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Abstract. In continuous constraint programming, the solving process
alternates propagation steps, which reduce the search space according
to the constraints, and branching steps. In practice, the solvers spend a
lot of computation time in propagation to separate feasible and infeasi-
ble parts of the search space. The constraint propagators cut the search
space into two subspaces: the inconsistent one, which can be discarded,
and the consistent one, which may contain solutions and where the search
continues. The status of all this consistent subspace is thus indetermi-
nate. In this article, we introduce a new step called elimination. It refines
the analysis of the consistent subspace by dividing it into an indetermi-
nate one, where the search must continue, and a satisfied one, where the
constraints are always satisfied. The latter can be stored and removed
from the search process. Elimination relies on the propagation of the
negation of the constraints, and a new difference operator to efficiently
compute the obtained set as an union of boxes, thus it uses the same
representations and algorithms as those already existing in the solvers.
Combined with propagation, elimination allows the solver to focus on the
frontiers of the constraints, which is the core difficult part of the problem.
We have implemented our method in the AbSolute solver, and present
experimental results on classic benchmarks with good performances.

1 Introduction

Constraint solvers generally alternate two steps: propagation and exploration.
The propagation step reduces the domains of the variables using the constraints.
The exploration step adds hypotheses to divide the problem into several smaller
sub-problems. In this article, we are interested in continuous constraint solving,
where the variables have real values. In this case, the resolution of a problem
usually consists in a paving of the solution space, which is not computer repre-
sentable in general, using elements which are simple enough to manipulate (often
floating-point boxes). This paving may correspond to an outer approximation or
over-approximation of solutions, as in Ibex [6], or may correspond to an inner
approximation or under-approximation as in [7].

* The work was supported, in part, by the project ANR-15-CE25-0002 Coverif from
the French Agence Nationale de la Recherche, and in part by the European Research
Council under Consolidator Grant Agreement 681393 — MOPSA.
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The efficiency of a solver depends on the choices made by the exploration
process, these choices being often guided by heuristics. On discrete variables,
such heuristics can for example try and provoke early failures (such as fail-first
[9] or dom Jw deg [4]).

On continuous variables, classic heuristics include: largest first [13], which
consists in splitting the largest domain; round robin, where the domains are
processed successively; or mazimal smear [8], choosing the domain with the
greatest slope based on the derivatives of the constraints. More recently, and
closer to our work, Mind The Gaps [1] uses the idea from [8, 13] and uses partial
consistencies to find interesting splitting points within the domain, according
to the “gaps” in the search space: splitting the domains by taking into account
such gaps reduces the search space.

In this paper, we focus on covering the entire solution space of continuous
problems. We propose to add a new step, complementary to constraint propa-
gation, in the solving process: the elimination step. This step divides the search
space into two sub-spaces: one containing only solutions, and the other where
the constraints are indeterminate — it may contain solutions as well as non-
solutions. Our solving method alternates three steps: propagation, elimination,
and exploration. It offers another way of reasoning on the constraints, since we
are not only exploiting the constraints’ consistencies (as does propagation) but
also the constraint inconsistencies. With this improved reasoning, the interesting
zones of the search space are better targeted: zones without solutions are dis-
carded by propagation, and zones with only solutions are set aside by elimination
into the solution space, which means in practice that they also are excluded from
the search. The search effort can then focus on the indeterminate space — the
part of the search space effectively requiring deeper exploration by the solver.

Our new step can be seen as a new contraction, in the same framework as
the contractors described in [10] and used in Ibex [6] to perform a smarter ex-
ploration. We add an automatic propagation on the negation of the constraints,
to identify subspaces containing only solutions. We thus reason on the negation
of the constraints, hence we compute sets which are not boxes: to overcome this
issue, we also add an operator on boxes to efficiently compute the difference of
two boxes (or the complementary of one box in another) as a union of boxes.
Thus, our method can be integrated into any solver without changing its domain
representation nor modifying the propagators.

Our elimination phase relies on a notion of consistency to divide the search
space and guide the search, similarly to Mind The Gaps [1] where consistency
is also used to guide the search. But we go a step further by not only trying to
identify the inconsistent parts of the search space (the “gaps”), but by using set
complement to identify sub-spaces containing only solutions.

Our method is tailored to output an outer approximation as well as an inner
approximation of the solution set: when the size of the indeterminate part is
small enough and exploration stops, we can either include the indeterminate
part with the definite solution space found by elimination steps to get an outer
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approximation, or return only the solution space found by elimination which is
an inner approximation.

In fact, our solver can provide within the same process both an inner and an
outer approximation, and due to the fact that the computed boxes better fit the
constraints’ shapes, this comes at no cost according to our experiments. We have
tested our method on both the Coconut[16] and the MinLPLib[5] benchmarks.
Our results show that first, our method computes both the inner and outer
approximation with no time overhead, and second, it produces fewer boxes as
an output, which makes the computed solution much more tractable.

This paper is organized as follows. Section 2 presents formally classic continu-
ous constraint solving, on which our work is based. Section 3 introduces our new
solving step: elimination. Section 4 presents experiments with our new solving
method. Finally, Sect. 5 concludes and discusses future work.

2 Preliminaries

This section recalls basic notions of continuous Constraint Programming (CP).
For a more detailed presentation, we refer the reader to [14, Chap. 16].

2.1 Constraint Satisfaction Problems

We consider a Constraint Satisfaction Problem (CSP) defined by: a set of n
variables X = {x1,..., 2, }; the domain of each variable D = {d;,...,d,}, i.e.,
x € di,Vk € [1,n]; and a set of m constraints C = (Cy,...,Cy,). A possible
assignment of the variables is a tuple in D = dy X - - - X d,,. A solution of the CSP
is an element of D satisfying all the constraints in C. We denote as S the set of all
solutions, i.e., S = {(s1,...,8,) € D | Vi € {1,...,m},Ci(s1,...,8n)}. We also
denote as S¢ the solution set for the constraint C alone: S¢ = {(s1,...,8,) €
D|C(s1,.--,8n)}

In the CP framework, variables can either be discrete or continuous. In this
article, we focus on continuous, real-valued variables. Domains of variables are
intervals of R. We also assume that the bounds are (finite) floating point num-
bers, to be computer-representable. They can be either excluded or included.
Let F be the set of finite floating point numbers. For a,b € F, we define a
real-interval as the conjunction of two half-spaces {z € R | a <x < b} where
a € {<,<}, and let T be the set of all such intervals.

A Cartesian product of intervals is called a box. We note B = Z™ the set of
boxes of dimension n. Note that our definition of interval encompasses intervals
with excluded end-points which will be useful later.

For continuous CSPs, with domains in Z, the exact solution set S C R" is
generally not computer-representable. Constraint solvers usually return a collec-
tion of boxes with floating-point bounds containing the solutions, the union of
these being an over-approximation of S.
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2.2 Consistency

The notion of local consistency is central in CP. We recall the definition of Hull-
consistency [3], one of the classic local consistencies for continuous constraints.

Definition 1 (Hull-Consistency). Let z1,...,z, be variables over continu-
ous domains represented by intervals dy,...,d, € Z, and C a constraint. The
domains are said to be Hull-consistent for C' if and only if D =dy X --- X d,, s
the smallest floating-point box containing the solutions for C in D.

Intuitively, no bound of a consistent box D can be tightened without losing a
solution of C'. Given a constraint C over domains djy, ..., d,, an algorithm that
computes locally consistent domains d, . . ., d,, that contain the same solution set
as C'in dy X - -+ X dy, is called a propagator for C. Naturally, Vk € [1,n],d}, C dy.
Given a constraint C' and domains dy, .. ., d,, we will write Ho(dy, . .. ,d,) the
corresponding Hull-consistent domains and pc : B — B a propagator for C.
While we only refer to the Hull-consistency in this work, our method is based
upon the propagator notion and holds for any kind of consistency.

The domains which are locally consistent for all constraints are the largest
common fixpoints of all the constraint propagators [2,15]. In practice, propaga-
tors often compute over-approximations of the locally consistent domains. In the
following, we will use the standard algorithm HC4 [3], which propagates contin-
uous constraints, relying on the syntax of the constraints and interval arithmetic
[11], although our method could be combined with other propagators. HC4 gener-
ally does not reach Hull consistency, in particular in case of multiple occurrences
of the variables in the constraints.

Local consistency computations can be seen as deductions, performed on
domains by analyzing the constraints. If the propagators return the empty set,
the domains are inconsistent and the problem has no solution. Otherwise, non-
empty local consistent domains are computed. This is often not sufficient to
accurately approximate the solution set. In that case, choices are made on the
variable values. For continuous constraints, typically a domain d is chosen and
split into two (or more) parts, which are in turn narrowed by the propagators.
The solver alternates propagation and split phases a given precision is reached,
i.e all the boxes which are still considered are smaller than a given parameter. Of
course, as soon as a box is proven to contain only solutions, it can be removed
from the search space and added to the solution set. Upon termination, the
collection of boxes returned covers the solution set S, under some hypotheses on
the propagators and splits [2].

A solving method is said to be complete if it returns an over-approximation
of the solution set (no solution is missed). It is said to be sound if it returns
an under-approximation of the solution set (only solutions are returned). For
problems with real variables, the solving method cannot be both complete and
sound in general asbeing sound (returning only solution), requires the result
to under-approximate the solution space, and being complete (returning all the
solutions) requires the result to over-approximate the solution space. In practice,
solving methods are often complete and not sound.
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Algorithm 1 Solving without / with elimination (in pink)

1: function sOLVE(D,C,r, elim) > D: domains, C: constraints, r: real, set elim to

2: false for classic solving, true for elimination
3: sols < 0 > sound solutions
4: undet < > indeterminate solutions
5: explore «+ > boxes to explore
6: e =init(D) > initialization
T push e in explore

8: while explore # ) do

9: e < pop(explore)

10: e « filter(e,C)

11: if e # () then

12: if satisfies(e, C) then

13: sols < solsUe

14: else

15: if 7(e) <r then

16: undet <— undet Ue

17: else

18: if lelim then

19: push ®(e) in explore > Classic solving process

20: else

21: (S,E) = elimination(e,(C) > Solving with elimination
22: sols < solsUS

23: push @(F) in explore

2.3 Solving method

In this article, we rely on the general abstract solving process described in [12],
instantiated with the interval domain. The solver thus operates on boxes, as de-
fined above. Algorithm 1 gives the pseudo-code of the abstract solving method,
where 7 € B — R is the precision measure and @ € B — @(B) is the split
operator. In this section we have the elim parameter set to false, thus we do
not consider the part highlighted in pink. By alternating propagation and ex-
ploration, Algorithm 1 builds a disjunction of boxes that covers the solution
space. It uses three auxiliary functions: init € D — B, filter € B — B, and
satisfies € B x C — {true, false}. Firstly, init creates a box from the initial
domains of the problem. Then, filter corresponds to the propagation loop: it
applies the propagator for each constraint in turn. Finally, satisfies checks
whether a box satisfies all the constraints, that is, if it contains only solutions.
This function corresponds to a contractor as defined in [6].

This solving method works as follows: at each step, the current box is tight-
ened using the propagators on the constraints (function filter). After propa-
gation, if the tightened box is not empty, three cases are possible:

— If the box contains only solutions (function satisfies), then it is directly
added to the set of solutions sols.
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boxes

05 Outter

(a) Default solving (b) Solving vith elimination

Fig.1: (a): 127 inner boxes, 128 outer boxes. Inner boxes represent 59% of the
coverage area. Computation time 0.015s. (b): 18 inner boxes, 128 outer boxes.
Inner boxes represent 92% of the coverage area. Computation time: 0.008s

— Otherwise, if the box is small enough with respect to a parameter r (7(e) <
r), then it is added to the set of indeterminate solutions undet — i.e., the
box, which may contain both solutions and non-solutions, is considered small
enough to be left out of the search.

— Finally, if the size of the box is larger than r and may contain solutions,
as elim is set to false, then it is divided using a split operator @ and the
process is repeated on the resulting boxes.

Figure 1(a) shows the result obtained with Algorithm 1 with elim set to false,
for a problem with two variables z; € [1,50] and x5 € [—1.5,1] constrained by
cos(In(x1)) > x2. Note that this solving method can either produce an under-
approximation of the solution set by considering only the inner elements, or an
over-approximation by considering all the resulting elements. Figure 1(b) shows
that by making different splitting choices, we could avoid computations and reach
the given precision with less iterations. We achieve that using Elimination, with
wich we obtain fewer, but larger inner boxes. We introduce this new step in the
next section and explain how it pushes the reasoning based on the constraints
one step further in order to avoid superfluous splitting steps.

3 Elimination

The propagation step reduces the search space by removing non-consistent sub-
spaces. Elimination aims at reducing the search space by focusing on the fron-
tiers of the problem. This is done in three steps: computing the elimination for
each constraint, combining the result with the domains with a new difference
operator, and finally integrate this mechanism in the solving process.

3.1 Elimination for one constraint

We introduce here the concept of elimination for a single constraint. It relies on
the constraint propagator to over-approximate the set of instantiations that can
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Fig.2: Given the constraint y < 3, in blue, the box R over-approximates the
solutions and the hatched box © over-approximates the inconsistencies.

not be solutions. We will refer to these instantiations as inconsistent instantia-
tions. By elimination, the rest of the search space can only contain solutions.

In the remainder of the subsection, given a constraint C' and a box D =
dy X +++ X dy, we will write D¢ the set of instantiations of D that satisfy C
and D¢ and, the — complementary — set of inconsistent instantiations w.r.t C.
Thus, we have Do = D\ D¢. As D¢, Dc can be uncomputable, so we compute
an over-approximation. For a single constraint, this can be achieved simply by
reusing the propagation, over the negation of the constraint.

Definition 2. Let z1,...,x, be variables in domains di,...,d,, and C a con-
straint on 1, . . ., T,. We define a function 0c : B — B such that 0c(dy, ..., d,) =
p-c(di,...,dy).

Combining this function with propagation, we partition D relatively to the
satisfiability of C. Let S¢ = pc(di,...,d,) and Sc = 6c(di,...,d,) be re-
spectively the over-approximation of D, and D¢, we differentiate three kinds of
instantiations:

— the ones that belong to S¢ and not to S¢, which are inconsistent,
— the ones that belong to S¢, and not to S¢, which are consistent,
— the remaining ones that belong to both S, and S¢, which are indeterminate.

Figure 2 shows an example of this partitioning. For the constraint y < z3
(filled with blue), the box S¢ (dashed), computed through propagation, over-
approximates the solutions and the box @ (hatched in green), computed by
applying propagation over the negation of the constraint, over-approximates the
inconsistencies. We can see that the complement of © under-approximates the
set of solutions, while the complement of R under-approximates the set of incon-
sistencies. The intersection © N R can contain both solutions and inconsistencies.

Once this partitioning is done, the inconsistent part can be discarded (as
usual) and the consistent one can be directly added to the set sols of solutions.
What remains is the indeterminate space in which the solving process continues.
This principle is then generalized to the case of several constraints: the consistent
part is the intersection of all the consistent parts associated to each constraint.
Symmetrically, the inconsistent part is the union of all the inconsistent parts
associated to each constraint. What remains is the indeterminate part.
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Remark In practice, in the case of continuous constraints, elimination can rely
on the original propagation algorithms of the considered constraint, since we
can easily compute the negation of a constraint (based on predicates <, =, <). It
would also be valid for discrete constraints provided that the same property holds.
Indeed, primitive constraints could be dealt with elimination, but handling global
constraints would require to specifically define their negations and introduce
dedicated propagators.

The indeterminate space is defined as an intersection of boxes, which results
in a box. Hence, the solving process continues within a box, as in a classic
propagation-based solver, except that the box is possibly smaller as we intersect
the result of propagation with the result of elimination. However, S¢ \ S¢ is not
necessarily a box. Computing this set difference requires taking the complement
of a box relative to another box. In the following section, we define a set difference
operator over boxes. It computes the difference as a set of boxes, that can be
directly added to sols.

3.2 Difference operator

Given two boxes By and Bs, their difference B; \ By is not necessarily a box.
However, we can express it as a collection of boxes that covers B; \ Bs. To
guarantee a non-redundancy property over the result, this cover should be a
partition. This would prevent boxes from overlapping and have instantiations
covered by several boxes. However, a cover is sufficient to have a sound and
complete resolution method, and is easier to build as we will see in the current
section. Our difference operator should satisfy the following properties:

Definition 3 (Difference operator). A difference operator © : Bx B — p(B)
s a binary operator such that VB1, By € B:

(1) |By © Ba| is finite;

(2) Vb e (Bl @Bg) =bN By = (b,'

(3) B = (BlmBg)U U{bGBl @BQ}

The first condition ensures that the solving method produces a finite set of boxes.
The second one ensures that the operator eliminates from the box By the values
inside the box Bs. Finally, the third condition guarantees that the difference of
Bi and By, union Bs, covers the initial box By. The second condition is related
to soundness and the third one to completeness.

Our difference operator on boxes works with constraints. A box can be defined
as a conjunction of constraints B = Ai:l,...,p ¢;, where each constraint ¢; =
+z; <a;, with < € {<, <}, gives a lower or an upper bound — not necessarily
included — on ;.

Note that it is mandatory to be able to express both strict and large inequal-
ities. Otherwise, a problem would arise as the negation of +x; > a; would not
be exactly representable, and we would have no way to ensure property Def. 3.2.
As the difference operator is used to compute S, an under-approximation of the
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set of solutions, adding to S the closure of boxes which should actually be open,
could add to it points that are not solutions to the problem, and thus break the
soundness criterion.

Each ¢; defines a half-space, and the difference between a box and a half-
space is still a box. A first step is thus to compute the difference between two
boxes, by considering each half space independently, as shown on Fig. 3(b).

Definition 4 (Difference for boxes). Let By and Bs be two bozes, with Bo
represented as the set of constraints Cy. The difference of By and By is:

B1 6 B> e {Bl N (ﬁc) | cE CQ} (1)

This naive method can result in widely overlapping boxes in the output.
Nevertheless, it is an acceptable difference operator as it satisfies Def. 3:

(1) B; © By returns a set that, associates a box to each constraint in By. The

number of constraints in By is finite, hence this set is finite (Def. 3.(1)).

(2) By definition of the intersection, the condition Def. 3.(2) is satisfied as each
box in the result is included in Bj.

(3) Finally, Def. 3.(3) is also satisfied: By © By can be rewritten as By N By. No
solution is lost as Bj is entirely covered by By and By © Bs.

Figure 3 shows an example of the application of the difference operator on
two boxes. Figure 3(a) gives the initial boxes By and Bs, with Bs represented by
the constraints {cy,...,cq}. Figure 3(b) shows the result of the naive difference
operator. Here, By \ Bs is covered by three elements, one per constraint of Cs,
after removing the constraints that, intersected with By, yield the empty set (¢4
in this case). Overlapping boxes in the output appear in a darker shades. This
overlapping implies that some instantiations may be covered by more than one
box: the result is redundant.

We now propose an improved difference operator in order to obtain non-
overlapping boxes when building a partition of B; \ Bs.

Definition 5 (Non-redundant difference for boxes). Let B; and By be
two bozes and By is represented by the set of constraints Co = {c1,...,¢cp}. The
difference of By and Bs is defined as:

BioBy 2 Bin(-¢;)n (¢ lie{l,...,p} (2)
7<i

For similar reasons to the naive difference operator, Def. 3.(1)—(3) is also
satisfied for the non-redundant difference operator. Additionally, we strengthen
the property that By © Bs is a cover for By \ By by making this cover a partition,
i.e, the elements of B; © By are pairwise disjoints: we ensure that, for any pair
of boxes b;, b; € B1 & By such that i # j, we have b; N b; = 0.

Proposition 1. By © By is a partition of By \ Ba.
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(a) Initial boxes  (b) Redundant (c) Non-
difference redundant
difference

Fig. 3: Comparing naive and non-redundant difference operator: B; © Bs.

Proof. If |By © By| = 1 then, trivially, B; © By is a partition of By \ By. If
|B1©Bs| > 1, we have to prove that the elements of B;© Bs are pairwise disjoints.
Let Cy = {c1, ..., cp} be the constraints of Bs, and b;, b; be respectively the i-th
and the j-th value of By © By according to (2), with ¢,j € 1..p and ¢ # j. Then,
b; is constrained by —c;. Assuming w.l.o.g. that ¢ < j, then b; is constrained by
¢;, and b; Nb; = (). We also have to prove that By = By \ BoU By, or equivalently,
Uib; = By \ Ba: let © € U;b; be an instanciation of By. By definition of By, there
is at least a constraint ¢; € C such that z does not satisfy. Let iy be the smallest
such 4, then = € b;,. Thus, the whole of B; \ By is covered by the boxes b;.

Fig. 3(c) shows the result of the non-redundant difference operator and shows
that there are no overlapping darker zones (shown in a darker shade). Here,
B \ By is now partitioned into three elements, one per constraint of Cy (once
again ignoring ¢4 which leads to an empty box).

3.3 New solving step

Computing S = Oc(di,...,dn) Npc(ds,...,dy,) by employing both propagation
and elimination reduces the search space, because it allows the solver to quickly
identify parts of the solutions. In fact, when the propagation of p¢ is done,
we propose an elimination step 6o before splitting. Rather than performing
arbitrary splits anywhere on a box, the elimination identifies parts of the box
containing only solutions, and allows the solver to perform splits on the part of
the search space that can not be discriminated as containing only solutions, nor
as containing no solution. More precisely, elimination makes the split happen
exactly at the frontier of the constraint.

Algorithm 2 gives the pseudo-code associated with the new elimination step.
This algorithm processes elements that do not satisfy at least one constraint.
The function complement computes €,on—cons, an over-approximation of the
inconsistencies. Then, the difference operator is used to find the boxes containing
only solutions. Finally, solving continues in the indeterminate search space e N
€non—cons (instead of e).
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Algorithm 2 Elimination function

1: function ELIMINATION(e, C) > e: box, C: constraints
2: €non—cons ¢ complement(e,C)

3: €cons = € O €non—cons

4: S0

5: for e; € econs do

6: S+ SUe;

return (S, @(e N €non—cons))

Figure 1(b) shows the results obtained with our propagation/elimination/split
loop on the CSP given previously, and gives for the same precision, much more
satisfactory results: we require less elements to cover more space and in a compa-
rable amount of time, showing that this technique deduces more relevant frontier
than using a simple propagation/split loop.

In the following section, we analyze the performance of our solving method.

4 Experiments

We have implemented our technique for boxes in the open-source solver AbSo-
lute*. This solver is based on the method presented in [12], where we integrated
our elimination step. We rely on the abstract domain representation in AbSolute,
which is based on constraints, to efficiently implement the constraint negation
necessary for the elimination step. The unified constraint representation makes
it possible to have a lightweight and generic difference operator.

4.1 Protocol

We tested our method on problems with continuous variables from the MinLPLib
and the Coconut® benchmarks. For minimization problems, we first transform
them into satisfaction problems, which can be handled by the solver. This trans-
formation consists in adding an objective variable to the problem that will act
as the value to minimize. Default bounds for unconstrained variables are set to
—107 for the lower bound and 107 for the upper bound as our method requires
the domains of the variables to be bounded. All of the runs are made with a time
limit set to 300 seconds and no memory limit. Precision was fixed to 1072 (i.e.,
the size limit where exploration stops), and branching depth was limited by 50.
Note that limiting depth does not break soundness nor completeness as our algo-
rithm can be tailored to be produce either a complete or a sound output after the
same run: its output can be splitted into two sets: the boxes that contain only
solutions and the undetermined ones. At any point of the resolution, the union

* https://github.com/mpelleau/AbSolute

5 All informations about the problems can be found at http://www.gamsworld.
org/minlp/minlplib/minlpstat.htm and http://www.mat.univie.ac.at/~neum/
glopt/coconut/Benchmark/Benchmark.html
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Fig. 4: Comparison between the classic solving method and our method. On the
left, comparison of the ratio, a mark above the bisector (in plain blue) means
that our method is better than the classic solving. On the right, comparison of
the computation time, a mark above the bisector (in plain blue) means that our
method is slower than the classic solving.

of these two sets yield a complete solution, while taking into account only the
first gives a sound solution. Thus, stopping the search at a given depth, makes
the resolution faster, yet less precise, but does not break neither soundness nor
completeness. The solver was run on a Dell server with two 12-core Intel Xeon
E5-2650 CPU at 2.20GHz, although only one core was used, and 128GB RAM.

We have tested the solving with the elimination step against the default
solving method of the AbSolute solver over all of the problems that the solver’s
functionalities (types, constraint, arithmetic functions) are able to cover, that is
197 problems.

4.2 Description

Figure 4 summarizes the results obtained with our method compared to the
classic solving. Figure 4(a) compares the ratio ¢ of inner volume of the cover.
It corresponds to V;/(V; + V.) where V; and V, are respectively the inner and
outer volume. This ratio is a quality measure of the solving method: the closer
this ratio is to one, the bigger is the part of the coverage that will only contain
solutions. In this figure, a mark above the bisector means that our method is
better than the classic one. We can see that on most of the instances, our method
finds a coverage with a much smaller indeterminate space.

Figure 4(b) compares the computation time of our method to the classic one.
In this figure, each mark above the bisector means that our method is slower than
the classic one. As can be seen on this figure, our method is slightly slower, the
elimination performing additional computation during one iteration. However,
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solving all the 197 problems took 1157 seconds with our method against 1032
seconds with the classic solving method.

with elimination without elimination
problem ||X|,|C||| #I | #E | 4 | t]| #1 | #E | 6 | t
Coconut problems
absl 1,2 2047 | 3072 [0.99| 0.04|| 4092 | 4096 |0.99| 0.06
aljazzaf 2,3 2309 |19405|0.58 0.89|| O 14319 | 0 | 0.54
allinitu 1,5 318 | 5066 |0.07| 3.26|| O 5066 | 0 | 2.50
b 4,4 2 88 10.39 0.07|| 0 88 |0.00| 0.07
booth 1,2 90 45 10.12| 0.11 0 45 0 0.13
bap 1,1 4 1 10.99 0.01 8 1 ]0.99] 0.01
chi 1,2 ||1.88e6|3.48¢6|0.99 | 45.30(|3.08¢6|3.63e6 |0.99(40.20
ex1411 2,5 |{1.78e6(2.59e¢6(0.98 |217.08||1.95e6| 3.74e6 |0.98|237.89
ex1413 4,3 4884 |34893|0.25| 0.52|| 0 |32698| 0 0.78
ex_newton| 2,5 638 | 950 |0.95| 0.45| 729 | 892 |0.93| 0.57
griewank | 1,2 1997231868 0.99| 1.44(/29645 | 35105 |0.98| 2.30
h76 3,4 24 174 10.04 0.05|| 0 82 0 0.05
hs23 6,2 825 | 2132 |0.99| 0.43| 1315 | 1801 |0.98| 0.58
kearl1 8,8 0 844 | 0 0.05|| 0 844 0 0.05
ladders 13,7 4 93 |0.01f 0.90|| O 215 |0.00f 1.07
mickey 2,5 4315 |12709(0.99| 2.40(| 8372 | 9858 |0.99| 2.73
nonlinl 2,3 1550 | 1978 |0.95| 0.49|| 2059 | 1772 |0.82| 0.69
nonlin2 3,2 4238 [10560|0.92| 0.39|| 8643 | 10692 |0.88| 0.42
zy2 3,3 6260 |28147|0.99 1.00(| 13179 22499 |0.74| 0.85
MinLPLib problems
cschedla | 23,29 0 8192 | 0 6.44 0 8192 | 0 | 4.85
deb10 |130,183|| O 0 0 0.01 0 0 0 0.01
dosemin2d |119,166|| 0 0 0 0.181 0 0 0 [0.177
ex1222 44 8 160927|0.01 1.39)| 0 |61787| 0 | 0.97
ex1223a | 10,8 746 |27097|0.01| 20.60{| O |48283| 0 | 21.40
ex1223b | 10,8 820 |44084|0.01| 40.22|| 0 |500510| 0 |29.41
gbd 5,5 576 [31829(0.19| 1.27|| 0 |22927| 0 0.93
prob03 2,3 0 |5.81e6| O 10.81 0 |5.81le6| 0 | 6.77
qapw  |256,451 0 0 0 1.20|| O 0 0 1.23
st_el3 4,3 378 | 3102 [0.02 0.05| O 18 0 | 0.50
st_miqp2 | 4,5 1352 | 38104 |0.38 229 O 4564 | 0 | 0.31
st_miqp3 2,3 27 | 1117 |0.24 0.03|| 0 1051 | 0 | 0.02
st_miqp5 | 14,8 187 | 2080 |0.01 4.71 0 6324 | 0 | 2.38
st_testl 2,6 1559 |2.44e6/0.03| 18.70|| 0 [2.31e6| 0 |15.97
st_testd | 12,11 22 [29520/0.01 7.82(| O 11167 |0.00| 7.55
synthesl 7,7 97 [33747(0.01| 4.18|| 0 1285 | 0 5.16
tls2 25,38 0 |18030| O 27.46|| O 18030 | 0 [26.81
windfac | 14,15 0 |19561| O 6.66|| O 19561 | 0 | 6.51

Table 1: Comparing solving with and without elimination step
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For reasons of space, Table 1 highlights only some of the results representative
of the behavior of our method. Those are described with respect to solving times
(in seconds), cardinality of the partition and volume covered. We performed
experiments on the whole benchmarks (Coconut and MinLPLib), but we do not
show here the problems which time out for both methods.

The first two columns provide information about the problem: name, number
of variables |X|, and number of constraints |C|. The rest of the table provides
information on each solving methods: the number of inner (columns #I) and
outer (columns #FE) boxes.

4.3 Analysis

These runs highlight one very crucial feature of our method: it is able to quickly
find boxes that contain only solutions of problems where the default solving
method fails to do so (problems aljazzaf, allintu, ex1222, gbd, ...): on the whole
benchmark, for almost 30% of the problems (58 out of 197), solving with the elim-
ination step exhibited at least one solution while the default solving method did
not succeed to do so. This comes with no time less in average: on the whole bench-
mark, solving with elimination was slightly slower than without (1157 seconds
against 1032 seconds). In fact, 39% of the problems (39 out of 197) were solved
faster with the elimination than without (problems ex1411, mickey, ex1223a,
synthesl...). This illustrates the fact that results of the solver are more precise:
elimination avoids unnecessary splits, better identifies the constraints’ frontiers,
and compute within the same process inner and outer approximations for no (or
little) overhead. A deeper analysis of the results shows that the default solving
method spends time splitting variables with large ranges, while elimination fo-
cuses on the shape of the constraints to locate areas than can be directly removed
from the search space and added to the solution set.

Another conclusion of the analysis of this benchmark is about the solution
coverage. The experiments show that the coverage of the solution space is signif-
icantly more accurate with the elimination step. On all of the runs, our method
always finds a greater or equal inner volume than the one found by the default
method. Moreover, it also reduces the number of elements involved in the par-
tition in the same time, which means that the inner approximation is achieved
with fewer, bigger elements. This is shown by examples chi and mickey where
both methods achieve a 0.99 ratio of inner volume, only with elimination, we
need half the elements required by the default solving method to do so. On the
whole benchmark, on average, we need 40 times fewer elements to cover the
same inner volume with elimination. This property may become very handy as
it allows a better re-usability of the results since we need to treat fewer elements
to cover the solution space. The § columns indicates the part of the returned el-
ements that corresponds to an inner approximation, i.e. contains only solutions.
This ratio is always greater with the elimination step. On the whole benchmark,
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the average ratio is 0.49 of inner volume for the elimination while it is 0.27 with-
out. This confirms that the elimination step allows the solving process to target
more efficiently the parts of the search space that contain only solutions.

These good results confirm the intuition that cutting an element according
to the constraints it does not satisfy can be more interesting than cutting it
arbitrarily regardless of the constraints. Since solvers are often used as a pre-
computation for other programs, reducing the size of their output (i.e., reducing
the number of boxes required to represent a solution at a given precision) can
be an important feature. Also, note that, by quickly identifying solutions and
removing them from the search space, the elimination step makes it possible to
carry out fewer propagation and exploration steps.

5 Conclusion

In classic continuous constraint solvers, propagation is used to remove from the
search space values that can not be solutions. We presented in this paper a new
method to, symmetrically, eliminate from the search space values that can only
be solutions. We have incorporated the elimination mechanism to improve the
results in terms of a qualitative and quantitative criterion, also without a too
large time overhead. This technique, which delays a splitting heuristic that can
be inaccurate, makes it possible to take better advantage of the constraints of
a problem, by reusing and adapting the same tools as propagation, combined
with a difference operator we have introduced. Finally, it should be emphasized
that, although it is implemented in a specific solver using abstract domains, this
technique can perfectly be integrated into a more classic solver and combined
with any type of propagator.

We believe that this resolution technique can be useful in many cases. For
problems or zones of non-consistent instantiations forming ”holes” in the solution
space, or more generally, when it is non-convex, it can avoid several cutting
steps by directly targeting the most relevant boundaries. This property may be
particularly interesting in the context of inner-approximation applications, as
shown by the experiments, or counter-example exhibition (feasibility proving)
when it comes to find at least one solution as our method outperforms the
default solving method in that competence.

Further research includes the development of elimination beyond boxes, for
instance on polyhedra which can also be defined as a conjunction of constraints,
making it possible to add a difference operator. It would also be interesting to
measure the performance of this technique with other consistency and splitting
heuristics.
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