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LTCI, Télécom ParisTech, Université Paris-Saclay
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Abstract

We investigate the complexity of four decision problems dealing with
the uniqueness of a solution in a graph: “Uniqueness of an r-Locating-
Dominating Code with bounded size” (U-LDCr), “Uniqueness of an
Optimal r-Locating-Dominating Code” (U-OLDCr), “Uniqueness of
an r-Identifying Code with bounded size (U-IdCr), “Uniqueness of an
Optimal r-Identifying Code” (U-OIdCr), for any fixed integer r ≥ 1.

In particular, we describe a polynomial reduction from “Unique
Satisfiability of a Boolean formula” (U-SAT) to U-OLDCr, and from
U-SAT to U-OIdCr; for U-LDCr and U-IdCr, we can do even better
and prove that their complexity is the same as that of U-SAT, up
to polynomials. Consequently, all these problems are NP-hard, and
U-LDCr and U-IdCr belong to the class DP.

Key Words: Complexity Theory, Graph Theory, Uniqueness of Solu-
tion, Polynomial Reduction, Locating-Dominating Codes, Identifying Codes
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1 Introduction

We intend to locate in the classes of complexity some problems dealing with
the existence of a unique identifying or locating-dominating code in a given
graph.

Uniqueness of solutions has been studied in a few papers (see, e.g., [1],
[2], [3], [4], [5], [6]) and may be seen as part of the wider and unexplored
issue of the number of solutions of a problem.

1.1 Identifying and Locating-Dominating Codes

For graph theory, we refer to, e.g., [7] or [8].
For identification in graphs, see the seminal paper [9]; for locating-

dominating codes, see the first papers [10] and [11]. For both, see also
the large bibliography at [12], where almost 400 references show that these
topics are burgeoning.

We shall denote by G = (V,E) a finite, simple, undirected graph with
vertex set V and edge set E, where an edge between x ∈ V and y ∈ V is
indifferently denoted by xy or yx. The order of the graph is its number of
vertices, |V |.

A path Pk = x1x2 . . . xk is a sequence of k distinct vertices xi, 1 ≤ i ≤ k,
such that xixi+1 is an edge for i ∈ {1, 2, . . . , k − 1}. The length of Pk is its
number of edges, k − 1. A cycle Ck = x1x2 . . . xk is a sequence of k distinct
vertices xi, 1 ≤ i ≤ k, where xixi+1 is an edge for i ∈ {1, 2, . . . , k − 1}, and
xkx1 is also an edge; its length is k.

In a connected graph G, we can define the distance between any two
vertices x and y, denoted by dG(x, y), as the length of any shortest path
between x and y. This definition can be extended to disconnected graphs,
using the convention that dG(x, y) = +∞ if no path exists between x and y.
The subscript G can be dropped when there is no ambiguity.

For an integer k ≥ 2, the k-th transitive closure, or k-th power of G =
(V,E) is the graph Gk = (V,Ek) defined by Ek = {uv : u ∈ V, v ∈
V, dG(u, v) ≤ k}.

For any vertex v ∈ V , the open neighbourhood N(v) of v consists of the
set of vertices adjacent to v, i.e., N(v) = {u ∈ V : uv ∈ E}; the closed
neighbourhood of v is B1(v) = N(v)∪{v}. This notation can be generalized
to any integer r ≥ 0 by setting

Br(v) = {x ∈ V : d(x, v) ≤ r}.

For X ⊆ V ,we denote by Br(X) the set of vertices within distance r from X:

Br(X) = ∪x∈XBr(x).

Two vertices x and y such that Br(x) = Br(y), x 6= y, are called r-twins.
If G has no r-twins, we say that G is r-twin-free. Whenever two vertices
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x and y are such that x ∈ Br(y) (which is equivalent to y ∈ Br(x)), we
say that x and y r-cover or r-dominate each other; note that every vertex
r-dominates itself. A set W is said to r-dominate a set Z if every vertex in Z
is r-dominated by at least one vertex of W , or equivalently: Z ⊆ Br(W ).
When three vertices x, y, z are such that x ∈ Br(z) and y /∈ Br(z), we say
that z r-separates x and y in G (note that z = x is possible). A set of
vertices is said to r-separate x and y if it contains at least one vertex which
does.

A code C is simply a subset of V , and its elements are called codewords.
We say that C is an r-identifying code [9] if all the sets Br(v)∩C, v ∈ V ,

are nonempty and distinct: in other words, every vertex is r-covered by C,
and every pair of vertices is r-separated by C. It is quite easy to observe that
a graph G admits an r-identifying code if and only if G is r-twin-free; this is
why r-twin-free graphs are also called r-identifiable. When G is r-twin-free,
we denote by ir(G) the smallest cardinality of an r-identifying code in G,
and call it the r-identification number of G; any r-identifying code C such
that |C| = ir(G) is said to be optimal.

We say that C is an r-locating-dominating code (r-LD code for short)
[11], [10] if all the sets Br(v) ∩C, v ∈ V \C, are nonempty and distinct: in
other words, every vertex is r-dominated by C (since a codeword dominates
itself), and every pair of non-codewords is r-separated by C. We denote by
LDr(G) the smallest cardinality of an r-locating-dominating code in G, and
call it the r-location-domination number of G; any r-LD code C such that
|C| = LDr(G) is said to be optimal.

For the needs of Theorems 19 and 34, we give the following obvious
characterization: a code C is r-identifying (respectively, r-LD) if and only if
(a) for every vertex x ∈ V , Br(x)∩C 6= ∅, and (b) for every pair of distinct
vertices xi ∈ V , xj ∈ V (respectively, xi ∈ V \ C, xj ∈ V \ C), we have

(

Br(x
i)∆Br(x

j)
)

∩ C 6= ∅, (1)

where ∆ stands for the symmetric difference.
Note that, when dealing with locating-dominating codes, we shall rather

use the word “dominate”, whereas for identifying codes, we shall prefer
“cover”.

It is known that the following two decision problems, stated for any
integer r ≥ 1, are NP-complete (see below Propositions 13 from [10], [13],
and 29 from [14], [13]):

Problem LDCr (r-Locating-Dominating Code with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit an r-locating-dominating code of size at most k?

Problem IdCr (r-Identifying Code with bounded size):
Instance: An r-twin-free graph G and an integer k.
Question: Does G admit an r-identifying code of size at most k?
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In this paper, we are interested in the following four problems, which deal
with the uniqueness of a solution, and we are going to locate them in the
classes of complexity.

ProblemU-LDCr (Unique r-Locating-Dominating Code with bounded size):
Instance: A graph G and an integer k.
Question: Does G admit a unique r-locating-dominating code of size at
most k?

Problem U-OLDCr (Unique Optimal r-Locating-Dominating Code):
Instance: A graph G.
Question: Does G admit a unique optimal r-locating-dominating code?

Problem U-IdCr (Unique r-Identifying Code with bounded size):
Instance: An r-twin-free graph G and an integer k.
Question: Does G admit a unique r-identifying code of size at most k?

Problem U-OIdCr (Unique Optimal r-Identifying Code):
Instance: An r-twin-free graph G.
Question: Does G admit a unique optimal r-identifying code?

Our results are the following: we give polynomial reductions from “Unique
Satisfiability of a Boolean formula” (U-SAT) to U-OLDCr, as well as from
U-SAT to U-OIdCr; we prove that U-LDCr and U-IdCr have the same com-
plexity as U-SAT, up to polynomials. As a consequence, all these problems
are NP-hard, and U-LDCr and U-IdCr belong to the class DP. The problems
U-OLDCr and U-OIdCr belong “only” to the class LNP , which contains DP.

In a previous work [15], we have investigated the complexity of the ex-
istence of, and of the search for, optimal r-identifying codes, as well as
optimal r-identifying codes containing a given subset of vertices; see also
[13], [14, Sec. 5]. In a forthcoming work, we extend the present study on
uniqueness issues to Boolean satisfiability and graph colouring [16], Ver-
tex Cover and Dominating Set (as well as its generalization to domination
within distance r) [17], and Hamiltonian Cycle [18]. At the other end, there
has been research on how many optimal r-identifying codes can exist in
a graph [19], and on the structure of the ensemble of optimal r-locating-
dominating codes [20] and of optimal r-identifying codes [21].

For other works in the area of complexity, see, e.g., [22], [23], [24], [25],
[26], [27], and [28], which establish, in particular, polynomiality or NP-
completeness results for the identification problem when restricted to some
subclasses of graphs, such as trees, planar graphs, bipartite graphs, interval
graphs or line graphs. See also [29], [30] and [31] for approximation issues
for both identifying and locating-dominating codes.

In the sequel, we shall also need the following tools, which constitute classical
definitions related to Boolean satisfiability.

4



We consider a set X of n Boolean variables xi and a set C of m clauses,
each clause cj containing κj literals, a literal being a variable xi or its com-
plement xi. A truth assignment for X sets the variable xi to TRUE, also
denoted by T, and its complement to FALSE (or F), or vice-versa. A truth
assignment is said to satisfy the clause cj if cj contains at least one true
literal, and to satisfy the set of clauses C if every clause contains at least
one true literal. The following decision problem, for which the size of the
instance is polynomially linked to n+m, is a classical problem in complexity.

Problem SAT (Satisfiability):
Instance: A set X of variables, a collection C of clauses over X , each clause
containing at least two different literals.
Question: Is there a truth assignment for X that satisfies C?

We shall also need the variant U-SAT of SAT (see [1], [32]), which has the
same instance as SAT but the question now is: “Is there a unique truth
assignment. . .?”.

We shall give in Proposition 2 what we need to know about the complex-
ity of this problem. We now provide the necessary definitions and notation
for complexity.

1.2 Necessary Notions in Complexity

We expound here, not too formally, the notions of complexity that will be
needed in the sequel. We refer the reader to, e.g., [33], [34], [35] or [36] for
more on this topic.

A decision problem is of the type “Given an instance I and a property PR
on I, is PR true for I?”, and has only two solutions, “yes” or “no”. The
class P will denote the set of problems which can be solved by a polynomial
(time) algorithm, and the class NP the set of problems which can be solved
by a nondeterministic polynomial algorithm. A polynomial reduction from a
decision problem π1 to a decision problem π2 is a polynomial transformation
that maps any instance of π1 into an “equivalent” instance of π2, that is,
an instance of π2 admitting the same answer as the instance of π1; in this
case, we shall write π1 →p π2. Cook [37] proved that there is one problem
in NP, namely SAT, to which every other problem in NP can be polynomially
reduced. Thus, in a sense, SAT is the “hardest” problem inside NP. Other
problems share this property in NP and are called NP-complete problems;
their class is denoted by NP-complete or NP-C. The way to show that a
decision problem π is NP-complete is, once it is proved to be in NP, to
choose some NP-complete problem π1 and to polynomially reduce it to π.
From a practical viewpoint, the NP-completeness of a problem π implies that
we do not know any polynomial algorithm solving π, and that, under the
assumption P 6=NP, which is widely believed to be true, no such algorithm
exists: the time required can grow exponentially with the size of the instance
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(when the instance is a graph, the size is polynomially linked to its order).
The complement of a decision problem, “Given I and PR, is PR true

for I?”, is “Given I and PR, is PR false for I?”. The class co-NP (respec-
tively, co-NP-complete or co-NP-C) is the class of the problems which are
the complement of a problem in NP (respectively, in NP-complete).

For problems which are not necessarily decision problems, a Turing re-
duction from a problem π1 to a problem π2 is an algorithm A that solves π1
using a (hypothetical) subprogram S solving π2 such that, if S were a poly-
nomial algorithm for π2, then A would be a polynomial algorithm for π1.
Thus, in this sense, π2 is “at least as hard” as π1. A problem π is NP-
hard (respectively, co-NP-hard) if there is a Turing reduction from some
NP-complete (respectively, co-NP-complete) problem to π [34, p. 113].

Remark 1 Note that with these definitions, NP-hard and co-NP-hard co-
incide [34, p. 114].

The notions of completeness and hardness can of course be extended to
classes other than NP or co-NP. NP-hardness is defined differently in [38]
and [39]: there, a problem π is NP-hard if there is a polynomial reduction
from some NP-complete problem to π; this may lead to confusion (see Sec-
tion 5).

Finally we introduce the classes PNP (also known as ∆2 in the hierarchy
of classes) and LNP (also denoted by PNP [O(logn)] or Θ2), which contain
the decision problems which can be solved by applying, with a number of
calls which is polynomial (respectively, logarithmic) with respect to the size
of the instance, a subprogram able to solve an appropriate problem in NP
(usually, an NP-complete problem); and the class DP [40] (or DIFP [1] or
BH2 [35], [41], . . .) as the class of languages (or problems) L such that there
are two languages L1 ∈NP and L2 ∈ co-NP satisfying L = L1 ∩ L2. This
class is not to be confused with NP∩ co-NP (see the warning in, e.g., [36,
p. 412]); actually, DP contains NP∪ co-NP and is contained in LNP . See
Figure 1.

Membership to P, NP, co-NP, DP, LNP or PNP gives an upper bound
on the complexity of a problem (this problem is not more difficult than . . .),
whereas a hardness result gives a lower bound (this problem is at least
as difficult as . . .). Still, such results are conditional in some sense; if for
example P=NP, they would lose their interest. But it is not known whether
or where the classes of complexity collapse.

The problem SAT is one of the most well-known NP-complete prob-
lems [37], [34, p. 39, p. 46 and p. 259]. The following result is easy.

Proposition 2 The problem U-SAT is NP-hard (and co-NP-hard by Re-
mark 1), and belongs to the class DP [32]. ♦
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Figure 1: Some classes of complexity.

Remark 3 It is not known whether U-SAT is DP-complete: in [36, p. 415],
it is said that “U-SAT is not believed to be DP-complete”. In [1], it is shown
that there exists one oracle under which U-SAT is not DP-complete; and one
oracle under which it is, if NP 6=co-NP.

We are now ready to investigate the problems of the uniqueness of identifying
and LD codes.

2 Some Easy Preliminary Results

These results are as old as the definitions of identifying and LD codes.

Lemma 4 (a) For any graph G = (V,E) of order n and any integer r ≥ 1,
we have

LDr(G) ≥ ⌈log2(n− LDr(G) + 1)⌉. (2)

(b) For any integer r ≥ 1 and any r-twin-free graph G = (V,E) of order n,
we have

ir(G) ≥ ⌈log2(n+ 1)⌉. (3)

Proof. (a) Let C be any r-LD code in G. All the n − |C| non-codewords
v ∈ V \C must be given nonempty and distinct sets Br(v) ∩C constructed
with the |C| codewords, so 2|C| − 1 ≥ n− |C|, from which (2) follows when
C is optimal; (b) the argument is the same, but we have to consider all the
n vertices v ∈ V , so 2|C| − 1 ≥ n. ♦

Lemma 5 Let r ≥ 2 be any integer and G = (V,E) be a graph.
(a) A code C is 1-locating-dominating in Gr, the r-th power of G, if and

only if it is r-locating-dominating in G.
(b) A code C is 1-identifying in Gr if and only if it is r-identifying in G.
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Proof. (a) For every vertex v ∈ V , we have:

{c ∈ C : dG(v, c) ≤ r} = {c ∈ C : dGr(v, c) ≤ 1},

so if for all v ∈ V \ C, the sets on the left-hand side of the equality are
nonempty and distinct, then the sets on the right-side also are, and vice-
versa; (b) same proof, for all v ∈ V . ♦

The following obvious lemma is often used implicitly; we give it without
proof.

Lemma 6 Let r ≥ 1 be any integer and G = (V,E) be a graph.
(a) If C is r-locating-dominating in G, so is any set S ⊃ C.
(b) If C is r-identifying in G, so is any set S ⊃ C. ♦

3 Locating-Dominating Codes

After some necessary preliminary results, we are going to prove, for r ≥ 2
and q ≥ 1, the following polynomial reductions:
U-SAT →p U-LDC1 and U-SAT →p U-OLDC1 (Theorem 14),

U-SAT →p U-LDCr and U-SAT →p U-OLDCr (Theorem 15),
U-LDCqr →p U-LDCq and U-OLDCqr →p U-OLDCq (Proposition 18),

U-LDC1 →p U-SAT (Theorem 19).
The consequence of these reductions is that, for r ≥ 1, U-LDCr and U-
OLDCr are NP-hard, and that U-SAT and U-LDCr have equivalent com-
plexities; as a result, U-LDCr belongs to DP. We shall also show that U-
OLDCr belongs to the class LNP (Proposition 22).

We do not have that U-OLDCr belongs to DP for lack of a polynomial
reduction from U-OLDC1 to U-SAT; we conjecture that such a reduction
does not exist and that U-OLDCr /∈ DP (see also Conclusion).

Also note that the polynomial reduction U-SAT →p U-LDC1 is a conse-
quence of the chain of reductions U-SAT →p U-LDCr →p U-LDC1; we still
give Theorem 14 and its proof, because it constitutes a preliminary step for
the proof of Theorem 15.

3.1 Preliminary Results

Lemma 7 Let h ≥ 1 and r ≥ 1 be integers; let G be a graph of order
2h − 1 + h with LDr(G) = h. Then:

(a) no vertex r-dominating 2h−1, or fewer, vertices can belong to an
optimal r-locating-dominating code in G;

(b) no vertex r-dominating 2h−1 + h+1, or more, vertices can belong to
an optimal r-locating-dominating code in G.
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Proof. Let C be any optimal r-LD code in G: |C| = LDr(G) = h. Because
there are 2h−1 non-codewords, all the nonempty subsets of C coincide with
all the nonempty, distinct sets Br(v)∩C, v ∈ V \C. Then every codeword c
appears exactly 2h−1 times in these subsets, which means that c r-dominates
exactly 2h−1 non-codewords; since it r-dominates between one (itself) and h
codewords, all in all it r-dominates between 2h−1 +1 and 2h−1 + h vertices,
and (a) and (b) follow. ♦

The following lemma is easy, and we prove only its last assertion.

Lemma 8 (a) The path P5 = x1x2x3x4x5 admits only one optimal 1-locating-
dominating code, C = {x2, x4}.

(b) If we construct the graph GA = (VA, EA) by adding to P5 a vertex
denoted by A together with the edge x2A, then A is 1-dominated by x2, but
x1 and A are not 1-separated by C.

(c) If GA is plunged in a larger graph G+ with only A linked to the
outside, then every optimal 1-locating-dominating code C+ in G+ contains
x2 and x4. At most one additional codeword, x1 or A, may be necessary
in VA ∩ C+.

Proof. (c) Let C+ be any optimal 1-LD code in G+. (i) If A is a codeword,
obviously C+ contains x2 and x4, and no other codeword in P5. (ii) The
same is true if A is not a codeword, but is 1-dominated by at least one outside
codeword. (iii) Otherwise, C+ contains x2, to 1-dominate A, it contains x1,
otherwise x1 and A are not 1-separated by C+, and it contains x4, which is
the only vertex which 1-dominates x5 and 1-separates A and x3 at the same
time. ♦

The statements of the following lemma have been given, although in a dif-
ferent way, in [13, proof of Lemma 3.1]; for completeness, we give here the
(easy) proof.

Lemma 9 Let Gi = (Vi, Ei) be the following graph: Vi = {xi, xi, ai, bi, di, fi,
gi} and Ei = {aibi, bixi, bixi, xidi, xidi, difi, xigi, xigi}, and Ci be a 1-locating-
dominating code in Gi, see Figure 2. Then:

(a) at least one of xi and xi belong to Ci;
(b) at least two more codewords necessarily belong to Ci, so that we have

LD1(Gi) ≥ 3;
(c) we have LD1(Gi) = 3, and {xi, bi, di} and {xi, bi, di} are the only

optimal 1-locating-dominating codes in Gi;
(d) if Gi is plunged in a larger graph G+, with only xi and xi linked to

the outside, then every 1-locating-dominating code in G+ contains at least
three codewords inside Vi.

Proof. (a) Because xi and xi have the same neighbours in Gi. (b) Because
ai and fi must be 1-dominated by Ci, we have |Ci ∩ {ai, bi}| ≥ 1 and |Ci ∩
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Figure 2: The graph Gi defined in Lemma 9. The black vertices form one
of the two optimal 1-LD codes in Gi.
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1,r−1

Figure 3: The graph G× has a unique optimal r-LD code, V ×
p .

{di, fi}| ≥ 1. Alternatively, use (2) in Lemma 4. (c) Assume that it is xi
that belongs to Ci. Then taking ai and fi would not 1-dominate xi, and
taking ai and di, or bi and fi, would not 1-separate xi and fi, or xi and ai,
respectively; on the other hand, {xi, bi, di} is 1-LD. (d) Only xi and xi can
be 1-dominated by the outside, and ai, fi and gi have to be 1-dominated by
the code, so anyway at least three codewords are necessary inside Vi. ♦

The previous two lemmas will be used in the proof of Theorem 14. In par-
ticular, Lemma 8(a) gives the example of a graph, P5, with a unique optimal
1-LD code. We want to have the same for any r > 1 (see Proposition 10(a)),
in view of Theorem 15. We shall proceed as follows (see Figure 3):

We set h = 2r + 1, even if everything that follows also holds for any
h ≥ 2r + 1. Let G×

p = (V ×
p , E×

p ) be the cycle Ch of length h, with V ×
p =

{pi : 1 ≤ i ≤ h}. Then we construct G×
q = (V ×

q , E×
q ), with V ×

q = {qi,j : 1 ≤
i ≤ h, 1 ≤ j ≤ r − 1} and E×

q = ∪1≤i≤h{qi,jqi,j+1 : 1 ≤ j ≤ r − 2}. The
set of edges between G×

p and G×
q is E×

p,q = {piqi,1 : 1 ≤ i ≤ h}. Next, we

construct G×
s = (V ×

s , E×
s ) with V ×

s = {si : 1 ≤ i ≤ 2h − 1 − (r − 1)h} and
E×

s = {si1si2 : 1 ≤ i1 < i2 ≤ |V ×
s |}, i.e., G×

s is a clique.
We set V × = V ×

p ∪ V ×
q ∪ V ×

s .
In order to define the set E×

q,s of edges between {qi,r−1 : 1 ≤ i ≤ h}
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and V ×
s , we introduce, for every vertex v ∈ V ×

q ∪ V ×
s , the signature of v as

the set Br(v) ∩ V ×
p of the elements of the cycle that r-dominate v, and we

wish to have nonempty and distinct signatures. Since

(a) the h vertices in V ×
p can provide 2h − 1 such signatures,

(b) |V ×
q ∪ V ×

s | = |V ×
q |+ |V ×

s | = 2h − 1,
(c) the vertices in V ×

q have nonempty and different signatures (in particular,
thanks to the fact that h ≥ 2r, all the vertices qi,1 have signatures of size 2r−
1),
(d) a vertex in V ×

s which is linked (respectively, not linked) to qi,r−1 is at
distance equal to (respectively, greater than) r from pi,

we can see that it is possible to construct E×
q,s in such a way that the vertices

in V ×
s have nonempty signatures which are different inside V ×

s , and different
from those for V ×

q . In particular, in V ×
s there is a vertex which has signature

equal to V ×
p ; we denote this vertex by α. Note also that we could not have

more vertices with this signature property.
We set E× = E×

p ∪ E×
p,q ∪ E×

q ∪ E×
q,s ∪ E×

s and G× = (V ×, E×). The

order of G× is n× = 2h − 1 + h.
We claim that, for a fixed r ≥ 2 and h = 2r + 1, C = V ×

p is the unique
optimal r-LD code in G×; we shall prove it by going through the following
three easy facts.

Fact 1 For any r ≥ 2 and h = 2r + 1, the code C = V ×
p is an optimal

r-locating-dominating code in G×.

Proof. When C = V ×
p , the signatures are the sets Br(v)∩C, for v ∈ V ×\C.

By construction, they are all nonempty and distinct, hence C is r-LD. The
optimality comes from (2) in Lemma 4. ♦

Fact 2 For any r ≥ 2 and h = 2r + 1, the graph G× meets the conditions
of Lemma 7.

Proof. Because LDr(G
×) = |V ×

p | = h and G× has order 2h − 1 + h. ♦

Fact 3 For any r ≥ 2 and h = 2r + 1, no vertex in V ×
q ∪ V ×

s can belong to
any optimal r-locating-dominating code C in G×.

Proof. Because V ×
s is a clique, every vertex qi,j , 1 ≤ i ≤ h, 1 ≤ j ≤ r−1, is

within distance r from every vertex in V ×
s ; so every qi,j r-dominates at least

|V ×
s | = 2h − 1− (r− 1)h vertices. This number is greater than 2h−1 + h+1

for r ≥ 2 and h = 2r + 1. The same is true for the vertices in V ×
s . We can

conclude using Lemma 7(b). ♦

We are now ready to prove the following proposition.

Proposition 10 Let r ≥ 2 and h = 2r + 1. Then:
(a) the only optimal r-locating-dominating code in G× is C = V ×

p ;
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(b) if G× is plunged in a larger graph G+ = (V +, E+), with only α
linked to the outside, then every optimal r-locating-dominating code in G+

contains V ×
p .

Proof. (a) Now that Fact 3 has ruled out the vertices in V ×
q ∪V ×

s , the only
possibility left is to take all the h codewords in V ×

p .
(b) Let C be an optimal r-LD code in G+, and let |C ∩ (V ×

s \ {α})| = X
and |C ∩V ×

p | = Y . If Y = |V ×
p |, we are done, so we assume that Y ≤ h− 1.

How does C r-separate the 2h−(r−1)h−2−X vertices in V ×
s \{α} that need

to be r-separated? Depending on its distance to α, a vertex outside V × r-
dominates either α alone, or all the vertices in V ×

s plus all the vertices qi,j ,
1 ≤ i ≤ h, for some j ≥ 1. This means that no outside codeword can
r-separate the vertices in V ×

s \ {α}: this must be an inside-V × job. But
the vertices in V ×

q ∪ V ×
s cannot do it either, because every such vertex r-

dominates all the vertices in V ×
s \ {α}; so the Y codewords in V ×

p must do
it, and, according to whether the vertices in V ×

s \ {α} are r-dominated by
other codewords or not, we must have 2Y − ε ≥ 2h − (r− 1)h− 2−X, with
ε = 0 or 1; since Y ≤ h− 1, this implies

2h−1 ≤ (r − 1)h+ 2 +X − ε. (4)

For r ≥ 2 and h = 2r+1, the study of (4) shows that necessarily X ≥ h+2.
What is the role of these (at least) h+2 codewords belonging to V ×

s \ {α}?
(a) They contribute to r-dominate and r-separate some vertices in V + \

V ×. From this perspective, all the vertices in V ×
s \ {α} have an equivalent

role towards V + \ V ×. So one codeword in V ×
s \ {α} is sufficient for this

task.
(b) They contribute to r-dominate and r-separate some vertices in V ×,

and they themselves need not be r-separated from other vertices by the code;
but we have already seen (Fact 1) that if we take the h vertices in V ×

p as
codewords, then we can take care of all the vertices in V ×.

(c) They contribute to r-separate some vertices in V + \ V × from some
vertices in V ×. But the h vertices in V ×

p r-dominate all the vertices in-
side V × and no vertex outside V ×.

Therefore, if we take h codewords in V ×
p and one codeword in V ×

s \ {α},
we can do, with respect to the whole graph G+, at least as well as with
X + Y ≥ X ≥ h+ 2 codewords, contradicting the optimality of C. ♦

The following lemma and its obvious corollary will be used for Proposi-
tion 21. They characterize the vertices belonging to at least one optimal
r-LD code, through the comparison of two 1-location-domination numbers.

Lemma 11 Let G = (V,E) be a graph. For a given vertex α ∈ V , we
consider the following graph: Gα = (Vα, Eα), with

Vα = V ∪ {βi : 1 ≤ i ≤ 6},

12
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Figure 4: The graphs G and Gα for Lemma 11.

Eα = E ∪ {αβi : i ∈ {1, 4}} ∪ {βiβi+1 : i ∈ {1, 2, 4, 5}},

where for i ∈ {1, . . . , 6}, βi /∈ V (see Figure 4). Then α belongs to at
least one optimal 1-locating-dominating code in G if and only if LD1(G) =
LD1(Gα)− 2.

Proof. Let Bα = {βi : 1 ≤ i ≤ 6}, and B∗
α = {βi : i ∈ {2, 3, 5, 6}}.

First, we prove that α belongs to every optimal 1-LD code Cα in Gα:
assume on the contrary that α /∈ Cα; then obviously |Cα ∩Bα| ≥ 2+ 2, and
(Cα \ (Cα ∩ Bα)) ∪ {α, β2, β5} is a 1-LD code in Gα, with fewer elements
than Cα, a contradiction. So α ∈ (Cα ∩ V ).

(a) Assume that α belongs to at least one optimal 1-LD code C in G.
Then Cα = C ∪ {β2, β5} is obviously 1-LD in Gα, and LD1(Gα) ≤ |Cα| =
LD1(G) + 2.

Consider now an optimal 1-LD code Cα in Gα. Obviously, we have
|Cα∩B

∗
α| ≥ 1+1, and so, if we set C = Cα∩V , we have: |C| ≤ LD1(Gα)−2.

We have already established that α ∈ Cα, and thus α ∈ C; now, we can see
that it is sufficient, for any optimal 1-LD code in Gα, to have two codewords
in Bα, namely β2 and β5, and therefore |C| ≥ LD1(Gα) − 2. Now, no
codeword in Cα \ C 1-dominates any vertex in V , and necessarily C is a
1-LD code in G, which proves that LD1(G) ≤ |C| = LD1(Gα)− 2.

So we can conclude that if α belongs to at least one optimal 1-LD code
in G, then LD1(G) = LD1(Gα)− 2.

(b) Assume now that LD1(G) = LD1(Gα) − 2. Consider an optimal
1-LD code Cα in Gα, and let C = Cα ∩ V . Then α ∈ Cα and, exactly as
before in (a), α ∈ C, Cα = C ∪ {β2, β5}, C is a 1-LD code in G and its size
is LD1(Gα)− 2 = LD1(G), i.e., it is optimal (and contains α). ♦

Corollary 12 Let r ≥ 1 be any integer, G be a graph containing a vertex α,
and Gr be the r-th power of G. We construct the graph (Gr)α in the same
way as in the previous lemma for G. Then α belongs to at least one optimal
r-locating-dominating code in G if and only if LD1(G

r) = LD1((G
r)α)− 2.

Proof. Use Lemmas 5(a) and 11. ♦

In the following proposition, we shall only use the fact that LDC1 belongs
to NP, for Propositions 21 and 22.
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Figure 5: For r = 1, the graph G+, constructed from a set of clauses.

Proposition 13 [10, for r = 1], [13] Let r ≥ 1 be any integer. The decision
problem LDCr is NP-complete. ♦

The proofs of Proposition 13 do not treat however the problem of the unique-
ness of a solution.

3.2 Uniqueness of Locating-Dominating Code

3.2.1 From U-SAT to U-LDC1 and U-OLDC1

Theorem 14 There exists a polynomial reduction from U-SAT to U-LDC1

and to U-OLDC1: U-SAT →p U-LDC1 and U-SAT →p U-OLDC1.

Proof. We give a polynomial reduction starting from an instance of U-SAT,
that is, a collection C of m clauses over a set X of n variables.

For each variable xi ∈ X , 1 ≤ i ≤ n, we take the graph Gi = (Vi, Ei)
defined in Lemma 9, identifying the literals xi, xi to the vertices xi, xi. For
each clause cj , containing εj literals, εj ≥ 2, we create two vertices, Aj

and Bj , and we link them to the εj vertices corresponding, in the graphs Gi,
to the literals of cj . We also take a copy of P5, P5(Aj) = Aj,1Aj,2Aj,3Aj,4Aj,5,
and link Aj to Aj,2. We do the same for Bj and a second copy of P5,
P5(Bj) = Bj,1Bj,2Bj,3Bj,4Bj,5.

We call this graph G+, see Figure 5. The order of G+ is 7n + 12m.
Because the extremities of the copies of P5 must be 1-dominated by a code-
word, and thanks to Lemma 9(d), we have: LD1(G

+) ≥ 4m + 3n. We set
k = 4m+ 3n.

We claim that there is a unique solution to SAT if and only if there is a
unique optimal 1-LD code in G+, and if and only if there is a unique 1-LD
code of size at most k in G+.

(1) Assume first that there is a unique truth assignment satisfying all the
clauses. We construct the following code C: for i ∈ {1, . . . , n}, among the
vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi has been
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set TRUE, the vertex xi if the literal xi is FALSE, and we add bi and di, as
well as the second and fourth vertices in each of the copies of P5. Then C is a
1-LD code in G+: thanks to our preliminary observations (Lemmas 8 and 9),
the only thing that remains to be checked is that for all j ∈ {1, . . . ,m}, the
code C 1-separates Aj and Aj,1, Bj and Bj,1, and this is so because there
is at least one true literal in the clause cj , which means that Aj and Bj are
1-dominated by at least one codeword of type xi or xi.

Moreover, |C| = 3n + 4m = k, which proves that it is optimal, and no
vertex Aj nor Bj is a codeword. This implies that, once we have decided
between xi and xi, we have no choice left inside Gi if we want a code of size k
(optimal): we must take bi and di, because neither xi nor xi is 1-dominated
by any outside codeword; the same is true for the copies of P5, which must
each contain their second and fourth vertices as only codewords.

Why is C unique? Suppose on the contrary that C∗ is another 1-LD code
of size k = 3n + 4m in G+. Then |C∗ ∩ Vi| = 3 for all i ∈ {1, . . . , n}, and
at most one of xi and xi is in C∗. Also, no vertex Aj or Bj is a codeword,
and each copy of P5 contains exactly two codewords, which are necessarily
the second and the fourth ones. As another consequence, at least one of
xi and xi is a codeword, because no codeword 1-separates them, and so
exactly one of them belongs to C∗. This defines a valid truth assignment
for X , by setting xi =T if xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this
assignment is different from the assignment used to build C. But the fact
that, for all j, C∗ 1-separates Aj and Aj,1, Bj and Bj,1, shows that there is a
codeword xi or xi 1-dominating Aj and Bj , which means that the clause cj
is satisfied. Therefore, we have a second assignment satisfying the instance
of SAT, a contradiction. We can conclude that both problems, U-LDC1 and
U-OLDC1, also receive the answer YES.

(2) Assume next that the answer to U-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
as previously, to at least two (optimal) 1-LD codes (of size k), and a NO
answer to both U-LDC1 and U-OLDC1. So we are left with the case when the
set of clauses C cannot be satisfied. This implies that no 1-LD code of size k
exists, for the same reason as in the previous paragraph with C∗; this suffices
to prove that we have also a NO answer to U-LDC1, but we have to go further
for U-OLDC1. Assume then that C is an optimal 1-LD code of unknown
size |C| > 4m+ 3n. For 1 ≤ j ≤ m, let Aj = C ∩ {Aj , Aj,i : 1 ≤ i ≤ 5} and
Bj = C ∩ {Bj , Bj,i : 1 ≤ i ≤ 5}.

Suppose first that there is a j0 such that Aj0 and Bj0 are not 1-dominated
by any codeword xi nor any codeword xi. Then |Aj0 | > 2, and actually this
set has size exactly three; the same is true for Bj0 . Now we have several
optimal codes, because C ∩ (Aj0 ∪ Bj0) can be equal to

{Aj0 , Aj0,2, Aj0,4, Bj0 , Bj0,2, Bj0,4}, or
{Aj0,1, Aj0,2, Aj0,4, Bj0 , Bj0,2, Bj0,4}, or
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{Aj0 , Aj0,2, Aj0,4, Bj0,1, Bj0,2, Bj0,4},
—but in general, not {Aj0,1, Aj0,2, Aj0,4, Bj0,1, Bj0,2, Bj0,4}, for this might
affect the vertices xi, xi to which Aj0 and Bj0 are linked.

So from now on, we assume that all vertices Aj , Bj are 1-dominated by
at least one codeword xi or xi. Because the set of clauses cannot be satisfied,
it is impossible that for all i, exactly one of xi and xi is a codeword, for this
would lead to a valid truth assignment which would satisfy all the clauses.
So there is a subscript i0 such that either both xi0 and xi0 are codewords,
or none is a codeword. If both are codewords, then C ∩ Vi0 contains xi0 ,
xi0 and can contain any combination with exactly one codeword among
ai0 , bi0 and exactly one among di0 and fi0 , yielding at least four optimal
solutions. If none of xi0 , xi0 is a codeword, then they are 1-separated by some
codeword(s) Aj , Bj ; moreover, gi0 , which must belong to C, 1-dominates
both xi0 , xi0 . Then again, we can have any of the four combinations with
one codeword among ai0 , bi0 and one among di0 and fi0 .

So in all cases, we do not have a unique optimal 1-LD code. ♦

3.2.2 Extension to r ≥ 2

It seems difficult to go directly from r = 1 to the general case r ≥ 2, and
we start again from U-SAT, which does not change the final result; see [13,
Rem. 5] about this possible difficulty.

Theorem 15 Let r ≥ 2 be any integer. There exists a polynomial reduction
from U-SAT to U-LDCr and to U-OLDCr: U-SAT →p U-LDCr and U-SAT
→p U-OLDCr.

Proof. We give a polynomial reduction starting from an instance of U-SAT,
i.e., a collection C of m clauses over a set X of n variables.

We take the graph G+ constructed in the proof of Theorem 14 (cf. Fig-
ure 5), and rename it GI = (VI , EI), for Intermediate graph. Then, for each
edge e = uv ∈ EI , we “paste” r − 1 copies of the graph G× constructed for
Proposition 10 (cf. Figure 3), by deleting the edge e = uv and creating the
edges uα1, α1α2, . . ., αr−1v, where the αi’s are copies of the vertex α in G×,
see Figure 6: we shall say that the edge e is dilated. We denote by G+ the
graph thus constructed. Since r, hence h = 2r+1, is fixed, the fact that G×

has order 2h + h − 1 does not affect the polynomiality of our construction
with respect to n+m. We set k = 3n+ 4m+ (r − 1)h|EI |.

The use of copies of G× can be seen as a way of putting at distance r,
in the graph G+, the vertices which are at distance one in GI , so that the
vertices in VI will behave with respect to each other in a way very similar
to the case r = 1. It is still true that, in addition to at least h codewords
taken in each copy of G×, at least three codewords are necessary in order to
deal with the vertices in each Vi, and that at least two are necessary to cope
with every copy of {x1, . . . , x5}, the set of vertices in P5. Consequently, any
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Figure 6: How the edge e = uv ∈ EI is dilated in the proof of Theorem 15.

optimal r-LD code in G+ has size at least k = 3n+ 4m+ (r − 1)h|EI |, the
three terms corresponding respectively to (a) the sets Vi, 1 ≤ i ≤ n, (b) the
2m copies of P5 (which are now dilated copies), and (c) the (r − 1) copies
of the graph G× on each edge of the intermediate graph GI .

One role of the codewords is to deal with the vertices in VI , that is, if
these are not codewords themselves, to r-dominate them, and to r-separate
between them —the domination and separation inside the copies of G×

and the separation between vertices in VI and vertices in the copies of G×

are already performed by the copies of the cycle Ch, which are necessarily
included in any optimal r-LD code in G+, as already observed.

We can also make the following useful remark.

Remark 16 Let C be any optimal r-locating-dominating code in G+, e =
uv be any edge in EI ,and G× be one of the copies pasted on e. If z is a
codeword belonging to G× and not to its cycle Ch, then (C \ {z}) ∪ {u} or
(C \ {z}) ∪ {v} is also an optimal r-locating-dominating code in G+.

Indeed, if (a) z r-dominates neither u nor v, then it can be spared and C
is not optimal; if (b) z r-dominates u, not v, i.e., it r-separates u and v (and
z cannot r-dominate any other vertex in VI), then, when u or v becomes a
codeword, u and v need not be r-separated anymore; if (c) z r-dominates
both u and v, these two vertices will remain r-dominated by a common code-
word, u or v. In all cases, the fact that other vertices in VI can now be
r-dominated by the substitute codeword (u or v) does not change anything
(cf. Lemma 6(a)).

We claim that there is a unique solution to SAT if and only if there is a
unique optimal r-LD code in G+, and if and only if there is a unique r-LD
code of size at most k in G+.

(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi
has been set TRUE, the vertex xi if the literal xi is FALSE, and we add
bi and di, as well as the second and fourth vertices in each of the (dilated)
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copies of P5. We add the cycle Ch in each copy of G×. Then C is an r-LD
code in G+: thanks to our preliminary observations, the only thing that
remains to be checked is that for all j ∈ {1, . . . ,m}, the code C r-separates
Aj and Aj,1, Bj and Bj,1, and this is so because there is at least one true
literal in the clause cj , which means that Aj and Bj are r-dominated by at
least one codeword of type xi or xi: everything develops exactly as in the
case r = 1.

Moreover, |C| = k, which proves that it is optimal, and no vertex Aj

nor Bj is a codeword. This implies that, once we have decided between xi
and xi, we have no choice left inside Gi: we must take bi and di, because
neither xi nor xi is r-dominated by any outside codeword. We have no choice
in the copies of P5 either: no pair of vertices in copies of G× can r-dominate
the first and last vertices, and r-separate the first, third and last, at the
same time: only the second and fourth vertices can perform this.

Why is C unique? Suppose on the contrary that C∗ is another (optimal)
r-LD code (of size k) in G+. Then each copy of G× intersects C∗ on exactly
h vertices which are the vertices of the cycle Ch; also, |C

∗ ∩ Vi| = 3 for all
i ∈ {1, . . . , n}, and at most one of xi and xi is in C∗. Moreover, no vertex
Aj nor Bj is a codeword. As a consequence, at least one of xi and xi is
a codeword, because no codeword r-separates them, and so exactly one of
them belongs to C∗. This defines a valid truth assignment for X , by setting
xi =T if xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this assignment is
different from the assignment used to build C. But the fact that, for all j,
C∗ r-separates Aj and Aj,1, Bj and Bj,1, shows that there is a codeword
xi or xi r-dominating Aj and Bj , which means that the clause is satisfied.
Therefore, we have a second assignment satisfying the instance of SAT, a
contradiction.

(2) Assume next that the answer to U-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
as previously, to at least two optimal r-LD codes (of size k), and a NO
answer to U-LDCr and U-OLDCr. So we are left with the case when the
set of clauses C cannot be satisfied. This implies that no r-LD code of size k
exists; this ends the case of U-LDCr but we have to go on with U-OLDCr:
assume that C is an optimal r-LD code of unknown size |C| > k, with at
least three codewords to deal with each Vi, at least two codewords to deal
with each copy of P5, at least h codewords in each copy of G×, and possibly
vertices of type Aj , Bj . By Remark 16, if there is a codeword belonging to a
copy of G× and not to its cycle Ch, then we have at least two optimal r-LD
codes, and we are done. So from now on we assume that no copy of G×

contains codewords outside the cycle Ch. Then C contains at least three
codewords in each Vi, at least two codewords in each copy of P5, exactly h
codewords in each copy of G×, and possibly vertices of type Aj and Bj . Now
the argument of the case r = 1 (Theorem 15) can be repeated almost word
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for word: first, we can exclude that there is a vertex Aj0 not r-dominated
by any codeword xi or xi; then we deal with the cases when both xi and xi
are codewords, and when none of them is. In all cases, we have more than
one optimal r-LD code in G+. ♦

Corollary 17 Let r ≥ 1 be any integer. The decision problems U-LDCr

and U-OLDCr are NP-hard.

Proof. Because U-SAT is NP-hard (Proposition 2). ♦

Proposition 18 Let r ≥ 2 and q ≥ 1 be any integers. There is a polynomial
reduction from U-LDCqr to U-LDCq and from U-OLDCqr to U-OLDCq: U-
LDCqr →p U-LDCq and U-OLDCqr →p U-OLDCq.

As a particular case, we have U-LDCr →p U-LDC1 and U-OLDCr →p

U-OLDC1.

Proof. Let (G, k) be an instance of U-LDCqr and G be an instance of U-
OLDCqr, for r ≥ 2 and q ≥ 1. The instance for U-LDCq is simply (Gr, k),
and Gr for U-OLDCq, where Gr is the r-th power of G: obviously, by
Lemma 5(a), there is a unique q-LD code of size k in Gr if and only if there
is a unique qr-LD code of size k in G, and there is a unique optimal q-LD
code in Gr if and only if there is a unique optimal qr-LD code in G. ♦

3.2.3 An Upper Bound for the Complexity of U-LDCr

Theorem 19 There exists a polynomial reduction from U-LDC1 to U-SAT:
U-LDC1 →p U-SAT.

Proof. In [17, Rem. 10] we developed a general argument for this kind of
reduction, with three types of clauses, one type for the description of the
specific problem, here the fact that we want the code to be 1-LD, one type
for the fact that we want a code of size at most k, and one type to break
the multiple solutions. The same method will be applied for Theorem 34,
with 1-identifying codes.

We start from an instance of U-LDC1: a graph G = (V,E) and an
integer k, with V = {x1, . . . , x|V |}; we assume that |V | ≥ 3. We create the
set of k|V | variables X = {xim : 1 ≤ i ≤ |V |, 1 ≤ m ≤ k} and the following
clauses:

(a1) for each vertex xi ∈ V with neighbours xn1 , . . . , xns (where s = s(xi)
is the degree of xi), we take the clause of size k(s+ 1):

cxi = {xi1, x
i
2, . . . , x

i
k, x

n1

1 , xn1

2 , . . . , xn1

k , xn2

1 , . . . , xn2

k , . . . , xns

1 , . . . , xns

k };

(a2) for each pair of vertices xi ∈ V , xj ∈ V , we consider the set B1(x
i)∆

B1(x
j) = {xh1 , xh2 , . . . , xhℓ} (where ℓ depends on xi and xj) and we con-

struct the clause cxixj :

{xi1, x
i
2, . . . , x

i
k, x

j
1, . . . , x

j
k, x

h1

1 , xh1

2 , . . . , xh1

k , xh2

1 , . . . , xh2

k , . . . , xhℓ

1 , . . . , xhℓ

k };
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we shall say that {xi1, x
i
2, . . . , x

i
k, x

j
1, . . . , x

j
k} is the first part of cxixj and

{xh1

1 , xh1

2 , . . . , xh1

k , xh2

1 , . . . , xh2

k , . . . , xhℓ

1 , . . . , xhℓ

k } its second part, which ex-
ists only when ℓ > 0 and may contain variables also appearing in the first
part, which is unimportant;

(b1) for 1 ≤ m ≤ k and 1 ≤ h < ℓ ≤ |V |, we construct clauses of size
two: {xhm, xℓm};

(b2) for 1 ≤ m < s ≤ k and 1 ≤ h ≤ |V |, we construct clauses of size
two: {xhm, xhs};

(c) for 1 ≤ m < k and 1 < ℓ ≤ |V |, for 1 ≤ h < ℓ and m < s ≤ k, we
construct clauses of size two: {xℓm, xhs}.

All these clauses constitute the instance of U-SAT. Note that the number
of variables and clauses is polynomial with respect to the order of G, since
we may assume that k ≤ |V |.

Assume that we have a unique 1-LD code of size k in G, C = {xp1 , xp2 ,
. . . , xpk}, with p1 < p2 < . . . < pk. We can see that C is optimal (otherwise,
any optimal 1-LD code contradicts our uniqueness assumption). Define the
assignment A1 by A1(x

pq
q ) =T for 1 ≤ q ≤ k, and all the other variables are

set FALSE by A1. We claim that this assignment satisfies all the clauses;
indeed:

(a1) at least one among xi and its neighbours is a codeword, so the clause
cxi is satisfied by A1.

(a2) (i) If at least one of xi or xj belongs to C, say xi = xpq ∈ C, then
the variable x

pq
q = xiq has been set True by A1 and the first part of the clause

cxixj , hence the whole clause, is satisfied. (ii) If neither xi nor xj belongs
to C, then, using the characterization given by (1), we can see that at least
one xhm belongs to C, which guarantees that the second part of cxixj is
satisfied.

(b1) If a clause {xhm, xℓm} is not satisfied for some m,h, ℓ, this means
that A1(x

h
m) = A1(x

ℓ
m) =T, i.e., two different vertices are the m-th element

in C.
(b2) If {xhm, xhs} is not satisfied, then xh appears at least twice in C.
(c) If {xℓm, xhs} is not satisfied for some m, ℓ, with h < ℓ and m < s, then

A1(x
ℓ
m) = A1(x

h
s ) =T. This means that xℓ = xpm and xh = xps ; so ℓ = pm,

h = ps. Now h < ℓ implies that ps < pm, but m < s implies that pm < ps,
a contradiction.

Is A1 unique? Assume on the contrary that another assignment, A2, also
satisfies the constructed instance of U-SAT. We construct a new code C+

by putting in C+ the vertex xh as soon as some variable xhm is set TRUE
by A2.

Now the satisfaction, by A2, of the clause cxi in (a1) proves that every
vertex in V is 1-dominated by C+; the satisfaction of cxixj from (a2) means
that at least one vertex among xi, xj , xh1 , . . . , xhℓ belongs to C+. So for
every pair of vertices xi, xj , either one of them is in the code, or an element in
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B1(x
i)∆B1(x

j) is in the code. So every pair of non-codewords is 1-separated
by C+.

Therefore, we have just proved that C+ is a 1-LD-code.
Using (b1) for A2, we can see that for each m ∈ {1, . . . , k} there is at

most one variable with subscript m that is set TRUE by A2; this means that
we have constructed a 1-LD code with (at most) k elements. Since such a
code is unique by assumption, we can see that A1 and A2 “selected” the
same k codewords: for each pq ∈ {p1, . . . , pk}, we already know that there
is exactly one variable, x

pq
q , set TRUE by A1, and, using (b2) after (b1)

for A2, exactly one variable, say x
pq
t , set TRUE by A2. It is now time to

use (c) in order to prove that q = t for every pq, so that A1 and A2 actually
coincide: indeed, assume on the contrary that for some q ∈ {1, . . . , k}, we
have q 6= t; we treat the case 1 ≤ q < t ≤ k, the case 1 ≤ t < q ≤ k being
analogous. If we consider the subscripts smaller than t, there must be one,
say v, such that there is a superscript pu > pq verifying A2(x

pu
v ) =T. Now

the clause {xpuv , x
pq
t } from (c) is not satisfied by A2, a contradiction.

So a YES answer to U-LDC1 leads to a YES answer to U-SAT. Assume
now that the answer to U-LDC1 is negative. If it is negative because there
are at least two 1-LD codes of size k, then we have at least two assignments
satisfying the instance of U-SAT: we have seen above how to construct a
suitable assignment from a 1-LD code, and different 1-LD codes obviously
lead to different assignments. On the other hand, if there is no 1-LD code of
size k, then there can be no assignment satisfying U-SAT, because such an
assignment would give a 1-LD code of size k, as we have seen above when
dealing with A2. So in both cases, a NO answer to U-LDC1 implies a NO
answer to U-SAT. ♦

By Proposition 18 or its corollary, this immediately implies that there is a
polynomial reduction from U-LDCr to U-SAT.

Theorem 20 Let r ≥ 1 be any integer. The problem U-LDCr has complex-
ity equivalent to that of U-SAT.

As a consequence, U-LDCr belongs to the class DP. ♦

Note that it could have been shown directly that U-LDCr belongs to DP.

3.2.4 Two Upper Bounds for the Complexity of U-OLDCr

In [17], we give, for two problems structurally similar to U-OLDCr, two
upper bounds, the first one being weaker but constructive. We do not give
the proofs of the following two results but refer to [17] instead. These proofs
use Lemma 11, Corollary 12 and Proposition 13.

Proposition 21 For r ≥ 1, the decision problem U-OLDCr belongs to the
class PNP . In case of a YES answer, one can give the only optimal r-
locating-dominating code within the same complexity. ♦
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Figure 7: (a) The graph G× of Lemma 23. Black vertices belong to any
1-identifying code in G×. (b) The graph Gi of Lemma 24, with an optimal
1-identifying code (black vertices).

Proposition 22 For r ≥ 1, the decision problem U-OLDCr belongs to LNP .
♦

4 Identifying Codes

The structure of this Section and its results are the same as Section 3 for
LD-codes, although the preliminary graphs and arguments are quite different
technically.

4.1 Preliminary Results

Lemma 23 will be used in the proof of Theorem 30, and Lemma 24 in the
proofs of Theorems 30 and 31.

Lemma 23 Let G× = (V ×, E×) be the following graph:

V × = {α, β1, β2, β3, β4, β5, β6, ω, δ, σ, τ, λ, µ},

E× = {αβ1, β1β2, β1δ, β1ω, β2δ, β2ω, β1β3, β3β4, β3σ, β3τ, β4σ, β4τ} ∪

∪{αβ5, β5β6, β5λ, β5µ, β6λ, β6µ},

see Figure 7(a). Then i1(G
×) = 8, any 1-identifying code in G× contains

the set of vertices C = {α, β1, ω, δ, σ, τ, λ, µ}, and C is the only optimal
1-identifying code in G×.

If G× is plunged in a larger graph G+, with only α linked to the outside,
then every 1-identifying code in G+ contains C; the outside neighbours of α
are 1-covered, not 1-separated, by α, and they are 1-separated from V × by C.

Proof. Straightforward: α is the only vertex 1-separating β5 and β6; the
same is true about β1, for β3, β4; about ω, for β2, δ; about δ, for β2, ω;
about σ, for β4, τ ; about τ , for β4, σ; about λ, for β6, µ; and about µ,
for β6, λ. So these eight vertices belong to any 1-identifying code, and
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since they obvioulsy constitute a 1-identifying code, this is the only optimal
1-identifying code.

When we consider G+, all the above arguments still work. ♦

The statements of the following lemma have been given, although in a differ-
ent way, in [14, proof of Th. 5.1]; for completeness, we give here the (easy)
proof.

Lemma 24 Let Gi = (Vi, Ei) be the following graph: Vi = {xi, xi, ai, bi, di, fi}
and Ei = {aibi, bixi, bixi, xidi, xidi, difi}, and Ci be a 1-identifying code
in Gi, see Figure 7(b). Then

(a) At least one of xi and xi belong to Ci.
(b) At least two more codewords are necessary in Ci, so that i1(Gi) ≥ 3.
(c) We have i1(Gi) = 3, and {xi, bi, di} and {xi, bi, di} are the only

optimal 1-identifying codes in Gi.
(d) If Gi is plunged in a larger graph G+, with only xi and xi linked

to the outside, then every 1-identifying code in G+ contains at least three
codewords in Vi, and one of them is xi or xi.

Proof. (a) Because ai and bi, or di and fi, must be 1-separated by Ci.
(b) Because ai and fi must be 1-covered by Ci. Alternatively, use (3) in
Lemma 4. (c) Assume that it is xi that belongs to Ci. Then taking ai
and fi would not 1-cover xi, and taking ai and di, or bi and fi, would not
1-separate xi and di, or xi and bi, respectively; on the other hand, {xi, bi, di}
is 1-identifying. (d) Only xi and xi can be 1-covered by the outside, and ai
and fi still have to be 1-covered, ai and bi, and di and fi still must be pairwise
1-separated by a codeword, requiring at least three inside codewords, one of
them being xi or xi. ♦

The diapason and shortened diapason, introduced in the following lemma
and its corollary, will be used in the proof of Theorem 31.

Lemma 25 [13, Lemma 2.1, Cor. 2.1] Let r ≥ 2 be any integer. Let T =
{t1, t2, . . . , tr}, Y = {y1, y2, . . . , y2r+1}, and Z = {z1, z2, . . . , z2r+1}. Let
∆ be the graph in Figure 8, with vertex set T ∪ Y ∪ Z and edge set

{titi+1 : i = 1, 2, . . . , r − 1} ∪ {try1, trz1} ∪ {yiyi+1, zizi+1 : i = 1, 2, . . . , 2r}.

(a) The smallest r-identifying code in ∆, C0, has size 2r + 2 and is
unique: it consists of the vertices y1, y2, . . . , yr, y2r+1, z1, z2, . . . , zr, and
z2r+1.

(b) Any r-identifying code in ∆ contains at least 2r+2 elements in Y ∪Z;
among them, the 2r vertices y1, y2, . . . , yr and z1, z2, . . . , zr must belong
to any r-identifying code.

(c) Consider r − 1 copies, ∆1, ∆2, . . . , ∆r−1, of the graph ∆, and
in each copy rename the “first” vertex t1 by t1,1, t2,1, . . . , tr−1,1, and the
other vertices accordingly. Build the graph Ω (cf. Figure 9) by taking these
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r− 1 copies and adding the edges t1,1t2,1, t2,1t3,1, . . . , tr−2,1tr−1,1. Then the
smallest r-identifying code in Ω, C1, has size (r − 1)(2r + 2), is unique and
consists of r − 1 copies of the code C0, one copy of C0 in each copy of ∆.

(d) If Ω is plunged in a larger graph G+, with only t1,1 and tr−1,1 linked
to the outside, then every r-identifying code in G+ contains C1; no outside
vertex is r-covered by C1. ♦

We call the graph ∆ a diapason. The sets Y and Z are the branches, the
set T the stem, the vertex t1 the foot of the diapason.

Corollary 26 If we modify the previous lemma by considering a set T−

with one vertex less: T− = {t1, t2, . . . , tr−1} and tr−1 linked to y1 and z1,
and if we denote by ∆− the graph thus obtained, then the statements (a) and
(b) of Lemma 25 remain true when we replace ∆ by ∆−.

If ∆− is plunged in a larger graph G+, with only t1 linked to the outside,
then every r-identifying code in G+ contains C0; the outside neighbours of t1
are the only outside vertices r-covered by C0, they are not r-separated from
one another by C0, and they are r-separated by C0 from all the vertices
in ∆−. ♦

We call the graph ∆− a shortened diapason.
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Lemma 27 below, and its corollary, are similar to Lemma 11 and Corollary 12
on r-LD codes: they characterize the vertices belonging to at least one
optimal r-identifying code, through the comparison of two 1-identification
numbers. They will be used for Proposition 36. They are simplified versions
of [15, Lemma 3] and [15, Cor. 4], respectively.

Lemma 27 Let G = (V,E) be a 1-twin-free graph. For a given vertex
α ∈ V , we construct the following graph Gα = (Vα, Eα):

Vα = V ∪ {β1, β2, δ, λ}, Eα = E ∪ {αβ1, β1β2, β1δ, β1λ, β2δ, β2λ},

where none of the vertices β1, β2, δ, λ belongs to V . Then α belongs to at
least one optimal 1-identifying code in G if and only if i1(G) = i1(Gα)− 2.

♦

Corollary 28 Let r ≥ 1 be any integer, G be an r-twin-free graph contain-
ing a vertex α, and Gr be the r-th power of G. We construct the graph (Gr)α
in the same way as in the previous lemma for G. Then α belongs to at least
one optimal r-identifying code in G if and only if i1(G

r) = i1((G
r)α)− 2. ♦

In the following proposition, we shall only use the fact that IdC1 belongs to
NP (see Propositions 36 and 37).

Proposition 29 [14, for r = 1], [13] Let r ≥ 1 be any integer. The decision
problem IdCr is NP-complete. ♦

But the proofs for Proposition 29 do not deal with the problem of the unique-
ness of a solution.

4.2 Uniqueness of Identifying Code

4.2.1 From U-SAT to U-IdC1 and U-OIdC1

Theorem 30 There exists a polynomial reduction from U-SAT to U-IdC1

and to U-OIdC1: U-SAT →p U-IdC1 and U-SAT →p U-OIdC1.

Proof. This proof is inspired by that of the NP-completeness of IdC1 in [14].
We give a polynomial reduction starting from an instance of U-SAT, that

is, a collection C of m clauses over a set X of n variables.
For each variable xi ∈ X , 1 ≤ i ≤ n, we take the graph Gi = (Vi, Ei)

defined in Lemma 24. For each clause cj , containing εj literals, εj ≥ 2, we
create two vertices, Aj and Bj , and we link Aj to the εj vertices correspond-
ing, in the graphs Gi, to the literals of cj . Finally we link the vertices Aj

and Bj to one copy of the graph G× defined in Lemma 23, one different copy
for each couple (Aj , Bj), by creating the edges Ajα and Bjα (or rather: we
use the j-th copy of α); we call this graph G+, see Figure 10. The order
of G+ is 6n + 15m. Note that each pair of vertices Aj , Bj , 1 ≤ j ≤ m, is
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1-covered by a copy of α (which belongs necessarily to any 1-identifying code
in G+, see Lemma 23). By Lemmas 23 and 24, we have i1(G

+) ≥ 8m+ 3n.
We set k = 8m+ 3n.

We claim that there is a unique solution to SAT if and only if there is a
unique optimal 1-identifiying code in G+, and if and only if there is a unique
1-identifying code of size at most k in G+.

(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi
has been set TRUE, the vertex xi if the literal xi is FALSE, and we add bi
and di. We add all the copies of the vertices α, β1, ω, δ, σ, τ , λ and µ. Then
C is a 1-identifying code in G+: thanks to all our preliminary observations
(Lemmas 23 and 24), the only thing that remains to be checked is that for
all j ∈ {1, . . . ,m}, the vertices Aj and Bj are 1-separated by C. And this
is so because there is at least one true literal in the clause cj . Moreover,
|C| = k, which proves that it is optimal. We can also see that, once we have
decided between xi and xi, we have no choice left inside Gi: we must take bi
and di, because neither xi nor xi is 1-covered by outside codewords, due to
the fact that no vertex Aj can be a codeword, by an argument of cardinality.

Why is C unique? Suppose on the contrary that C∗ is another 1-
identifying code of size k in G+. Then |C∗ ∩ Vi| = 3 for all i ∈ {1, . . . , n},
and exactly one of xi and xi is in C∗. This defines a valid truth assignment
for X , by setting xi =T if xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this
assignment is different from the assignment used to build C. But the fact
that C∗ 1-separates Aj and Bj for all j shows that there is a codeword xi
or xi 1-covering Aj , which means that the clause is satisfied. Therefore, we
have a second assignment satisfying the instance of SAT, a contradiction.

(2) Assume next that the answer to U-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
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as previously, to at least two optimal 1-identifying codes (of size k), and
a NO answer to U-IdC1 and U-OIdC1. So we are left with the case when
the set of clauses C cannot be satisfied. This implies that no 1-identifying
code of size k exists; the case U-IdC1 is closed, and, to go on with the
problem U-OIdC1, we assume that C is an optimal 1-identifying code of
unknown size |C| > 8m + 3n. We know that each copy of G× contains
at least eight codewords, and each Gi at least three codewords. Where
can the extra codeword(s) be? Any additional codeword in a copy of G×

is useless with respect to 1-identification and can be saved. If there are
five or six codewords in a Gi, at least one can be saved; assume next that
there are four of them: (a) if both xi and xi are codewords, then, e.g.,
C ∩ Vi = {xi, xi, bi, di} or C ∩ Vi = {xi, xi, bi, fi} can be part of an optimal
solution; (b) if only one of xi and xi, say xi, is a codeword, then there are
also several possibilities for C ∩ Vi, such as {xi, bi, di, ai} and {xi, bi, di, fi}.
So we can conclude that there are eight codewords in each copy of G×,
three codewords in each Gi and the extra codewords are among the vertices
Aj , Bj . If for some j, Bj ∈ C and Aj /∈ C, then Bj serves as a codeword only
to 1-separate itself from Aj , but this can be done by Aj , so (C \{Bj})∪{Aj}
would be another optimal 1-identifying code. So we are left with the case
Aj ∈ C. Then Aj 1-covers one vertex xi or xi, say xi, and then both
C ∩ Vi = {xi, bi, di} and C ∩ Vi = {xi, ai, fi} are possible. In all cases, we
have proved that there are several optimal 1-identifying codes in G+, i.e.,
we have a NO answer to the constructed instance of U-OIdC1. ♦

4.2.2 Extension to r ≥ 2

As for LD codes, we do not go directly from r = 1 to r ≥ 2, but start again
from U-SAT, which does not change the final result; see [13, Rem. 2] about
this difficulty.

Theorem 31 Let r ≥ 2 be any integer. There exists a polynomial reduction
from U-SAT to U-IdCr and to U-OIdCr: U-SAT →p U-IdCr and U-SAT →p

U-OIdCr.

Proof. This proof is inspired by that of the NP-completeness of IdCr in [13].
We give a polynomial reduction starting from an instance of U-SAT, i.e.,

a collection C of m clauses over a set X of n variables.
In a first step, for each variable xi ∈ X , 1 ≤ i ≤ n, we take the graph

Gi = (Vi, Ei) defined in Lemma 24. For each clause cj , containing εj literals,
εj ≥ 2, we create two vertices, Aj and Bj , and the edge AjBj , and we link
Aj to the εj vertices corresponding, in the graphs Gi, to the literals of cj ;
we call these edges “membership edges”. So far, we have constructed an
intermediate graph, GI = (VI , EI).

In a second step (see Figure 11), for each membership edge and for
each edge in the graphs Gi, we “paste” one copy of the graph Ω defined in
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Figure 11: How the edge e ∈ EI is transformed in the proof of Theorem 31.
If e is a membership edge or an edge in Gi, we use a copy of Ω; if e = AjBj ,
we use a copy of ∆−.

Lemma 25, which is equivalent to pasting r − 1 copies of the diapason ∆;
and for each edge AjBj , 1 ≤ j ≤ m, we paste one copy of the shortened
diapason ∆− defined in Corollary 26. We denote by G+ the graph thus
constructed, and set k = 3n + (r − 1)(2r + 2)(|EI | −m) +m(2r + 2). The
order of G+ is (6n + 2m) + (|EI | − m)(r − 1)(5r + 2) + m(5r + 1): the
transformation is polynomial indeed.

The diapasons can be seen as a way of putting at distance r, in the
graph G+, the vertices in Vi, 1 ≤ i ≤ n, and {Aj : 1 ≤ j ≤ m} which are at
distance one from one another in GI . And so these vertices will behave with
respect to each other in a way very similar to the case r = 1. In particular,
it is still true that, in addition to codewords taken in the branches of the
diapasons, at least three codewords are necessary to deal with the vertices
in each Vi. Consequently, by Lemma 25(b), any optimal r-identifying code
in G+ has size at least 3n+ (r − 1)(2r + 2)(|EI | −m) +m(2r + 2) = k, the
three terms corresponding respectively to (a) the sets Vi, 1 ≤ i ≤ n, (b) the
r − 1 copies of the diapason on each edge which is not AjBj , and (c) the
copy of the shortened diapason on each edge AjBj , 1 ≤ j ≤ m.

The role of the copies of the shortened diapason is to r-cover Aj and
Bj without r-separating them, and to r-separate Aj and Bj from the other
vertices belonging to VI .

After these introductory observations, we can conclude that, in any r-
identifying code in G+, the role of the codewords which do not belong to
the branches of the diapasons, is (a) to r-separate Aj from Bj , for all j ∈
{1, . . . ,m}; (b) to r-cover all the vertices in Vi, and to r-separate them, for
all i ∈ {1, . . . , n}.

We claim that there is a unique solution to SAT if and only if there is a
unique optimal r-identifiying code in G+, and if and only if there is a unique
r-identifying code of size at most k in G+.
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(1) Assume first that there is a unique truth assignment satisfying all
the clauses. We construct the following code C: for i ∈ {1, . . . , n}, among
the vertices xi ∈ Vi, xi ∈ Vi, we put in C the vertex xi if the literal xi has
been set TRUE, the vertex xi if the literal xi is FALSE, we add bi and di,
and we also take the unique optimal r-identifying codes in all the copies of Ω
and ∆−. Then, as in the case r = 1, we can check that C is an r-identifying
code in G+; in particular, for all j ∈ {1, . . . ,m}, the vertices Aj and Bj are
r-separated by C, because there is at least one true literal in the clause cj .
Also, the code C has the right size and is optimal. We can also see that,
once we know that, say, xi ∈ C, we have no choice left for the completion of
the code, because ai, fi and xi must be r-covered (the latter because no Aj

is a codeword), and xi, bi and di must be r-separated by the code. So bi and
di necessarily are the remaining two codewords in Vi, for all i ∈ {1, . . . , n}.

Why is C unique? Suppose on the contrary that C∗ is another r-
identifying code, with |C∗| = |C|. Then for all i ∈ {1, . . . , n}, exactly
three codewords take care of Vi, and C∗ contains bi, di and exactly one of
xi and xi. This defines a valid truth assignment for X , by setting xi =T if
xi ∈ C∗, xi =F if xi ∈ C∗. Since C 6= C∗, this assignment is different from
the assignment used to build C. But the fact that C∗ r-separates Aj and
Bj for all j shows that there is one codeword xi or xi r-covering Aj , which
means that the clause is satisfied. Therefore, we have a second assignment
satisfying the instance of SAT, a contradiction.

(2) Assume next that the answer to U-SAT is NO: this may be either
because no truth assignment satisfies the instance, or because at least two
assignments do; in the latter case, this would lead, using the same argument
as previously, to at least two optimal r-identifying codes (of size k), and a
NO answer to U-IdCr and U-OIdCr. So we are left with the case when the
set of clauses C cannot be satisfied. This implies that no r-identifying code
of size k exists: we have ended the case U-IdCr; next, we assume that C is
an optimal r-identifying code of unknown size |C| > k. We know that each
copy of Ω or of ∆− contains at least (r − 1)(2r + 2) or 2r + 2 codewords,
respectively, and that each Vi requires at least three codewords. Now, where
can the extra codeword(s) be?

Note that, unfortunately, Remark 16 cannot be adapted to the present
construction with pasted diapasons for r-identifying codes, because in the
case (b) of the Remark, when the codeword z belonging to a diapason r-
separates u and v and is replaced by u or v, then u and v are not r-separated
anymore. This did not matter with LD-codes, but it does for identifying
codes.

Any vertex Bj is a useless codeword, because, even in the case r = 2, it
r-covers both Aj and itself. This is also true for all the codewords that would
be on the branches of any diapason (apart from the codewords y1, y2, . . . yr,
y2r+1 and z1, z2, . . . , zr, z2r+1), as well as for codewords on the stem of a
shortened diapason (for they all r-cover both Aj and Bj).

29



Let us now consider the case of a codeword on the stem of a diapason
pasted on an edge e = uv: this edge is either a membership edge or an edge
in some Gi; the (only) role of this codeword is either to r-cover exactly one
of u an v, and consequently to r-separate u from v, or to r-cover both u
and v, and consequently to r-separate them from other vertices in VI . We
distinguish between three cases. In each case, our goal is to show that one
codeword can be spared (contradiction with the optimality of C) or that
several optimal codes are possible.

(i) r = 2. The two vertices on the stem of the unique diapason pasted
on e both 2-cover u and v, so at most one of them is necessary in the code,
and they are interchangeable.

(ii) r ≥ 4. (a) All the feet of the r − 1 diapasons r-cover u and v, so
at most one of them is necessary in the code, and they are interchange-
able. (b) If, say, u is linked to t1,1 and v to tr−1,1, then dG+(t1,r, u) = r,
dG+(t1,r−1, u) = r− 1, dG+(t1,r, v) = 2r− 2, and dG+(t1,r−1, v) = 2r− 3 > r,
so there are at least two vertices on the first stem which r-cover u, not v,
at most one of them is necessary in the code, and they are interchangeable.
The same is true by symmetry for tr−1,r and tr−1,r−1.

(iii) r = 3. (a) The feet of the two diapasons 3-cover u and v, and
the conclusion is the same as previously. (b) Without loss of generality, we
assume that we are in the following case: the codeword is t1,3; it is the only
vertex in Ω which 3-covers u, not v, so it 3-separates these two vertices.
If u = Aj for some j ∈ {1, 2, . . . ,m}, then it is 3-covered and 3-separated
from v by the shortened diapason, and t1,3 can be spared. So u is one of
the six vertices in Vi for some i ∈ {1, 2, . . . , n}. If u ∈ {xi, xi, bi, di}, that
is, if u has degree at least two in GI , then we can replace t1,3 by another
vertex suitably chosen in a diapason pasted on another edge incident to u
in GI . So we are left with the case when, say, u = ai, and so v = bi. But bi
is 3-covered by at least one codeword. (b1) This codeword also 3-covers ai.
Then t1,3 can be replaced in C by a vertex 3-covering bi, not ai: this choice
also allows to have ai and bi 3-covered and 3-separated by C. (b2) The
codeword 3-covering bi does not 3-cover ai. Then t1,3 can be replaced in C
by, e.g., t1,2, because ai and bi are already 3-separated by C.

So in all cases, we have at least two possible optimal codes, and we can
assume from now on that each copy of Ω contains exactly (r − 1)(2r + 2)
codewords, and each copy of ∆− exactly 2r + 2 codewords.

The case when there are four (or more) codewords in a component Gi

can be treated exactly like the case r = 1, as if the copies of Ω did not
exist. This is also true if each Gi has exactly three codewords, and one
extra codeword is on some Aj , because then Aj r-covers some xi or xi. In
all cases, there is more than one possibility for Vi ∩ C.

In conclusion, whenever there are more than k codewords in an optimal
code, there are several possible optimal codes, and the answer to U-OIdCr
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is NO. ♦

Corollary 32 Let r ≥ 1 be any integer. The decision problems U-IdCr and
U-OIdCr are NP-hard. ♦

Proposition 33 Let r ≥ 2 and q ≥ 1 be any integers. There is a polynomial
reduction from U-IdCqr to U-IdCq and from U-OIdCqr to U-OIdCq: U-IdCqr

→p U-IdCq and U-OIdCqr →p U-OIdCq.
As a particular case, we have U-IdCr →p U-IdC1 and U-OIdCr →p U-

OIdC1.

Proof. See the proof of Proposition 18 and Lemma 5(b). ♦

4.2.3 An Upper Bound for the Complexity of U-IdCr

Theorem 34 There exists a polynomial reduction from U-IdC1 to U-SAT:
U-IdC1 →p U-SAT.

Proof. We refer to the proof of Theorem 19, and we give here only the
clauses that describe the identification problem. These clauses are con-
structed in the following way:

(a1) for each vertex xi ∈ V with neighbours xn1 , . . . , xns , we take the
clause of size k(s+ 1):

{xi1, x
i
2, . . . , x

i
k, x

n1

1 , xn1

2 , . . . , xn1

k , xn2

1 , . . . , xn2

k , . . . , xns

1 , . . . , xns

k };

(a2) for each pair of vertices xi ∈ V , xj ∈ V , we consider the set B1(x
i)

∆B1(x
j) = {xh1 , xh2 , . . . , xhℓ}; by the assumption that G is 1-twin-free, we

have ℓ > 0. Then we simply take the clause

{xh1

1 , xh1

2 , . . . , xh1

k , xh2

1 , . . . , xh2

k , . . . , xhℓ

1 , . . . , xhℓ

k },

which is the second part of the clause cxixj in the aforementioned proof.
Then the argument goes exactly like for Theorem 19, in particular thanks
to the characterization given by (1). ♦

By Proposition 33 or its corollary, this immediately implies that there is a
polynomial reduction from U-IdCr to U-SAT.

Theorem 35 Let r ≥ 1 be any integer. The problem U-IdCr has complexity
equivalent to that of U-SAT.

As a consequence, U-IdCr belongs to the class DP. ♦
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Figure 12: Some classes of complexity: Figure 1 re-visited.

4.2.4 Two Upper Bounds for the Complexity of U-OIdCr

Exactly as in Section 3.2.4, we give, without proof, two results on U-OIdCr;
this time, Lemma 27, Corollary 28 and Proposition 29 are used.

Proposition 36 For r ≥ 1, the decision problem U-OIdCr belongs to the
class PNP . In case of a YES answer, one can give the only optimal r-
identifying code within the same complexity. ♦

Proposition 37 For r ≥ 1, the decision problem U-OIdCr belongs to LNP .
♦

5 Conclusion

We have established that the four decision problems U-LDCr, U-IdCr, U-
OLDCr and U-OIdCr are, for any fixed r ≥ 1, NP-hard, and that the two
problems U-OLDCr and U-OIdCr belong to the class L

NP . For U-LDCr and
U-IdCr, we could go further and prove that they are equivalent to U-SAT
and therefore belong to the class DP.

Conjecture Neither U-OLDCr nor U-OIdCr belong to DP.

Open Problem Give a better location, in the classes of complexity, for the
problems U-LDCr, U-IdCr, U-OLDCr and U-OIdCr.

We can see in Figure 12 that U-SAT, U-LDCr and U-IdCr are in the verti-
cally hatched region, but probably not in DP-complete, whereas U-OLDCr

and U-OIdCr are somewhere in the region that is hatched horizontally or
vertically.

In [2], a characterization of the trees which admit a unique optimal 1-LD
code is given.
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Open Problems Extend this study to other classes of graphs; to any integer
r ≥ 1; to identifying codes. What is the complexity of the sub-problem of
U-OLDC1 when the instance is any tree.

In [1], the authors wonder whether
(A) U-SAT is NP-hard, but here we believe that what they mean is:

does there exist a polynomial reduction from an NP-complete problem to
U-SAT? i.e., they use the second definition of NP-hardness;

finally, they show that (A) is true if and only if
(B) U-SAT is DP-complete.

So, if one is careless and considers that U-SAT is NP-hard without check-
ing according to which definition, one might easily jump too hastily to the
conclusion that U-SAT is DP-complete.
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