L. Wisotzki, R. Bacon, J. Blaizot, J. Brinchmann, E. C. Herenz et al., Extended lyman ? haloes around individual highredshift galaxies revealed by MUSE, vol.587, p.98, 2016.

S. Bourguignon, D. Mary, and ´. E. Slezak, Restoration of astrophysical spectra with sparsity constraints: Models and algorithms, Selected Topics in Signal Processing, IEEE Journal, vol.5, issue.5, pp.1002-1013, 2011.

S. Park, N. Dobigeon, and A. O. Hero, Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM, Signal Processing, vol.94, pp.386-400, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00875110

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the royal statistical society. Series B (Methodological), pp.289-300, 1995.

C. Meillier, F. Chatelain, O. Michel, and H. Ayasso, Error control for the detection of rare and weak signatures in massive data, Signal Processing Conference (EUSIPCO), pp.1974-1978, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01198717

J. B. Broadwater and R. Chellappa, Adaptive threshold estimation via extreme value theory, IEEE Transactions on signal processing, vol.58, issue.2, pp.490-500, 2010.

I. Reed, J. Mallett, and L. Brennan, Rapid convergence rate in adaptive arrays, Aerospace and Electronic Systems, IEEE Transactions, issue.6, pp.853-863, 1974.

S. Kraut, L. L. Scharf, and L. T. Mcwhorter, Adaptive subspace detectors, Signal Processing, IEEE Transactions on, vol.49, issue.1, pp.1-16, 2001.

E. Truslow, D. Manolakis, M. Pieper, T. Cooley, and M. Brueggeman, Performance prediction of matched filter and adaptive cosine estimator hyperspectral target detectors, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, issue.6, pp.2337-2350, 2014.

S. M. Kay, Fundamentals of statistical signal processing: Detection theory, vol.2, 1998.

C. Chang, Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis, Geoscience and Remote Sensing, IEEE Transactions on, vol.43, issue.3, pp.502-518, 2005.

B. Du, Y. Zhang, L. Zhang, and D. Tao, Beyond the sparsity-based target detector: A hybrid sparsity and statistics-based detector for hyperspectral images, IEEE TRANSACTIONS ON IMAGE PROCESSING, vol.25, issue.11, p.5345, 2016.
DOI : 10.1109/tip.2016.2601268

L. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, Hyperspectral remote sensing image subpixel target detection based on supervised metric learning, IEEE Transactions on Geoscience and Remote Sensing, vol.52, issue.8, pp.4955-4965, 2014.

L. Zhang, L. Zhang, D. Tao, and X. Huang, Sparse transfer manifold embedding for hyperspectral target detection, Geoscience and Remote Sensing, IEEE Transactions on, vol.52, issue.2, pp.1030-1043, 2014.
DOI : 10.1109/tgrs.2013.2246837

I. Reed and Y. Xiaoli, Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution, Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.38, issue.10, pp.1760-1770, 1990.

H. Kwon and N. M. Nasrabadi, Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery, Geoscience and Remote Sensing, IEEE Transactions on, vol.43, issue.2, pp.388-397, 2005.

J. A. Malpica, J. G. Rejas, and M. C. Alonso, A projection pursuit algorithm for anomaly detection in hyperspectral imagery, Pattern recognition, vol.41, issue.11, pp.3313-3327, 2008.
DOI : 10.1016/j.patcog.2008.04.014

A. Huck and M. Guillaume, Asymptotically CFAR-unsupervised target detection and discrimination in hyperspectral images with anomalouscomponent pursuit, Geoscience and Remote Sensing, IEEE Transactions on, vol.48, issue.11, pp.3980-3991, 2010.
DOI : 10.1109/tgrs.2010.2063434

O. Ahmad, C. Collet, and F. Salzenstein, Spatio-spectral gaussian random field modeling approach for target detection on hyperspectral data obtained in very low SNR, IEEE International Conference on, 2015.

W. Sakla, A. Chan, J. Ji, and A. Sakla, An svdd-based algorithm for target detection in hyperspectral imagery, IEEE Geoscience and Remote Sensing Letters, vol.8, issue.2, pp.384-388, 2011.

B. Du and L. Zhang, Target detection based on a dynamic subspace, Pattern Recognition, vol.47, issue.1, pp.344-358, 2014.
DOI : 10.1016/j.patcog.2013.07.005

Y. Xu, Z. Wu, J. Li, A. Plaza, and Z. Wei, Anomaly detection in hyperspectral images based on low-rank and sparse representation, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.4, 1990.
DOI : 10.1109/tgrs.2015.2493201

E. J. Kelly, An adaptive detection algorithm, Aerospace and Electronic Systems, IEEE Transactions, issue.2, pp.115-127, 1986.

J. Neyman and E. Pearson, On the problem of the most efficient tests of statistical hypotheses, Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol.231, pp.289-337, 1933.

J. Fan, C. Zhang, and J. Zhang, Generalized likelihood ratio statistics and Wilks phenomenon, Annals of Statistics, vol.29, issue.1, pp.153-193, 2001.
DOI : 10.1214/aos/996986505

URL : https://doi.org/10.1214/aos/996986505

S. Paris, D. Mary, and A. Ferrari, PDR and LRMAP detection tests applied to massive hyperspectral data, Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.93-96, 2011.
DOI : 10.1109/camsap.2011.6136054

S. Paris, D. Mary, and A. Ferrari, Detection tests using sparse models, with application to hyperspectral data, IEEE Transactions on, vol.61, issue.6, pp.1481-1494, 2013.
DOI : 10.1109/tsp.2013.2238533

S. Paris, R. F. Suleiman, D. Mary, and A. Ferrari, Constrained likelihood ratios for detecting sparse signals in highly noisy 3d data, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.3947-3951, 2013.
DOI : 10.1109/icassp.2013.6638399

B. Du, R. Zhao, L. Zhang, and L. Zhang, A spectral-spatial based local summation anomaly detection method for hyperspectral images, Signal Processing, vol.124, pp.115-131, 2016.
DOI : 10.1016/j.sigpro.2015.09.037

S. Schweizer and J. Moura, Efficient detection in hyperspectral imagery, Image Processing, IEEE Transactions on, vol.10, issue.4, pp.584-597, 2001.
DOI : 10.1109/83.913593

C. C. Funk, J. Theiler, D. Roberts, and C. C. Borel, Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery, Geoscience and Remote Sensing, IEEE Transactions on, vol.39, issue.7, pp.1410-1420, 2001.

C. Meillier, F. Chatelain, O. Michel, and H. Ayasso, Nonparametric Bayesian extraction of object configurations in massive data, IEEE Transactions on, vol.63, issue.8, pp.1911-1924, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01129038

C. Meillier, F. Chatelain, O. Michel, R. Bacon, L. Piqueras et al., Selfi: an object-based, bayesian method for faint emission line source detection in muse deep field data cubes, Astronomy and Astrophysics-A&A, vol.588, p.140, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01322356

R. Bacon, M. Accardo, L. Adjali, H. Anwand, S. Bauer et al., The MUSE second-generation VLT instrument, SPIE Astronomical Telescopes+ Instrumentation, 2010.

J. Courbot, V. Mazet, E. Monfrini, and C. Collet, Detection of faint extended sources in hyperspectral data and application to HDF-S MUSE observations, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.1891-1895, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01266333

R. Bacon, J. Brinchmann, J. Richard, T. Contini, A. Drake et al., The MUSE 3D view of the Hubble Deep Field South, vol.575, p.75, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01439826

M. Petremand, A. Jalobeanu, and C. Collet, Optimal Bayesian fusion of large hyperspectral astronomical observations, Statistical Methodology, vol.9, issue.1, pp.44-54, 2012.

A. Moffat, A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry, Astronomy and Astrophysics, vol.3, p.455, 1969.

P. Weilbacher, O. Streicher, T. Urrutia, A. Jarno, A. Pécontal-rousset et al., Design and capabilities of the MUSE data reduction software and pipeline, SPIE Astronomical Telescopes+ Instrumentation, 2012.

D. Serre, E. Villeneuve, H. Carfantan, L. Jolissaint, V. Mazet et al., Modeling the spatial PSF at the VLT focal plane for MUSE WFM data analysis purpose, SPIE Astronomical Telescopes+ Instrumentation, 2010.