Resurgent deformations for an ordinary differential equation of order 2

Abstract :

We consider the differential equation (d2∕dx2)Φ(x) = (Pm(x)∕x2)Φ(x) in the complex field, where Pm is a monic polynomial function of order m. We investigate the asymptotic and resurgent properties of the solutions at infinity, focusing in particular on the analytic dependence of the Stokes–Sibuya multipliers on the coefficients of Pm. Taking into account the nontrivial monodromy at the origin, we derive a set of functional equations for the Stokes–Sibuya multipliers, and show how these relations can be used to compute the Stokes multipliers for a class of polynomials Pm. In particular, we obtain conditions for isomonodromic deformations when m = 3

Type de document :
Article dans une revue
Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2006, 223 (1), pp.35-93. 〈10.2140/pjm.2006.223.35〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01886525
Contributeur : Okina Université d'Angers <>
Soumis le : mardi 2 octobre 2018 - 20:31:36
Dernière modification le : mardi 30 octobre 2018 - 14:09:16

Lien texte intégral

Identifiants

Collections

Citation

Eric Delabaere, Jean-Marc Rasoamanana. Resurgent deformations for an ordinary differential equation of order 2. Pacific Journal of Mathematics, Mathematical Sciences Publishers, 2006, 223 (1), pp.35-93. 〈10.2140/pjm.2006.223.35〉. 〈hal-01886525〉

Partager

Métriques

Consultations de la notice

18