) such that

∀t ∈ N, Mλ,ξ
a (t) ≥ eλ[Na(t)d(µ̂a(t),µa)−fξ(Na(t))]−gξ(λ)

with

fξ(s) = 2 ln(ln(1 + ξ) + ln(s))

gξ(λ) =
1

2
ln(1 + ξ) + 2λ ln

(
1

ln(1 + ξ)

)
+ ln ζ(2λ)− ln (1− λ) .

Just like in the proof of Corollary 10, the function g is optimised in ξ at ln(1 + ξ) = 4λ. We conclude
similarly that Xa(t) = Na(t)d(µ̂a(t), µa)− 2 ln(4 + ln(Na(t)) is gΓ-DCC (see Definition 1) for the
function gΓ(λ) = 2λ− 2λ ln (4λ) + ln ζ(2λ)− ln (1− λ).

4. General Deviation Inequalities for Exponential Families

Define d+(u, v) = d(u, v)1(u≤v) and d−(u, v) = d(u, v)1(u≥v). In this section we will provide a
deviation result that holds for any one-dimensional exponential family and can also accommodate
one-sided deviations. We introduce the notation

Ya(t) := [Na(t)d(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))]
+

Y −a (t) := [Na(t)d
−(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))]

+

Y +
a (t) := [Na(t)d

+(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))]
+

and letX(t) = {Xa(t)}Ka=1 be a stochastic process such that, for all a, either ∀t,Xa(t) = Ya(t) or
∀t,Xa(t) = Y +

a (t) or ∀t,Xa(t) = Y −a (t).

4.1 Main result

We provide in Theorem 14 a new self-normalized deviation inequality featuring a threshold function
T . As can be seen in the proof given below, this results follows by exhibiting a family of functions gξ
such thatX(t) is gξ-DCC, applying Lemma 4 and then optimizing the parameters to obtain the best
possible threshold. The family of associated martingales will still be mixture martingales, that rely
on different types of hierarchical priors.

13
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To state the main result we need to introduce two functions. First for u ≥ 1 the function
h(u) = u− lnu and its inverse h−1(u). Secondly, the function defined for any z ∈ [1, e] and x ≥ 0
by

h̃z(x) =

{
e1/h−1(x)h−1(x) if x ≥ h−1(1/ ln z),
z(x− ln ln z) o.w.

(12)

Next we state our main deviation inequality, making precise (2), in terms of this function.

Theorem 14 Let T : R+ → R+ be the function defined by

T (x) = 2h̃3/2

(
h−1(1 + x) + ln(2ζ(2))

2

)
(13)

where ζ(s) =
∑∞

n=1 n
−s. For S a subset of arms,

P

(
∃t ∈ N,

∑
a∈S

Xa(t) ≥ |S|T
(
x

|S|

))
≤ e−x.

Proposition 15 below (proved in Appendix C) gives a tight bound on the inverse function h−1,
which yields an upper bound on the threshold function T featured in Theorem 14. On can easily
see that T (x) ∼ x when x tends to infinity. For x ≥ 5, a good approximation of the threshold is
T (x) ' x+ 4 ln(1 + x+

√
2x), which is slightly larger than the approximation ' x+ ln(x) that is

added for comparison to Figure 2.

Proposition 15 The function h is increasing on [1,+∞[ and its inverse function, defined on [1,+∞[,
satisfies h−1(x) = −W−1(−e−x) with W−1 the negative branch of the Lambert function. Moreover,

∀x ≥ 1, h−1(x) ≤ x+ ln(x+
√

2(x− 1)).

Remark 16 It is perfectly reasonable to have each arm come from its own specific exponential
family. Theorem 14 applies, now with each arm’s deviation measured in the associated divergence
d(·, µa).

4.2 Comparison and Positioning of our Results

The three deviation inequalities given in Corollaries 10 and 12 and Theorem 14 all provide a control
of the two-sided deviations of the empirical means from the true means, of the form

P

(
∃t ∈ N :

∑
a∈S

Na(t)d(µ̂a(t), µa) >
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x

|S|

))
≤ e−x

where c and d are two constants and C(x) is a threshold function. For Gaussian or Gamma distri-
butions one can use c = 2, d = 4 while c = 3, d = 1 apply for other one-dimensional exponential
families. A more crucial difference is the threshold function C, which can be set to CgG for Gaussian
distributions, to CgΓ for Gamma distributions and to T for general exponential families.

Those three threshold functions are hard to compare at first as they have no closed-form expres-
sions. Equation (13) provides an explicit expression for T but that still requires to numerically inverse
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the function h, while CgG and CgΓ can be numerically approximated by using Proposition 6. In Fig-
ure 2 we compare those three thresholds to the “ideal” threshold Cgχ2 where gχ2(λ) = −1

2 ln(1− λ)
(see Remark 2). We see that that this idealized threshold satisfies Cgχ2 (x) ' x + ln(x) and that
the thresholds obtained for Gaussian and Gamma distributions are very close to it. The threshold
function T seems to be off by an additive term of order 10.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

5

10

15

20

25

30

T (exponential family)
T (exponential family, one arm)
C^{g_Gaussian}
C^{g_Gamma}
Ideal threshold
x + ln(x)

Figure 2: Several threshold functions C(x) as a function of x.

Despite this slightly larger threshold, our general exponential family result is interesting for
the following reasons. First, obviously it covers more distributions like Bernoulli distributions that
are often relevant for applications of multi-armed bandits. Then, one can note that Theorem 14
can be made tighter in case only one-sided deviations are measured (when Na(t)d

+(µ̂a(t), µa) or
Na(t)d

−(µ̂a(t), µa) are used): T can be replaced by a slightly smaller threshold in that case, as
mentioned below in the proof of Theorem 14, by choosing a prior supported only on positive or
negative values. However, the method discussed in Section 3 cannot be adapted to obtain better
results for one-sided deviations. Finally, the presence of the positive part in the definition of Ya(t)±

lead to the following improved result:

P

(
∃t ∈ N : ∃S ′ ⊆ S,

∑
a∈S′

Na(t)d
±(µ̂a(t), µa) >

∑
a∈S′

3 ln(1 + ln(Na(t))) + |S|T
(
x

|S|

))
≤ e−x.

Our results generalize in several directions existing results from the literature. As mentioned
in the Introduction, the one-armed Gaussian case has been extensively studied Robbins (1970);
Jamieson et al. (2014); Kaufmann et al. (2016); Zhao et al. (2016), but few results are available for
more general exponential families and/or subset of size larger than one. We review them now and
provide a detailed comparison with our results.

For general one-dimensional exponential families, the only available results are uniform over a
bounded time interval {1, . . . , n}. Garivier and Cappé (2011) provide a first result for a subset of
size one that can be rephrased in the following way:

P
(
∃t ≤ n : Na(t)d

+(µ̂a(t), µa) ≥ h−1 (1 + ln ln(n) + x)
)
≤ e−x. (14)

This result was later extended by Magureanu et al. (2014) for Bernoulli distributions and a subset of
size K (although their analysis actually extends easily to one-dimensional exponential families and
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an arbitrary subset S). More precisely, Theorem 2 in Magureanu et al. (2014) can be rephrased as
follows, introducing the function f̃(u) = u− 2 ln(u) for u ≥ 2:

P

(
∃t ≤ n :

∑
a∈S

Na(t)d
+(µ̂a(t), µa) ≥ |S|f̃−1

(
1 + ln ln(n) +

x+ 1

|S|

))
≤ e−x. (15)

Theorem 14 can also be used to obtain deviations that are uniform over a bounded time interval, for
example for general exponential families:

P

(
∃t ≤ n :

∑
a∈S

Na(t)d
+(µ̂a(t), µa) ≥ 3 ln(1 + ln(n)) + |S|T

(
x

|S|

))
≤ e−x (16)

and with the corresponding improved thresholds in the Gaussian and Gamma case. Numerically,
it appears that the threshold featured in (16) is smaller than the threshold in (15), as illustrated in
Figure 3. However, in the particular case |S| = 1, (14) is the tightest result. Compared to those two
related works in exponential families, note that our work is the only one that makes use of mixture
martingales.
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Figure 3: Thresholds that follow from Corollary 10 and Theorem 14 compared to that obtained by
Magureanu et al. (2014)

To the best of our knowledge, we provide the first deviations results that hold uniformly for t ∈ N
for multiple arms and beyond Gaussian distributions. As we shall see in the next section, those types
of results are very useful for analyzing sequential tests, that involve random stopping.

4.3 Proof of Theorem 14

Fix ξ > 0 and define for all λ ∈ [0, 1/(1 + ξ)],

gξ(λ) = λ(1 + ξ) ln (C(ξ))− ln(1− λ(1 + ξ)) with C(ξ) =
2ζ(2)

(ln(1 + ξ))2

The proof hinges on the fact that for the stochastic processX , there exists a martingale satisfying (∗).
We first derive the inequality in Theorem 14 based on Lemma 17 below and later prove this result.
As will be seen in the proof of Lemma 17, in case the stochastic processX only measures one-sided
deviations, that is for all a either Xa(t) = Y −a (t) or Xa(t) = Y +

a (t), then C(ξ) can be replaced
by the smaller C(ξ) = ζ(2)/(ln(1 + ξ))2: the factor 2 that is removed corresponds to picking a
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one-sided versus a two-sided prior. This improvement yields the same statement as Theorem 14 with
the following slightly smaller threshold (omitting the factor 2):

T (x) = 2h̃3/2

(
h−1(1 + x) + ln(ζ(2))

2

)
.

Lemma 17 For ξ ∈ [0, 1/2],X is gξ-DCC (see Definition 1).

Using Lemma 4, one can obtain a deviation inequality expressed with the threshold function
Cgξ or the conjugate function g∗ξ . The proof is completed by applying Lemma 18 below, proved in
Appendix C.2, to compute the optimal tuning of ξ ∈ [0, 1/2].

Lemma 18 Let C(ξ) = 2ζ(2)
(ln(1+ξ))2 . Fix z ∈ [0, e− 1] and x ≥ 0. Then

inf
ξ∈[0,z]

λ∈[0,1/(1+ξ)]

x− ln (1− λ(1 + ξ))

λ
+ (1 + ξ) lnC(ξ) = 2h̃1+z

(
h−1 (1 + x) + ln (2ζ(2))

2

)
.

Proof of Lemma 17: building the martingale Lemma 19 below shows that the deviations of
Xa(t) can be related to the deviations of a well-chosen mixture martingale Zπa (t), where π has a
discrete support. The proof of Lemma 19 is given in Appendix A.

Lemma 19 (mixture martingales) Fix ξ ∈]0, 1/2[ and x > 0. There exists a (discrete) prior
π(x) = π(x, ξ) such that the corresponding mixture martingale (see (8)), denoted by Zπ(x)

a (t),
satisfies, for all t ∈ N,{

Xa(t)− (1 + ξ) ln

(
2ζ(2)

(ln(1 + ξ))2

)
≥ x

}
⊆
{
Zπ(x)
a (t) ≥ e

x
1+ξ

}
.

If Xa(t) = Y +
a (t) or Xa(t) = Y −a (t), there exists a prior π(x) such that{

Xa(t)− (1 + ξ) ln

(
ζ(2)

(ln(1 + ξ))2

)
≥ x

}
⊆
{
Zπ(x)
a (t) ≥ e

x
1+ξ

}
. (17)

Let us continue with the proof of Lemma 17. A consequence of Lemma 19 is that, for every z > 1,
and every λ > 0{

eλ(Xa(t)−(1+ξ) lnC(ξ)) ≥ z
}
⊆

{
Zπ(ln(z)/λ)
a (t) ≥ e

ln(z)
λ(1+ξ)

}
⊆

{
Zπ(ln(z)/λ)
a (t)e

− ln(z)
λ(1+ξ)︸ ︷︷ ︸

:=W z,λ
a (t)

≥ 1
}
,

where W z,λ
a (t) is a martingale that satisfies E[W z,λ

a (0)] = e
− ln(z)
λ(1+ξ) and, due to the above inclusion,

W z,λ
a (t) ≥ 1(eλ(Xa(t)−(1+ξ) lnC(ξ))≥z). (18)
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We now define another mixture martingale, for λ ∈
]
0, 1

1+ξ

[
:

W λ
a (t) = 1 +

∫ ∞
1

W z,λ
a (t)dz.

Using inequality (18) yields

W λ
a (t) ≥ eλ(Xa(t)−(1+ξ) lnC(ξ)).

Moreover, a direct computation shows that W λ
a (0) = 1

1−λ(1+ξ) . Finally defining

Mλ
a (t) = (1− λ(1 + ξ))W λ

a (t),

one has that Mλ
a (t) is a test martingale, i.e. E[Mλ

a (t)] = 1, that satisfies

Mλ
a (t) ≥ exp (λXa(t)− λ(1 + ξ) ln(C(ξ)) + ln(1− λ(1 + ξ)))

= exp (λXa(t)− gξ(λ)) ,

which concludes the proof. Note that if for all a, Xa(t) = Y ±a (t), using the tighter statement (17)
allows to replace the constant C(ξ) by the smaller value ζ(2)

(ln(1+ξ))2 .

Above, we are in essence building a test martingale of value Mt ≥ eλXt from test martingales
guaranteeing Zt ≥ ex1{Xt ≥ x}. The possibilities and limits of doing this are exactly characterised
by Dawid et al. (2011) in the process of characterising the so-called admissible capital calibrators. By
changing the mixture on thresholds x from exponential (as we do here) to polynomial, it is technically
possible to guarantee Mt ≥ eXt−O(lnXt). We do not pursue this direction, as the additional lnXt is
not convenient for combining evidence of arms, and moreover it is not at all clear that the high cost
in terms of multiplicative constants (i.e. the g(λ)) is worth it.

5. Asymptotically Optimal Adaptive Sequential Testing

We now explain how our new deviation inequalities can be useful to prove the correctness of a
stopping strategy for generic sequential adaptive hypothesis testing problems, that we refer to as
sequential identification problems. Given a bandit model, we consider M hypothesesH1 = (µ ∈
O1), . . . ,HM = (µ ∈ OM ) where O1, . . . ,OM are open sets forming a partition of the set of
possible means O. Our goal is to adaptively sample the arms until a decision is made that one of
the hypotheses ı̂ is correct. Our goal is to identify the correct hypothesis for all possible means
µ ∈ O. More precisely, we aim for δ-correct strategies, for which ∀µ ∈ O, Pµ (µ ∈ Oı̂) ≥ 1− δ.
This problem falls into the framework of Sequential Adaptive Hypothesis Testing as introduced
by Chernoff (1959) –who studied only discrete hypotheses and considered a different performance
metric– and is called General-Samp by Chen et al. (2017), who study Gaussian arms with unit
variance.

For general exponential family bandits, we propose below the extended GLR stopping rule. We
prove that this stopping rule is δ-correct for any sequential identification problem and that in some
cases it attains the minimal sample complexity (in a regime of small risk δ) when coupled with an
appropriate sampling rule.
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5.1 A General Stopping Rule

For every µ, we define
Alt(µ) =

⋃
i:µ/∈Oi

Oi.

If µ ∈ O, we let i∗(µ) be the index of the unique element in the partitioning to which µ belongs; in
particular µ ∈ Oi∗(µ) and Alt(µ) = O\Oi∗(µ). We let µ̂(t) be the vector of empirical means of the
arms based on the observations available up to round t. If µ̂(t) ∈ O, we let ı̂(t) = i∗(µ̂(t)) so that
µ̂(t) ∈ Oı̂(t).

Definition 20 The extended GLR statistic is defined as

Λ̂t = inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)d (µ̂a(t), λa) . (19)

Given a sequence of thresholds (ĉt(δ))t∈N, the extended GLR stopping rule of thresholds ĉt(δ) is
defined by

τδ := inf
{
t ∈ N : Λ̂t > ĉt(δ)

}
. (20)

A Generalized Likelihood Ratio statistic is usually defined for testing a possibly composite
hypothesisH0 : (µ ∈ Ω0) against a possibly composite alternativeH1 : (µ ∈ Ω1) by

Rt =
supλ∈Ω0∪Ω1

`(X1, . . . , Xt;λ)

supλ∈Ω0
`(X1, . . . , Xt;λ)

,

where X1, . . . , Xt are some observations whose likelihood `(X1, . . . , Xt;µ) depends on some
unknown parameter µ. Large values of Rt tend to reject the hypothesisH0. When the observations
are obtained under a sampling rule (At) in an exponential family bandit model and µ̂(t) ∈ Ω0 ∪ Ω1

it can be shown that

ln(Rt) = inf
λ∈Ω0

K∑
a=1

d(µ̂a(t), λa).

The extended GLR statistic Λ̂t can thus be interpreted as a statistic for testingH0 : (µ ∈ Alt(µ̂(t)))
against H1 :

(
µ ∈ Oı̂(t)

)
(if µ̂(t) ∈ O, otherwise note that Λ̂t = 0 which prevent from stopping).

However the two hypotheses that are “tested” at time t are data-dependent, hence the denomination
“extended” GLR. Still, large values Λ̂t tend to reject (µ ∈ Alt(µ̂(t))): hypothesis ı̂(t) must be true.

It can be observed that
{

Λ̂t > ĉt(δ)
}

=
{
Ct(δ) ⊆ Oı̂(t)

}
where Ct(δ) is the confidence region

Ct(δ) :=

{
λ :

K∑
a=1

Na(t)d(µ̂a(t), λa) ≤ ĉt(δ)

}
. (21)

The extended GLR stopping rule (20) can thus be rephrased in the following way: stop when the
set of statistically plausible parameters Ct(δ) is included in one fold of the partitioning. Building
on Theorem 14, Proposition 21 below provides a choice of thresholds for which the extended GLR
stopping rule yields a δ-correct algorithm. We provide a choice of thresholds for which the extended
GLR rule is δ-correct when the hypothesisHı̂(τ) is recommended and the corresponding confidence
intervals Ct(δ) always contain the true parameter with probability larger than 1− δ.
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Proposition 21 Let T be the threshold function defined in Theorem 14. The sequence of thresholds

ĉt(δ) = 3

K∑
a=1

ln(1 + lnNa(t)) +KT
(

ln(1/δ)

K

)
(22)

is such that, for every sampling rule,

Pµ(∀t ∈ N,µ ∈ Ct(δ)) ≥ 1− δ and Pµ (τδ <∞, ı̂(τδ) 6= i∗) ≤ δ.

Proof Using Theorem 14 in the last inequality, one can write

Pµ (τ <∞, ı̂(τ) 6= i∗) ≤ Pµ
(
∃t ∈ N : ı̂(t) 6= i∗, Λ̂t > ĉt(δ)

)
= Pµ (∃t ∈ N : ∃i 6= i∗, Ct ⊆ Oi)
≤ Pµ (∃t ∈ N : µ /∈ Ct)

= Pµ

(
∃t ∈ N :

K∑
a=1

Na(t)d(µ̂a(t), µa) ≥ ĉt(δ)

)
≤ δ.

This proves both claims of Proposition 21.

5.2 An Asymptotically Optimal Adaptive Testing Procedure

Proposition 21 provides a threshold for which the extended GLR stopping rule (20) is δ-correct for
any sampling rule. We now show that used in conjunction with an appropriate “Tracking” stopping
rule, it can even attain the optimal sample complexity. The following lower bound generalizes the
sample complexity lower bound obtained by Garivier and Kaufmann (2016) for the particular Best
Arm Identification problem and is obtained with the exact same change-of-measure trick.

Proposition 22 Define the complexity term T ∗(µ) as

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

K∑
a=1

wad(µa, λa),

where ΣK =
{
w ∈ [0, 1]K :

∑K
i=1wi = 1

}
. Then any δ-correct strategy satisfies

∀µ ∈ O, Eµ[τδ] ≥ T ∗(µ) ln

(
1

3δ

)
.

We define, when they exist (that is, when the argmax below is unique) the optimal weights

w∗(µ) := argmax
w∈ΣK

inf
λ∈Alt(µ)

K∑
a=1

wad(µa, λa)

for µ ∈ O. For well-behaved sequential testing problems, those weights indicate the fraction of
samples that should be allocated to each arm by an optimal strategy. This motivates the Tracking
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rule, originally proposed by Garivier and Kaufmann (2016) as the D-Tracking rule for Best Arm
Identification and that we recall here. Letting Ut = {a ∈ {1, . . . ,K} : Na(t) ≤ max(

√
t−K/2, 0)}

be the set of under-sampled arms, at time t+ 1 the selected arm is

At+1 ∈


argmin
a∈Ut

Na(t) if Ut 6= ∅ (forced exploration)

argmax
a∈[K]

t w∗a(µ̂(t))−Na(t) o.w. (tracking the plug-in estimate)
(23)

It can be noted that w∗(µ̂(t)) is defined only if µ̂(t) ∈ O. In practice if µ̂(t) /∈ O the tracking step
of the algorithm can be replaced by uniform exploration. Due to the forced exploration, if µ ∈ O the
law of large numbers ensures that at some point µ̂(t) ∈ O, and the tracking step can be applied.

Theorem 23 Assume that the following assumptions are satisfied:

1. For every µ, there is a unique vector of optimal weights w∗(µ)

2. For all i ∈ {1, . . . ,M}, the mapping µ 7→ w∗(µ) is continuous on Oi.

For δ ∈ (0, 1] let ĉt(δ) be a deterministic sequence of thresholds that is increasing in t and for which
there exists constants C,D > 0 such that

∀t ≥ C,∀δ ∈ (0, 1], ĉt(δ) ≤ ln

(
Dt

δ

)
.

Let τδ be the extended GLR stopping rule (20) with thresholds ĉt(δ). The Tracking rule (23) ensures

lim sup
δ→0

Eµ [τδ]

ln(1/δ)
= T ∗(µ).

The proof of Theorem 23 is given in Appendix B. Combining this result with Proposition 21
yields that an adaptive sequential test using the Tracking rule and the extended GLR stopping rule
with thresholds (22) is δ-correct for every δ ∈ (0, 1] and its sample complexity is asymptotically
matching the lower bound of Proposition 22, provided that the optimal weights w∗(µ) are well
defined and continuous in µ.

Efficient ways to compute those weights are also needed for the actual implementation of the
Tracking rule. In the next section, we will discuss particular examples of adaptive sequential tests in
which those requirements are fulfilled and optimal (and efficient) adaptive testing is thus possible.
We will see that smaller thresholds than the universal threshold (22) can be used in some cases.

Of the two assumptions in Theorem 23, we believe that the continuity assumption 2 is very mild
in practice. Continuity of the highly related oracle regret problem for the structured multi-armed
bandit problem in the fixed-budget setting, was recently proved by Combes et al. (2017, Lemma 1)
under a unique optimiser assumption similar to 1. Analogous methods will undoubtedly yield
continuity for pure identification problems under mild assumptions on {Oi}i.

6. Smaller Thresholds for Better Sequential Tests

A stylized form of (two-sided) deviation inequalities obtained in this paper (in Corollaries 10 and 12
and Theorem 14) is the following. For any subset of arms S ⊆ {1, . . . ,K}, for all x large enough,

P

(
∃t ∈ N :

∑
a∈S

Na(t)d(µ̂a(t), µa) >
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x

|S|

))
≤ e−x (24)
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where c and d are two positive constants and C(x) is a threshold function. This result holds for any
subset of arms S . Combining (24) with a weighted union bound, one obtains in Lemma 24 below a
deviation inequality that is uniform over subsets belonging to the support of the “prior” π̃.

Lemma 24 (weighted union bound) Assume (24) holds. Let π̃ be a probability distribution over
subsets:

∑
S⊆{1,...,K} π̃(S) = 1. Then for all x > 0

P

(
∃t,∃S :

∑
a∈S

Na(t)d(µ̂a(t), µa)>
∑
a∈S

c ln(d+ ln(Na(t))) + |S|C
(
x− ln(π̃(S))

|S|

))
≤ e−x.

We now explain how this result can serve to tighten the analysis of the extended GLR stopping
rule for some particular sequential testing problems, to allow for the use of smaller threshold functions.
We later discuss in Section 7 the impact of this result on the design of confidence regions.

6.1 Improved Stopping Rules for Best Arm Identification

The (fixed-confidence) Best Arm Identification problem is a particular sequential identification
problem as defined in Section 5 with Ok = {µ : µk > maxj 6=k µj}: the goal is to identify the arm
with largest mean. For this particular problem, the extended GLR statistic (19) rewrites to

Λ̂t = min
b 6=ı̂(t)

min
λb>λı̂(t)

[
Nı̂(t)(t)d(µ̂ı̂(t)(t), λı̂(t)) +Nb(t)d(µ̂b(t), λb)

]
(25)

and the associated stopping rule (Λ̂t > ĉt(δ)) is referred to as the Chernoff stopping rule by Garivier
and Kaufmann (2016). In this particular case, it is possible to propose a smaller threshold than the
universal threshold (22) that still ensures a δ-correct rule. Indeed, the probability of error of the
strategy that stops when Λ̂t > ĉt(δ) and outputs ı̂(τ) is upper bounded as follows, assuming arm 1 is
the arm with largest mean:

P(error) ≤ P
(
∃t ∈ N, ∃a 6= 1 : min

λa>λ1

[Na(t)d(µ̂a(t), λa) +N1(t)d(µ̂1(t), λ1)] > ĉt(δ)

)
≤ P (∃t ∈ N, ∃a 6= 1 : Na(t)d(µ̂a(t), µa) +N1(t)d(µ̂1(t), µ1) > ĉt(δ))

= P

∃t,∃a 6= 1 :
∑

j∈{1,a}

Nj(t)d(µ̂j(t), µj) > ĉt(δ)

 .

From Theorem 14 and a union bound over the K − 1 subsets {1, 2}, . . . , {1,K} (Lemma 24 with a
prior π̃({1, a}) = 1/(K − 1) for a 6= 1) it holds that

P

∃t,∃a 6= 1 :
∑

j∈{1,a}

Nj(t)d(µ̂j(t), µj) > 3
∑

j∈{1,a}

ln(1 + ln(Nj(t))) + 2T

(
ln K−1

δ

2

) ≤ δ.
This implies that the extended GLR rule is δ-correct with the threshold

ĉt(δ) = 6 ln

(
ln

(
t

2

)
+ 1

)
+ 2T

(
ln K−1

δ

2

)
. (26)
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For large t, this will be smaller than the original threshold ĉt(δ) = ln 2t(K−1)
δ proposed by Garivier

and Kaufmann (2016) in the Bernoulli case. It can hence lead to earlier stopping while preserving the
optimal sample complexity guarantees, as this threshold still satisfies the assumptions of Theorem 23.

Remark 25 The improved threshold (26) yields a δ correct stopping rule, however the corresponding
confidence interval (21) does not satisfy P (∀t ∈ N : µ ∈ Ct(δ)) ≥ 1− δ. There is no equivalence
between the improved δ-correct stopping rule and improved δ-valid confidence regions. We will
discuss the implications of Lemma 24 for confidence regions in Section 7.

6.2 Smaller Thresholds for More General Tests

The reason why we are able to propose a smaller threshold for the BAI problem is that for it the
extended GLR statistic (25) only features pairs of arms. In more general tests, the structure of the
GLR statistic may also be exploited to allow for a smaller threshold that does not depend on the
total number of arms K featuring in the universal threshold (22) but on a smaller effective number of
arms.

Definition 26 Consider a sequential identification problem specified by a partition O =
⋃M
i=1Oi.

We say this problem has rank R if for every i ∈ {1, . . . ,M} we can write

O\Oi =
⋃
q∈[Q]

{
λ ∈ IK

∣∣∣(λki,q1
, . . . , λ

ki,qR
) ∈ Li,q

}
,

for a family of arm indices ki,qr ∈ [K] and open sets Li,q indexed by r ∈ [R], q ∈ [Q] and i ∈ [M ].
In words, the rank is R if every set O \ Oi is a finite union of sets that are each defined in terms of
only R arms.

The BAI problem has rank 2. Indeed, for all i ∈ {1, . . . ,K},

O\Oi =
⋃
a6=i

{
λ ∈ IK |(λi, λa) ∈ {(x, y) : x < y}

}
.

In any testing problem that has rank R, the extended GLR statistic may be rewritten

Λ̂t = min
q∈[Q]

inf
λ

(λ
k
ı̂(t),q
1

,...,λ
k
ı̂(t),q
R

)∈Lı̂(t),q

R∑
r=1

N
k
ı̂(t),q
r

(t)d
(
µ̂
k
ı̂(t),q
r

(t), λ
k
ı̂(t),q
r

)
,

which yields the expression (25) in the BAI case.

Proposition 27 Fix an identification problem of rank R. Then the extended GLR stopping rule (19)
is δ-correct with threshold

ĉt(δ) = 3R ln(1 + ln(t/R)) +RT

(
ln M−1

δ

R

)
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Proof Fix µ ∈ O. For each i 6= i∗, µ ∈ O\Oi, thus from Definition 26 there exists qi such that
(µ
k
i,qi
1
, . . . , µ

k
i,qi
R

) ∈ Li,qi . Then

Pµ {τδ <∞ and ı̂(τδ) 6= i∗}

≤ Pµ
{
∃t : Λ̂t ≥ ĉt(δ) and ı̂(t) 6= i∗

}
= Pµ

{
∃t, i 6= i∗ : Λ̂t ≥ ĉt(δ) and ı̂(t) = i

}

= Pµ

∃t, i 6= i∗ : min
q∈[Q]

inf
λ

(λ
k
i,q
1
,...,λ

k
i,q
R

)∈Li,q

R∑
r=1

N
ki,qr

(t)d
(
µ̂
ki,qr

(t), λ
ki,qr

)
≥ ĉt(δ)


≤ Pµ

{
∃t, i 6= i∗ :

R∑
r=1

N
k
i,qi
r

(t)d
(
µ̂
k
i,qi
r

(t), µ
k
i,qi
r

)
≥ 3R ln(1 + ln(t/R)) + T

(
ln M−1

δ

R

)}

≤ Pµ

{
∃t, i 6= i∗ :

R∑
r=1

N
k
i,qi
r

(t)d
(
µ̂
k
i,qi
r

(t), µ
k
i,qi
r

)
≥ 3

R∑
r=1

ln
(

1 + lnN
k
i,qi
r

(t)
)

+ T

(
ln M−1

δ

R

)}
≤ δ,

where the last inequality follows from Theorem 14 and a union bound overM−1 subsets (Lemma 24
with a prior π̃({ki,qi1 , . . . , ki,qiR }) = 1/(M − 1) for i 6= i∗) together with the concavity of s 7→
ln(1 + ln(s)) that ensures

R∑
r=1

ln
(

1 + lnN
k
i,qi
r

(t)
)
≤ R ln(1 + ln(t/R)).

A rank 4 example. Assume we are given a collection of K pairs of arms and want to find out
which pair has the largest difference (which we think of as profit) between first component (which we
think of as revenue) and second component (which we think of as cost). More precisely, we consider
a K × 2 array of random sources Xij where i ∈ [K] and j ∈ {1, 2}. Let µij = E[Xij ] denote the
means. A strategy samples one arm At = (It, Jt) per round and its goal is to identify the largest
profit pair

i∗(µ) = arg max
i

µi,1 − µi,2.

It is easy to check that this problem, which we call Largest Profit Identification, has rank 4 and the
extended GLR statistic rewrites to

Λ̂t = min
b 6=ı̂

inf
λ∈R{b,ı̂}×{1,2}

λb,1−λb,2>λı̂,1−λı̂,2

∑
a∈{b,̂ı}
j∈{1,2}

Na,j(t)d (µ̂a,j(t), λa,j) .

By Proposition 27 the extended GLR stopping rule (20) is δ-correct with the threshold

ĉt(δ) = 12 ln(1 + ln(t/4)) + 4T

(
ln K−1

δ

4

)
.
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Remark 28 For Largest Profit Identification the oracle weights w∗(µ), which are needed for
implementing the asymptotically optimal procedure of Section 5.2, maximise the concave function
T ∗(µ)−1. For both Gaussian and Bernoulli (and possibly more) we can write the objective as a
Disciplined Convex Program and solve it efficiently with e.g. CVX (Grant and Boyd, 2017).

Best action identification in a game tree. In the bandit literature, a particular structured identifi-
cation problem that offers a simple model for Monte Carlo Tree Search in games has been recently
studied by Teraoka et al. (2014); Garivier et al. (2016); Huang et al. (2017); Kaufmann and Koolen
(2017). The goal is to quickly identify the action at the root of a (maxmin) game tree whose value is
the largest by querying noisy samples of the leaves’ values of that tree.

Lemma 8 in Kaufmann and Koolen (2017) provides an expression for the optimal weights in a
depth-two tree, that are then computable using disciplined convex optimization tools (e.g. CVX).
Furthermore, it can be checked that this identification problem is of rank L + 1, where L is the
numbers of actions of the first and second player. This is much smaller than the number of leaves,
which is K ·L. Assuming the weights (which are only numerically computable) satisfy the continuity
assumption of Theorem 23, the extended GLR rule with a rank L+ 1 threshold is asymptotically
optimal in combination with the Tracking rule.

7. Projected Confidence Intervals

The deviation inequalities presented in this paper can also be used to build tight confidence regions
on (functions of) the parameter µ ∈ IK . We are particularly interested in building δ-uniformly valid
confidence regions Ct(δ), that satisfy P (∀t ∈ N,µ ∈ Ct(δ)) ≥ 1− δ for every sampling rule.

Lemma 24 in combination with our deviation results allows to build such confidence regions.
Indeed for any prior π̃ over subsets, the following confidence interval is δ-uniformly valid (with c
and d as given by the Lemma):

Cπ̃t (δ) :=

{
λ :∀S,

∑
a∈S

Na(t)d(µ̂a(t), λa)≤c
∑
a∈S

ln(d+lnNa(t))+|S|T
(

ln(1/(π̃(S)δ))

|S|

)}
. (27)

A natural question is thus which prior π̃ yields the most interesting confidence region. Answering this
question would require to compare complicated shapes in RK (like we do for K = 2 in Figure 1(a)
in the Introduction) and the answer would still depend on the purpose of those confidence regions.

In this section we investigate their use for computing confidence intervals on derived quantities
of the form f(µ), where f : RK → R is some fixed function. Knowing that µ ∈ Ct, we can
immediately conclude that f(µ) ∈ It(δ) := {f(λ)|λ ∈ Ct}. The interplay of the structure of the
function f and the shape of the confidence region Ct will jointly determine the tightness of the
projected confidence interval It(δ). The principal challenge is to find, for each f of interest, a
statistically tight Ct with a computationally tractable way of computing It. In this section we study
two classes of examples, linear f and minima/maxima.

7.1 Linear functions

In this section we consider an arbitrary linear function f(µ) = cᵀµ where c ∈ RK . We will derive
our results in the Gaussian case because it admits revealing and explicit closed-form expressions.
In that case the confidence region (27) is δ-uniformly valid for c = 2 and d = 4 and g = gG, as
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licensed by Corollary 10. The following two confidence intervals on cᵀµ follow from two extreme
prior choices: a prior supported on all the singleton sets or on the full set.

Proposition 29 (Box) The following is a δ-uniformly valid confidence interval on cᵀµ

It(δ) =

cᵀµ̂(t)±
∑
a∈[K]

√
2

(
Cg
(

ln
K

δ

)
+ c ln(d+ ln(Na(t)))

)
c2
a

Na(t)

 .
Proof Simple algebra show that It(δ) = {cTλ,λ ∈ Cπ̃t (δ)} where π̃ is uniform of singletons.
Indeed, as Cπ̃t (δ) is δ-uniformly valid, it holds that for all t ∈ N and a ∈ [K], |µ̂a(t)− µa| ≤√

2
Na(t)

(
Cg
(
ln K

δ

)
+ c ln(d+ ln(Na(t)))

)
.

Proposition 30 (Ellipse) The following is a δ-uniformly valid confidence interval on cᵀµ

It(δ) =

cᵀµ̂(t)±

√√√√√2

KCg ( ln 1
δ

K

)
+
∑
a∈[K]

c ln(d+ ln(Na(t)))

 ∑
a∈[K]

c2
a

Na(t)

 .
Proof We show that It(δ) = {cTλ,λ ∈ Cπ̃t (δ)} where π̃ is a point-mass on the whole set:
π̃({1, . . . ,K}) = 1. Letting C =

∑K
a=1 ln(1 + lnNa(t)) +KT (ln(1/δ)/K), computing the upper

bound of this confidence interval requires to compute

max
λ

cᵀλ subject to
∑
a∈[K]

Na(t)
(µ̂a(t)− λa)2

2
≤ C.

Introducing Lagrange multiplier ρ, we find that this is equivalent to

min
ρ≥0

max
λ

cᵀλ+ ρ

C − ∑
a∈[K]

Na(t)
(µ̂a(t)− λa)2

2

 .

Solving for λ by cancelling the derivative results in λa = µ̂a(t) + ca
ρNa(t) , asking us to solve

min
ρ≥0

cᵀµ̂(t) +
∑
a∈[K]

c2
a

2ρNa(t)
+ ρC = cᵀµ̂(t) +

√√√√2C
∑
a∈[K]

c2
a

Na(t)

where zero ρ derivative is found at ρ =
√
C−1

∑
a∈[K]

c2a
2Na(t) . As minλ c

ᵀλ = −maxλ(−c)ᵀλ,
the lower bound of It(δ) also follows.
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Comparison. The major difference between the two above bounds is the appearance of the sum
outside vs inside of the square root. To get more intuition, let’s compare in the special case
Na(t) = t/K and approximate Cg(x) ≈ x. Then we need to compare

‖c‖1

√
2

(
ln
K

δ
+ c ln(d+ ln(t/K))

)
K

t
and ‖c‖2

√
2

(
ln

1

δ
+Kc ln(d+ ln(t/K))

)
K

t
.

We see that the box bound depends on the one-norm of c, whereas the ellipse bound depends on
the two-norm of c, which can be smaller by a factor

√
K (at the price of a factor K multiplying the

ln ln t term). In a regime of small δ, the ellipse bound can thus be much better than the box bound.
Another case of interest is Na(t) = t |ca|∑

a|ca|
, which result from following the oracle weightsw∗(µ).

Also here the advantage of ellipse over box can again be as large as a factor
√
K.

7.2 Minimum

We now turn our attention to f(µ) = mina µa. Estimating the minimum (or, symmetrically,
maximum) mean is a natural task in the multi-armed bandit setting (see Kaufmann et al. 2018).
Unlike in the linear case, here the situation is not symmetric. We will study separately the lower and
upper confidence bounds

Lπ̃t (δ) = min
{

min
a
λa : λ ∈ Cπ̃,−t (δ)

}
and Uπ̃

t (δ) = max
{

min
a
λa : λ ∈ Cπ̃,+t (δ)

}
for the confidence regions

Cπ̃,±t (δ) =

{
λ : ∀S,

∑
a∈S

[
Na(t)d

±(µ̂a(t), λa)− 3 ln(1 + lnNa(t))
]+ ≤ |S|T ( ln(π̃(S)/δ)

δ

)}

that are both δ-uniformly valid by Lemma 24. It follows that P
{
∀t ∈ N : mina µa ≤ Uπ̃

t (δ)
}
≥ 1−δ

and P
{
∀t ∈ N : mina µa ≥ Lπ̃t (δ)

}
≥ 1 − δ. We investigate in each case the tightest possible

confidence bound that can be obtained by optimising the choice of the prior π̃.

Lower confidence bound A minimum is low whenever one entry is low. This means that the
λ ∈ Cπ̃,−t of lowest mean will have all entries equal to µ̂ except for one. This in turn means that
we do not get any mileage out of combining evidence from multiple arms. Instead, the best Lπ̃t is
obtained for the choice π̃({k}) = 1/K (uniform distribution on singletons). We find the following.

Proposition 31 At time t, for each arm a, let θa(t) ≤ µ̂a(t) be the solution to

Na(t)d
−(µ̂a(t), θa(t)) = 3 ln(1 + ln(Na(t))) + T

(
ln
K

δ

)
(note the left-hand side increases with decreasing θa(t), so the solution can be found by binary
search). Then

P
{
∀t ∈ N,min

a
µa ≥ min

a
θa(t)

}
≥ 1− δ.
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Proof With the choice π̃({k}) = 1/K, Cπ̃,−t (δ) is the set of λ:

∀a ∈ [K] : Na(t)d
−(µ̂a(t), λa) ≤ 3 ln(1 + ln(Na(t))) + T

(
ln
K

δ

)
.

By definition, θa(t) is the lowest possible value for λa, and hence mina θa(t) is the lowest possible
value for mina λa.

Upper confidence bound Above, we found that we do not learn much about the lower bound in
the presence of many arms. For the upper confidence bound the story is different. We explain in
Proposition 32 how to compute Uπ̃

t for a general prior π̃. We then show that empirically a prior
supported on all subsets can be helpful.

Proposition 32 Let θ(t) be the solution in θ to the equation

max
S⊆[K]

[∑
a∈S

[
Na(t)d

+(µ̂a(t), θ)− 3 ln(1 + ln(Na(t)))
]+ − |S|T ( ln 1

δπ̃(S)

|S|

)]
= 0.

Then P {∀t ∈ N,mina µa ≤ θ(t)} ≥ 1− δ.

Proof We prove that Uπ̃
t (δ) = θ(t). Let λ ∈ Cπ̃,+t (δ). By definition,

max
S⊆[K]

[∑
a∈S

[
Na(t)d

+(µ̂a(t), λa)− 3 ln(1 + ln(Na(t)))
]+ − |S|T ( ln 1

δπ̃(S)

|S|

)]
≤ 0.

What does this tell us about mina∈[K] λa? Well, consider a candidate value θ ≥ mina µ̂a(t) for the
minimum. Among bandit models λ with mina λa = θ, the left-hand side above is minimised at
λa = max {µ̂a(t), θ} and the maximal value of mina∈[K] λa is the maximal value of θ such that

max
S⊆[K]

[∑
a∈S

[
Na(t)d

+(µ̂a(t), θ)− 3 ln(1 + ln(Na(t)))
]+ − |S|T ( ln 1

δπ̃(S)

|S|

)]
≤ 0.

We recover the objective in the statement by noting that the left-hand side is a continuous and
non-decreasing function of θ.

Practical choice of prior The upper bound for a minimum may benefit from considering many
subsets S ⊆ [K] in the weighted union bound. The reason is that a smaller subset will have a smaller
evidence term (summing fewer terms), but it may also have a smaller threshold. Here we investigate
the use of cardinality-based priors of the form π̃(S) = π(|S|)/

(
K
|S|
)

for some prior π on sizes [K].
First, let’s consider the computation of θ(t) for those priors: we are looking for the zero crossing

of an increasing function, which can be found by e.g. binary search. It remains to efficiently evaluate
the objective for a fixed θ(t). Here we propose to express the objective as

max
k∈[K]

max
S⊆[K]:|S|=k

∑
a∈S

[
Na(t)d

+(µ̂a(t), θ(t))− 3 ln(1 + ln(Na(t)))
]+

︸ ︷︷ ︸
the best set takes the k largest contributors; implement by sorting once.

−kT

 ln
(Kk )
δπ(k)

k

 .
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and observe that the best set of size k takes the k arms of largest contribution, which we can look up
after sorting the arms by their contribution. Hence each evaluation of the objective can be obtained
in O(K lnK) time.

We expect combining evidence across arms to be particularly useful when there are several arms
with means close to the minimum. We illustrate this empirically on a Bernoulli bandit model with M
arms with mean 0.1 and 4 more arms with means 0.2, 0.3, 0.4, 0.5 (thus K = M + 4), for different
values of M . We consider the use of a “Box” prior that is uniform on the singletons (π(1) = 1), a
prior supported on the whole set (π(K) = 1), a prior that is uniform over subset sizes (π(k) = 1/K)
and a “Zipf” prior that gives more weights to smaller subset sizes (π(k) ∝ 1/k). For each value of
M , data is collected using uniform sampling and we set δ = 10−10 to focus on the high confidence
regime. We see that the uniform prior (or the Zipf prior which performs almost identically) leads to
smaller upper confidence bounds when compared to Box when M increases.

Figure 4: Uπ̃
t (δ) as a function of t for several cardinality-based priors π̃ in a presence of M = 1

(left), M = 5 (middle) and M = 10 (right) identical arms with the minimal mean.

This experiment shows that for small values of δ a uniform cardinality-based prior is a robust
choice: summing evidence across arms never hurts too much. In the particular case of minimums,
we would like to mention that one can go even further and aggregate samples from different arms,
as explained in Kaufmann et al. (2018), which leads to even smaller upper confidence bounds in
experiments.

8. Conclusion

Sequential problems are studied in the multi-armed bandit model, where the learner sequentially
picks arms to sample. The central question is what the learner infers from the samples that it has
seen. This is used for deciding what to do next, when to stop, what to recommend and/or estimate.

We use mixture martingales to design confidence regions, based on self-normalised sums, for
exponential family multi-armed bandit models. We argue that these confidence regions are the
tightest known, and match, in spirit, established statistical lower bounds.

We then apply the obtained deviation inequalities to the design of confidence intervals by means
of explicit projections, stopping rules by means of (extended) GLR statistics, and asymptotically
optimal sampling rules by a tight analysis of the Track-and-Stop algorithm. The fact that we are
pushing the state of the art in each of these areas clearly demonstrates the generic appeal of the
mixture martingale approach.
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Appendix A. Details for exponential families: proof of Lemma 19

Given any probability distribution π, recall that the associated mixture martingale is defined as

Zπa (t) =

∫
exp (λSa(t)− φµa(λ)Na(t)) dπ(λ).

The first step of the construction is Lemma 33, which relates the deviation of Na(t)d
+(µ̂a(t), µa)

and Na(t)d
−(µ̂a(t), µa) to those of ηSa(t)− φµa(η)Na(t) for a well chosen η, provided that Na(t)

belongs to some “slice” [(1 + ξ)i−1, (1 + ξ)i].

Lemma 33 Fix i ∈ N∗, x > 0 and ξ > 0. There exists η+
i (x, ξ) and η−i (x, ξ) such that, if

Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i] it holds that{
Na(t)d

+(µ̂a(t), µa) ≥ x
}
⊆

{
η+
i Sa(t)−Na(t)φµa(η+

i ) ≥ x

1 + ξ

}
{
Na(t)d

−(µ̂a(t), µa) ≥ x
}
⊆

{
η−i Sa(t)−Na(t)φµa(η−i ) ≥ x

1 + ξ

}
.

The next step is to relate the deviation of Xa(t) to those of a martingale for every t ∈ N and
not only for Na(t) is some slice: this will be achieved by a mixture martingale with a well-chosen
discrete prior. In the sequel, we consider the (most complicated) case in which Xa(t) = Ya(t) for all
t. Given x, we define the following probability distribution. Let

γi = 1
2

1
i2ζ(2)

xi = x+ ln
(

1
γi

)
η+
i = η+

i (xi, ξ) η−i = η−i (xi, ξ),

where η±i (x, ξ) are defined in Lemma 33. We define the discrete prior

π =

∞∑
i=1

γiδη+
i

+

∞∑
i=1

γiδη−i

and the corresponding mixture martingale

Zπa (t) =

∞∑
i=1

γiZ
η+
i
a (t) +

∞∑
i=1

γiZ
η−i
a (t),
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where by a slight abuse of notation, Zηa (t) = Z
δη
a (t) = exp(ηSa(t)− φµa(η)Na(t)) for η ∈ R.

In the case Xa(t) = Y +
a (t), this prior is modified by taking γi = 1

i2ζ(2)
and π =

∑∞
i=1 γiδη+

i
,

while for Xa(t) = Y −a (t), one defines π =
∑∞

i=1 γiδη−i
. We continue the proof assuming Xa(t) =

Ya(t) for all t. The proof of the two other cases follow the exact same lines, with the corresponding
priors, leading to an improved constant C(ξ) = ln ζ(2)

(ln(1+ξ))2 .

{Xa(t)− (1 + ξ) lnC(ξ) ≥ x}
⊆
{

[Na(t)d(µ̂a(t), µa)− 3 ln(1 + ln(Na(t)))]
+ ≥ x+ (1 + ξ) lnC(ξ)

}
= {Na(t)d(µ̂a(t), µa)− 3 ln(1 + ln(Na(t))) ≥ x+ (1 + ξ) lnC(ξ)} ,

where we use that x+ (1 + ξ) lnC(ξ) > 0 as ξ < 1/2. Now, as 2(1 + ξ) < 3, one has

{Xa(t)− (1 + ξ) lnC(ξ) ≥ x}

⊆
{
Na(t)d (µ̂a(t), µa)− 2(1 + ξ) ln (1 + ln(Na(t))) ≥ x+ (1 + ξ) ln

(
2ζ(2)

ln(1 + ξ)2

)}
⊆
{
Na(t)d (µ̂a(t), µa) ≥ x+ (1 + ξ) ln

(
2ζ(2)(1 + ln(Na(t))

2

ln(1 + ξ)2

)}
⊆
{
Na(t)d (µ̂a(t), µa) ≥ x+ (1 + ξ) ln

(
2ζ(2)(ln(1 + ξ) + ln(Na(t))

2

ln(1 + ξ)2

)}
,

where the last inequality uses ln(1 + ξ) ≤ ln(3/2) ≤ 1. Now, assuming let i(t) ≥ 1 be such that
Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i]. One can observe that lnNa(t)

ln(1+ξ) ≥ i(t)− 1. Using Lemma 33,

{Xa(t)− (1 + ξ) lnC(ξ) ≥ x}

⊆
{
Na(t)d (µ̂a(t), µa) ≥ x+ (1 + ξ) ln

(
1

γi(t)

)}

⊆

 max
η∈

{
η+
i(t)

,η−
i(t)

} [ηSa(t)− φµa(η)Na(t)] ≥
1

1 + ξ

[
x+ (1 + ξ) ln

(
1

γi(t)

)]
⊆

 max
η∈

{
η+
i(t)

,η−
i(t)

} γi(t) exp (ηSa(t)− φµa(η)Na(t)) ≥ e
x

1+ξ


⊆

{
max
i∈N

max
η∈{η+

i ,η
−
i }
γi exp (ηSa(t)− φµa(η)Na(t)) ≥ e

x
1+ξ

}
⊆
{
Zπa (t) ≥ e

x
1+ξ

}
.

Proof of Lemma 33 We introduce the notation θ for the natural parameter associated to µa, defined
as θ = ḃ−1(µa). Define η+

i < 0 and η−i > 0 such that

KL(θ + η+
i , θ) = KL(θ + η−i , θ) =

x

(1 + ξ)i
.
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where KL(θ, θ′) is the Kullback-Leibler divergence between the distributions of natural parameter θ
and θ′. Moreover, using some properties of the KL-divergence, one can write

KL(θ + η+
i , θ) = η+

i µ
+
i − φµa(η+

i ) with µ+
i := ḃ−1(θ + η+

i ) < µa,

KL(θ + η−i , θ) = η−i µ
−
i − φµa(η−i ) with µ−i := ḃ−1(θ + η−i ) > µa.

For Na(t) ∈ [(1 + ξ)i−1, (1 + ξ)i], one has{
Na(t)d

+(µ̂a(t), µa) ≥ x
}
⊆

{
d+(µ̂a(t), µa) ≥

x

(1 + ξ)i

}
⊆

{
µ̂a(t) ≤ µ+

i

}
⊆

{
η+
i µ̂a(t)− φµa(η+

i ) ≥ KL(θ + η+
i , θ)

}
⊆

{
(1 + ξ)i−1

(
η+
i µ̂a(t)− φµa(η+

i )
)
≥ x

1 + ξ

}
⊆

{
Na(t)

(
η+
i µ̂a(t)− φµa(η+

i )
)
≥ x

1 + ξ

}
,

where the third inclusion uses that η+
i is negative. Similarly, using this time that η−i > 0 yields{

Na(t)d
−(µ̂a(t), µa) ≥ x

}
⊆

{
µ̂a(t) ≥ µ−i

}
⊆

{
η−i µ̂a(t)− φµa(η−i ) ≥ KL(θ + η−i , θ)

}
⊆

{
Na(t)

(
η−i µ̂a(t)− φµa(η−i )

)
≥ x

1 + ξ

}
,

which concludes the proof.

A.1 One-arm bounds

Lemma 19 allows us to directly derive valid thresholds involving only a single arm. Namely, we have

Corollary 34 Let h̃z(x) be as defined in (12). For every arm a and confidence parameter x ≥ 0

P
{
Xa(t) ≥ 2h̃3/2

(
x+ ln (2ζ(2))

2

)}
≤ e−x.

Proof By Lemma 19, for every ξ ∈ [0, 1/2],

P
{
Xa(t)− (1 + ξ) ln

(
2ζ(2)

(ln(1 + ξ))2

)
≥ (1 + ξ)x

}
≤ P

{
Zπ((1+ξ)x)
a (t) ≥ ex

}
≤ e−x

Minimising the threshold w.r.t. ξ using Lemma 39 results in

min
ξ∈[0,1/2]

(1 + ξ)

(
x+ ln

(
2ζ(2)

(ln(1 + ξ))2

))
= 2h̃3/2

(
x+ ln (2ζ(2))

2

)
.

We see that the multiple-arm threshold of Theorem 14 has h−1(1 + x) > x where Corollary 34 has
just x. This additional blowup is the overhead that our approach incurs for controlling multiple arms
by means of a “Cramér-Chernoff” approach.
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Appendix B. Optimal sample complexity: Proof of Theorem 23

The first ingredient of the proof is a (deterministic) property of the Tracking sampling rule, that
reformulates Lemma 8 in Garivier and Kaufmann (2016).

Lemma 35 Under the Tracking rule for each a ∈ {1, . . . ,K},Na(t) ≥ (
√
t−K/2)+−1. Moreover,

for all ε > 0, for all t0, there exists tε ≥ t0 such that

sup
t≥t0

max
a∈{1,...,K}

|w∗a(µ̂(t))− w∗a(µ)| ≤ ε ⇒ sup
t≥tε

max
a∈{1,...,K}

∣∣∣∣Na(t)

t
− w∗a(µ)

∣∣∣∣ ≤ 3(K − 1)ε .

To ease the notation, we fix µ ∈ O1. From the continuity of w∗ in µ ∈ O1, there exists
ξ = ξ(ε,µ) such that

Iε := [µ1 − ξ, µ1 + ξ]× · · · × [µK − ξ, µK + ξ]

is included in O1 and is such that for all µ′ ∈ Iε,

max
a∈{1,...,K}

|w∗a(µ′)− w∗a(µ)| ≤ ε.

In particular, whenever µ̂(t) ∈ Iε, it holds that ı̂(t) = 1.

Let T ∈ N and define the “good tail” event

ET (ε) =
T⋂

t=T 1/4

(µ̂(t) ∈ Iε) .

By Lemma 35, under the Tracking rule each arm is drawn at least of order
√
t times at round t.

This permits to establish the following concentration result, stated as Lemma 19 in Garivier and
Kaufmann (2016).

Lemma 36 There exist two constants B,C (that depend on µ and ε) such that

Pµ(EcT (ε)) ≤ BT exp(−CT 1/8).

Using Lemma 35, there exists a constant Tε such that for T ≥ Tε, it holds that on ET (ε),

∀t ≥
√
T , max

a∈{1,...,K}

∣∣∣∣Na(t)

t
− w∗a(µ)

∣∣∣∣ ≤ 3(K − 1)ε

On the event ET (ε), for t ≥ T 1/4 it holds that ı̂(t) = 1, thus Alt(µ̂(t)) = Alt(µ) and Λ̂t = tM̂(t)
where

M̂(t) := inf
λ∈Alt(µ)

∑
a∈{1,...,K}

Na(t)

t
d (µ̂a(t), λa) .

One can rewrite

M̂(t) = g

(
µ̂(t),

(
Na(t)

t

)
a∈{1,...,K}

)
,
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with g a mapping defined on O1 × [0, 1]K by

g(µ′,w′) = inf
λ∈Alt(µ)

∑
a∈{1,...,K}

w′ad
(
µ′a, λa

)
.

As the mapping (λ,µ′,w′) 7→
∑

a∈{1,...,K}w
′
ad (µ′a, λa) is jointly continuous and the constraint set

Alt(µ) doesn’t depend on (µ′,w′), it follows from the application of Berge’s maximum theorem
(Berge, 1963) that g is continuous.

For T ≥ Tε, introducing the constant

C∗ε (µ) = inf
µ′:||µ′−µ||≤ξ(ε)

w′:||w′−w∗(µ)||≤3(K−1)ε

g(µ′,w′) ,

on the event ET (ε) it holds that for every t ≥
√
T , M̂(t) ≥ C∗ε (µ).

Let T ≥ Tε. On ET (ε),

min
(
τGLR
δ , T

)
≤
√
T +

T∑
t=
√
T

1(τδ>t) ≤
√
T +

T∑
t=
√
T

1(tM̂(t)≤ct(δ))

≤
√
T +

T∑
t=
√
T

1(tC∗ε (µ)≤cT (δ)) ≤
√
T +

cT (δ)

C∗ε (µ)
.

Introducing

T ε0(δ) = inf

{
T ∈ N :

√
T +

cT (δ)

C∗ε (µ)
≤ T

}
,

for every T ≥ max(T ε0(δ), Tε), one has ET (ε) ⊆ (τδ ≤ T ), therefore

Pµ (τδ > T ) ≤ P(EcT ) ≤ BT exp(−CT 1/8)

and

Eµ[τδ] ≤ T ε0(δ) + Tε +
∞∑
T=1

BT exp(−CT 1/8) .

We now provide an upper bound on T ε0(δ). For ξ > 0 we introduce the constant

C(ξ) = inf{T ∈ N : T −
√
T ≥ T/(1 + ξ)}.

Using moreover the upper bound on the threshold yields

T ε0(δ) ≤ C + C(ξ) + inf

{
T ∈ N :

ln
(
DT
δ

)
C∗ε (µ)

≤ T

1 + ξ

}
.

Letting h−1 be the function defined in the statement of Theorem 14 which is related to the Lambert
function. One has

T0(δ) ≤ C + C(ξ) +
(1 + ξ)

C∗ε (µ)
h−1

(
ln

(
(1 + ξ)D

C∗ε (µ)δ

))
.
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Using Proposition 15, it follows that

T0(δ) ≤ C + C(ξ) +
(1 + ξ)

Cε(µ)

[
ln

(
(1 + ξ)D

C∗ε (µ)δ

)
+ ln

(
ln

(
(1 + ξ)D

C∗ε (µ)δ

)
+

√
2 ln

(
(1 + ξ)D

C∗ε (µ)δ

)
− 2

)]
.

From this last upper bound, for every ξ > 0 and ε > 0,

lim sup
δ→0

Eµ
[
τGLR
δ

]
ln(1/δ)

≤ (1 + ξ)

C∗ε (µ)
.

Letting ξ and ε go to zero and using that, by continuity of g and by definition of w∗(µ),

lim
ε→0

C∗ε (µ) = T ∗(µ)−1

yields

lim sup
δ→0

Eµ[τδ]

ln(1/δ)
≤ T ∗(µ)

To conclude, the lower bound of Proposition 22 implies that this inequality is an equality.

Appendix C. Technical results

C.1 Proof of Proposition 15

We may write

h−1(x) = inf
z≥1

z

(
x− 1 + ln

z

z − 1

)
Plugging in the sub-optimal feasible choice z = 1 + 1

(x−1)+
√

2(x−1)
reveals

h−1(x) ≤

(
1 +

1

(x− 1) +
√

2(x− 1)

)(
x− 1 + ln

(
x+

√
2(x− 1)

))
≤ 1 + (x− 1) + ln

(
x+

√
2(x− 1)

)
.

Where the last inequality uses ln
(
x+

√
2(x− 1)

)
≤
√

2(x− 1) which holds with equality at
x = 1 and whose gap is increasing (as can be checked by differentiation).

C.2 Tight Tuning: Proof of Lemma 18

In this section we prove Lemma 18, which gives the tightest possible tuning achievable with our
method. We first prove two auxiliary lemmas.

Lemma 37 Let x ≥ 0. Then

inf
q∈[0,1]

x− ln (1− q)
q

= h−1 (1 + x) .
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Proof The objective is convex in 1
q , and hence minimised at zero derivative. Cancelling the derivative

requires

1 + x =
1

1− q
− ln

1

1− q
= h

(
1

1− q

)
so that q = 1− 1

h−1 (1 + x)

where the rewrite in terms of h is allowed since 1/(1− q) ≥ 1. Plugging this in, we find the value as
stated.

Definition 38 For any z ∈ [1, e] and x ≥ 0, we define

h̃z(x) = min
y∈[1,z]

y (x− ln ln y) .

We can now make the connection to (12).

Lemma 39 Fix z ∈ [1, e]. Then

h̃z(x) =

{
exp

(
1

h−1(x)

)
h−1(x) if x ≥ h

(
1

ln z

)
,

z (x− ln ln z) o.w.

Proof The objective in Definition 38 is convex on y ∈ [1, e], and its derivative is x − h(1/ ln y).
When x ≤ h(1/ ln z) it is decreasing on the entire domain y ∈ [1, z], and hence minimised at y = z,
yielding the second case. If on the other hand x ≥ h(1/ ln z), the derivative of the objective is

cancelled at y = e
1

h−1(x) , and substitution reveals that the value equals

e
1

h−1(x)
(
x+ lnh−1(x)

)
= e

1
h−1(x)h−1(x).

We are now ready to prove the Lemma.
Proof (of Lemma 18) We reorganise, apply Lemma 37 and then Lemma 39 to find

T (x) = inf
ξ∈[0,z]

(1 + ξ)

(
inf
q≤1

x− ln (1− q)
q

+ lnC(ξ)

)
= inf

ξ∈[0,z]
(1 + ξ)

(
h−1 (1 + x) + lnC(ξ)

)
= inf

ξ∈[0,z]
(1 + ξ)

(
h−1 (1 + x) + ln (2ζ(2))− 2 ln ln(1 + ξ)

)
= 2 inf

y∈[1,1+z]
y

(
h−1 (1 + x) + ln (2ζ(2))

2
− ln ln y

)
= 2h̃1+z

(
h−1 (1 + x) + ln (2ζ(2))

2

)
.
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