J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection, 2014.

Y. Liu, T. Safavi, A. Dighe, and D. Koutra, Graph summarization methods and applications: A survey, ACM Computing Surveys (CSUR), vol.51, issue.3, p.62, 2018.

T. Ishizaki, K. Kashima, A. Girard, J. Imura, L. Chen et al., Clustered model reduction of positive directed networks, Automatica, vol.59, pp.238-247, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276233

N. Monshizadeh and A. Van-der-schaft, Structure-preserving model reduction of physical network systems by clustering, IEEE 53rd Annual Conference on, pp.4434-4440, 2014.

F. Dorfler and F. Bullo, Kron reduction of graphs with applications to electrical networks, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.60, issue.1, pp.150-163, 2013.

X. Cheng, Y. Kawano, and J. M. Scherpen, Graph structure-preserving model reduction of linear network systems, Control Conference (ECC), pp.1970-1975, 2016.

D. Gfeller and P. De-los-rios, Spectral coarse graining of complex networks, Physical review letters, vol.99, issue.3, p.38701, 2007.

P. Erdös and A. Rényi, On random graphs, i, Publicationes Mathematicae (Debrecen), vol.6, pp.290-297, 1959.

A. Barabási and R. Albert, Emergence of scaling in random networks, science, vol.286, issue.5439, pp.509-512, 1999.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. Barabási, The large-scale organization of metabolic networks, Nature, vol.407, issue.6804, pp.651-654, 2000.

F. Liljeros, C. R. Edling, L. A. Amaral, H. E. Stanley, and Y. Aberg, The web of human sexual contacts, Nature, vol.411, issue.6840, pp.907-908, 2001.

S. Yook, H. Jeong, and A. Barabási, Modeling the internet's large-scale topology, Proceedings of the National Academy of Sciences, vol.99, issue.21, pp.13-382, 2002.

A. Barabási, R. Albert, and H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web, Physica A: statistical mechanics and its applications, vol.281, issue.1, pp.69-77, 2000.

D. D. Price, A general theory of bibliometric and other cumulative advantage processes, Journal of the Association for Information Science and Technology, vol.27, issue.5, pp.292-306, 1976.

, Statistical studies of networks of scientific papers, Statistical Association Methods for Mechanized Documentation: Symposium Proceedings, vol.269, p.187, 1965.

M. E. Newman, The structure and function of complex networks, SIAM review, vol.45, issue.2, pp.167-256, 2003.

R. Cohen, S. Havlin, and D. Ben-avraham, Structural properties of scale-free networks, p.85, 2003.

M. Boguná, F. Papadopoulos, and D. Krioukov, Sustaining the internet with hyperbolic mapping, Nature communications, vol.1, p.62, 2010.

M. Boguná and D. Krioukov, Navigating ultrasmall worlds in ultrashort time, Physical review letters, vol.102, issue.5, p.58701, 2009.

R. Pastor-satorras and A. Vespignani, Epidemics and immunization in scale-free networks, pp.111-130, 2005.

J. C. Nacher and T. Akutsu, Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control, New Journal of Physics, vol.14, issue.7, p.73005, 2012.

A. Blum, J. Hopcroft, and R. Kannan, Foundations of data science, Vorabversion eines Lehrbuchs, 2016.

L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking: Bringing order to the web, 1999.

L. Fu, X. Wang, and P. Kumar, Are we connected ? Optimal determination of source-destination connectivity in random networks, IEEE/ACM Transactions on Networking, vol.25, issue.2, pp.751-764, 2017.

L. Fu, X. Fu, Z. Xu, Q. Peng, X. Wang et al., Determining sourcedestination connectivity in uncertain networks: Modeling and solutions, IEEE/ACM Transactions on Networking, vol.25, issue.6, pp.3237-3252, 2017.

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, , 2014.

E. Valakevicius and M. Snipas, A recursive algorithm for computing steady state probabilities, IIIS, 2010.

D. Stanislawski, The origin and spread of the grid-pattern town, Geographical Review, vol.36, issue.1, pp.105-120, 1946.

F. Travostino, J. Mambretti, and G. Karmous-edwards, Grid networks: enabling grids with advanced communication technology, 2006.

V. J. Wedeen, D. L. Rosene, R. Wang, G. Dai, F. Mortazavi et al., The geometric structure of the brain fiber pathways, vol.335, pp.1628-1634, 2012.

L. Danon, A. Diaz-guilera, J. Duch, and A. Arenas, Comparing community structure identification, Journal of Statistical Mechanics: Theory and Experiment, issue.09, p.9008, 2005.

S. Fortunato, Community detection in graphs, Physics reports, vol.486, issue.3, pp.75-174, 2010.

C. Canudas-de-wit, F. Morbidi, L. L. Ojeda, A. Y. Kibangou, I. Bellicot et al., Grenoble traffic lab: An experimental platform for advanced traffic monitoring and forecasting, IEEE Control Systems, vol.35, issue.3, pp.23-39, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01059126

G. Lindmark and C. Altafini, A driver node selection strategy for minimizing the control energy in complex networks, IFAC-PapersOnLine, vol.50, issue.1, pp.8309-8314, 2017.

, (a) The initial graph. Background colors indicate the final partition obtained via the algorithm (b) The reduced graph issued from the partition. The size of the nodes represents the in-degree of each node and the color matches

, Initial, final and target in-degree distributions in logarithmic scales. (d) Initial, final and target out-degree distributions in logarithmic scales

, Output of the Grenoble urban traffic network reduction. A video showing the evolution of the algorithm step-by-step of a similar simulation is available at