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ABSTRACT
Licensed shared access (LSA) is a new approach that allows Mo-

bile Network Operators to use a portion of the spectrum initially

licensed to another incumbent user, by obtaining a license from the

regulator via an auction mechanism. In this context, di�erent truth-

ful auction mechanisms have been proposed, and di�er in terms

of allocation (who gets the spectrum) but also on revenue. Since

those mechanisms could generate an extremely low revenue, we

extend them by introducing a reserve price per bidder which repre-

sents the minimum amount that each winning bidder should pay.

Since this may be at the expense of the allocation fairness, for each

mechanism we �nd by simulation the reserve price that optimizes

a trade-o� between expected fairness and expected revenue. Also,

for each mechanism, we analytically express the expected revenue

when valuations of operators for the spectrum are independent and

identically distributed from a uniform distribution.

1 INTRODUCTION
Mobile Internet tra�c continues to increase exponentially. By 2020,

there will be nearly eight times more mobile Internet tra�c than

in 2016 [1]. To satisfy that growth of data tra�c through a more

e�cient usage of the radio spectrum, spectrum sharing has been

proposed. Traditionally, spectrum sharing refers to the situation

where a secondary user like a Mobile Network Operator (MNO) uses

the bandwidth of a primary user and has to release it whenever the

primary user wants it; TV White Space spectrum sharing [5] is an

example where MNOs are able to use TV bands without obtaining a

license. However, the sharing duration is not de�ned and the access

to the bandwidth is not guaranteed, which is not desirable from

the point of view of MNOs. To solve those problems, in November

2011, the Radio Spectrum Policy group (RSPG) proposed a new

sharing concept called Licensed Shared Access (LSA) [2]. LSA is

a new approach, which is technically achievable [11], that allows

MNOs to obtain access to additional bands of an incumbent. �is

sharing is supervised by the regulator and can be carried out on

speci�ed frequencies of the licensed spectrum, time periods, and

geographical regions [10].

In that context, allocating LSA spectrum to MNOs via auction

mechanisms is a natural approach. An auction mechanism is com-

posed by a bidding format, an allocation rule and a payment rule.

In general, an allocation rule α is a function of the bids, it indicates

how much resource each bidder gets. A payment rule P indicates

how much each player has to pay. A desirable propriety of an

auction mechanism is truthfulness: a truthful or incentive compati-

ble mechanism incentivizes all bidders to voluntarily reveal their

true valuation, hence preventing market manipulation through

insincere bids. Some truthful [3, 4, 16] and non-truthful [13] mecha-

nisms have been proposed as candidates to allocate spectrum in the

LSA context. Other mechanisms, such as the well-known Vickrey-

Clarke-Groves (VCG) mechanism [8], which is also truthful, can be

adapted to the LSA context.

While truthfulness is important, the revenue generated by the

auction is also an important criterion. In this paper, we propose

to ameliorate the revenue of those mechanisms while preserving

truthfulness. �e idea is to introduce a reserve price R per bidder

such that no winning player pays a unit price below R, an approach

initially proposed by Hartline and Roughgarden [6], and di�ering

from the more classical seller-oriented reserve price [8]. Intro-

ducing this reserve price may exclude some MNOs, which is not

desirable from the point of view of the allocation’s fairness. Hence

we propose a trade-o� between those two metrics, that we model

and analyze in this paper, in order to suggest which mechanism to

use and with which reserve price R.

�e rest of the paper is organized as follows: Section 2 presents

the system model. In Section 3, we present the LSA candidate mech-

anisms. �e extension of those mechanisms to include a reserve

price is given in Section 4, and Section 5 provides an analytical

analysis of the corresponding average revenues. Results on the

trade-o� between fairness and revenue are shown in Section 6, and

we conclude and suggest directions for future work in Section 7.

2 SYSTEM MODEL
2.1 Interference and spectrum reusability
Each base station acts as a player, that is, an operator wishing to

use some LSA spectrum. We consider N base stations of di�erent

operators, so we will use the terms operator, base station and bidder

interchangeably in the paper. In reality, each base station is not

necessarily in direct competition with all the others: when two

base stations do not interfere, they can use the same LSA spectrum

simultaneously. Hence, a well-designed spectrum mechanism has

to take spectrum re-usability in consideration to make the most out

of the spectrum.



A way to exploit the re-usability is to transform the competition

between the N base stations into a competition between M groups,

in such a way that any two base stations in the same group do not

interfere: one can then allocate the same spectrum to all the base

stations of the same group. �at same approach is taken in [3, 4, 13,

16]. It can be captured in a model by using a so-called interference

graph. Figure 1 shows an example of an interference graph built

from the overlapping of the di�erent coverage areas: base stations

are represented by vertices, an edge between two vertices meaning

that those base stations interfere. In our example, base stations

in the set {1,3,5} can use the same spectrum simultaneously. An

example of groups constitution for the instance of Figure 1 is: д1

={1,3,5}, д2= {2,5} andд3 ={1,4}. Notice that groups can be formed

in di�erent ways. In this paper, we suppose that groups are formed

by the auctioneer before the actual auction and are advertised

to bidders before any bids are submi�ed. Additionally, since the

mechanisms in [3, 16] are truthful only when each base station

belongs to only one group, we assume the groups formed by the

auctioneer satisfy that constraint.

2.2 Players preferences
We suppose that each bidder (operator) i = 1, ...,N has a constant

marginal valuation vi for spectrum and a quasilinear utility func-

tion: for a given mechanism Mec, if it obtains a fraction αMec

i > 0

of all the available bandwidth and pays pMec

i , i’s utility then is:

ui (αMec

i ,pMec

i ) = αMec

i vi − pMec

i .

Otherwise its utility is zero. Notice that we have assumed in-

distinguishable channel properties [14, 15], i.e., operators are only

sensitive to the amount of bandwidth –and not to the speci�c bands–

they can use.

2.3 Fairness and regulator’s utility
�e utility of the regulator depends on the revenue of the mecha-

nism Rev
Mec

, which is equal to

∑N
i=1

pMec

i , but also on the fairness

of the allocation. �at second criterion needs to be quanti�ed: sev-

eral de�nitions are used to quantify fairness [7, 9], we decide to use

Jain’s fairness index J , which is given for an allocation vector α , by

J (α) =
(
N∑
i=1

αi )2

N
N∑
i=1

α2

i

. (1)

�is index is a continuous function of the allocation, and mea-

sures its equity: if for any two base stations i and j, αi = α j then

J is maximum and equal to 1, and if the bandwidth is allocated to

only one base station then J is minimum and equal to
1

N . Note that

in our case, we can have

∑
i αi > 1 due to spectrum being possibly

used by several non-interfering base stations.

In this paper, we assume the regulator is sensitive both to the

revenue from the auction and the allocation fairness. More speci�-

cally, we suppose that, given a mechanism, the normalized utility

of the regulator UMec

Reg
is of the form

UMec

Reg
= β J (αMec) + (1 − β)Rev

Mec

Rev
max
, (2)

Figure 1: Interference graph example

where β ∈ [0, 1] is the weight that the regulator puts on fairness

relative to revenue, and Rev
max

is the maximum revenue over the

set of candidates mechanisms that we use to normalize the revenue

criterion in (2).

3 CANDIDATE LSA AUCTION MECHANISMS
In this section, we brie�y review the auction mechanisms that have

been proposed in the context of LSA spectrum allocation, and that

we modify (adding a per-bidder reserve price) and compare in this

paper.

LSAA [13] was the �rst auction mechanism proposed specif-

ically for the LSA context. To evaluate the performance of that

mechanism in terms of revenue, its authors compare LSAA with

TAMES [3] and TRUST [16], two other applicable auction schemes.

�e classical VCG [8] scheme can be applied to LSA. Finally, another

mechanism called Proportional Allocation Mechanism (PAM) [4]

has been recently proposed as a candidate mechanism for LSA spec-

trum allocation and pricing. Contrary to the previous mechanisms

which allocate the whole bandwidth to one and only one group,

PAM divides the bandwidth among groups in proportion to their

groupbids (a value summarizing the bids of a group). In addition to

allocation fairness and revenue, some interesting properties of an

auction mechanism include:

• Truthfulness: For every bidder i and every �xed set of

bids from the other bidders, proposing a bid bi = vi maxi-

mizes i’s utility. Truthfulness ensures that operators will

not bid strategically, since their best option is simply to

reveal their true valuation.

• Individual rationality: Every bidder has an interest to

participate in the auction implying that truthful bidders

are guaranteed non-negative utility by the mechanism.

We are interested in TAMES, TRUST, VCG and PAM because they

verify the previous two proprieties (while LSAA is not truthful).

Following [6], we extend the previous mechanisms by introducing a

reserve price per bidder R. Notice that PAM contains R by de�nition.

In the following, we explain those mechanisms, before introducing

the reserve price R. All used notations are summarized in Table 1.
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R reserve price per bidder, set by the auctioneer

M number of groups

N total number of players (operators)

дk set of players in group k

nk number of players in group k

vi true valuation of player i

bi bid of player i

bk(j) jth minimum bid within group k

(bk(j))
−i jth minimum bid within group k excluding i

b−i bids of all players except i

BTot sum of all bids of all groups

B−iд sum of bids of the group to which i belongs to, ignoring

i’s bid

B−i
Tot

sum of the total bids of all groups ignoring i’s bid

Table 1: Notations

3.1 TAMES
TAMES [3] de�nes the groupbid of group k as: bk(1)(nk − 1). �en

players of the group with the highest groupbid are winners (i.e.,

each one can use the whole auctioned spectrum), except the player

with the lowest bid bwin

(1) , where win is the winning group. Each

winning player pays that price bwin

(1) .

3.2 TRUST
TRUST [16] computes the groupbid of groupk as: bk(1)nk . All players

of the group with the highest groupbid are winners (they can use the

whole spectrum) and each one pays

BTRUST

second

nwin

, where BTRUST

second
denotes

the second-highest groupbid and nwin the cardinal of the winning

group.

3.3 VCG
VCG [8] computes the groupbid of group k as

N∑
i=1

bi1i ∈дk and

allocates the whole spectrum to the group дwin with the highest

groupbid. Players should pay the “damage” in term of e�ciency

they impose i.e., each player pays his/her “social cost” (how much

her presence hurts the others). We denote by BVCG

win
the groupbid

of the winning group and by BVCG

second
the second highest groupbid.

If a player belongs to a losing group, she pays 0 because whether

being present or not the winning group is unchanged. If a player

belongs to the winning group then we can distinguish two cases: if

her presence does not change the outcome i.e., BVCG

win
−bi ≥ BVCG

second

then he/she pays 0, otherwise he/she pays BVCG

second
− (BVCG

win
− bi ).

To summarize, the price paid by player i submi�ing bid bi is given

by:

pVCG

i = [BVCG

second
− (BVCG

win
− bi )]+1i ∈дwin

. (3)

3.4 Proportional Allocation Mechanism (PAM)
To each group k , PAM [4] allocates a fraction αk of the bandwidth in

proportion to the bids submi�ed by players belonging to that group

i.e., αi =

N∑
i=1

bi1i∈дk
BTot

and each player pays an amount computed to

ensure incentive compatibility, given by [4]:

pPAM

i =
bi + B

−i
д

bi + B
−i
Tot

R +

(
B−i

Tot
− B−iд

)
(

ln

bi + B
−i
Tot

R + B−i
Tot

+
R + B−i

Tot

bi + B
−i
Tot

− 1

)
.

(4)

3.5 Introducing a per-bidder reserve price
Without introducing a reserve price, all those mechanisms may

generate an extremely low revenue. For TAMES and TRUST, if the

minimum valuation in each group is low then the revenue will be

low. For VCG, suppose we have two groups such that the �rst group

is composed by two players with valuations respectively 2 and 3

and the second group is composed by one player with valuation

equal to 1; then in this situation group one wins the auction and

each player pays zero. Traditionally, to avoid those situations, the

seller �xes a reserve price in such a way that his revenue will be at

least that �xed amount which will be paid by the winning group.

�is is usually simple to implement: the seller submits a bid on

its own, whose value is the reserve price. �en, mechanisms are

unmodi�ed and allocate the resource to the seller if the groupbids

are below the reserve price, which with classical mechanisms yields

the wanted property, i.e., a selling price below the reserve price.

But in our case, that method does not work. We illustrate that by

the following example.

Consider a situation of two groups composed by four and one

players respectively, with bids {1, 1, 1, 1} and {2}, for which we

apply VCG with a reserve price of 2. If we directly apply VCG

with an extra bid (from the seller) of value 2, then group one is

the winning group and each player of group one pays zero, hence

a revenue lower than the reserve price. On the other hand, if we

force players of group one to pay 2 altogether then each player has

to pay 0.5 since bids are equal. However, for each player proposing

a bid lower than 0.5 leads to a strictly higher utility, hence some

incentive issues that arise. To summarize, introducing a seller-

centered reserve price is not easily doable in our context.

Hence we prefer to introduce a reserve price per bidder, that is,

a minimum unit price that each winner will pay. Notice that a�er

introducing the reserve price per bidder, there is no guarantee on

the seller revenue since the number of users paying that reserve

price is unknown a priori, but ge�ing some guarantees on what each

individual winner will pay can also be desirable from the regulator

point of view, since it re�ects the seriousness of the candidates for

spectrum usage. Note also that such a per-bidder reserve price has

already been proposed, for auctions in other contexts [6].

4 ENHANCED MECHANISMS WITH
RESERVE PRICES

In this section, we explain how to introduce a reserve price R per

bidder in each mechanism as explained in the previous subsec-

tion. We then prove that all the mechanisms keep their incentive

properties.

Note that the per-bidder reserve price was already included in

the construction of PAM, so in this section we focus on the three

other candidate mechanisms, namely TRUST, TAMES, and VCG.
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4.1 Implementation of the per-bidder reserve
price

We propose here a generic way to modify the existing mechanisms,

so as to take into account a per-bidder reserve price R set by the

auctioneer.

For each mechanism, we apply two changes with respect to the

initial version:

• each bidder with bid below R is simply ignored;

• we then apply the mechanism allocation and payment rules

on the remaining bidders, but possibly a�ect the unit price

by taking the maximum of R and the one given by the

mechanism.

In the rest of the paper, we use a “bar” for the notations in Table 1

to represent the �rst modi�cation, i.e., the removal of bidders with

bids below R. As an example, д̄k denotes дk without bids below R.

Expressing mathematically the second change, we can then write

that winning player pays a unit price equal to max{R,pMec

i }.

4.2 Incentive properties of the enhanced
mechanisms

In this subsection, we prove that the modi�ed mechanisms maintain

their incentive properties.

Proposition 4.1. �e modi�ed version of TAMES with any per-
bidder reserve price R is still incentive compatible

Proof. We consider a player i in a group k , and distinguish two

cases:

Case 1: vi < R. Player i cannot do be�er than bidding truthfully

(and not ge�ing any resource) since she is sure to be charged more

than she is willing to pay if she obtained some resource.

Case 2: vi ≥ R.

• If vi > (bk(1))
−i

:

– If (bk(1))
−i (nk −1) > BTAMES

second
: bidding truthfully leads to a utility

equal tovi − (bk(1))
−i > 0, while any other bid bi >

BTAMES

second

(nk−1) leads

to the same utility and any bid bi ≤
BTAMES

second

(nk−1) leads to a null utility.

– (bk(1))
−i (nk − 1) > BTAMES

second
: bidding truthfully leads to a null

utility because group k loses the auction. Player i could not

change the outcome by proposing bi ≥ (bk(1))
−i

because the

groupbid is still the same, on the other hand, if she proposes a

bid lower than (bk(1))
−i

then the groupbid will be lower than the

previous one. Hence, in this situation any bid results in a utility

equal to zero.

• if vi < (bk(1))
−i

: bidding truthfully leads to a null utility. We can

distinguish the following cases:

– by proposing a bid bi < (bk(1))
−i

player i is still a losing player.

– by proposing a bid bi > (bk(1))
−i

, group k may win the auction,

however player i will pay (bk(1))
−i

leading to a negative utility.

Hence, in all possible cases, bidding truthfully maximizes the utility.

�

Proposition 4.2. �e modi�ed version of TRUST with any per-
bidder reserve price R is still incentive compatible.

Proof. �e proof follows steps similar to the one for TAMES,

the details are given in Appendix A. �

Proposition 4.3. �e modi�ed version of VCG with any per-
bidder reserve price R is still incentive compatible.

Proof. We can distinguish two cases:

Case 1, player with vi < R: this player has no interest to propose

a bid ≥ R because if he wins he will pay at least R leading to a

negative utility.

Case 2, player with vi ≥ R who belongs to the group k : we can

distinguish two cases:

• (BVCG

k )−i > BVCG

second
: group k is the winning, any bid bi > R (in

particular bi = vi ) leads to a strictly positive utility vi − R
• (BVCG

k )−i < BVCG

second

– If (BVCG

k )−i + vi > BVCG

second
, by proposing bi = vi player i

wins the auction and pays pVCGi = max{R,BVCG

second
− (BVCG

k )−i }
which leads to a strictly positive utilityvi −pVCGi . Any other bid

bi > BVCG

second
− (BVCG

k )−i leads to the same utility and otherwise

i.e., bi ≤ BVCG

second
− (BVCG

k )−i player i loses the auction.

– (BVCG

k )−i + vi ≤ BVCG

second
if player i proposes bi = vi then he

loses the auction, he wins the auction if and only if he proposed

bi ≥ BVCG

second
− (BVCG

k )−i leading to a negative utility.

To conclude, bidding truthfully maximizes player’s utility in all

possible cases. �

5 ANALYTICAL EXPRESSION OF AVERAGE
REVENUE

In the following, we provide analytical expressions of the average

revenues of the mechanisms, under two assumptions:

• Each player belongs to one and only one group.

• Valuations of players are drawn from the uniform distribu-

tion on the interval [a,b].

5.1 TAMES
A�er introducing a reserve price R, the groupbid of дk under

TAMES is

BTAMES

k = (nk − 1)bk(1)1bk(1)≥R+

nk−1∑
i=2

1(bk(i−1)<R)
1(bk(i )≥R)

(nk − i)bk(i).

We denote by BTAMES

max = max{BTAMES

1
, ..,BTAMES

M }�e revenue of

TAMES is equal to BTAMES

max , Hence the average revenue �RevTAMES

4



is given by: �RevTAMES =

∫ ∞
0

(1 − P(BTAMES

max ≤ x))

=

∫ ∞
0

(1 − P(BTAMES

max ≤ x))

=

∫ ∞
0

(1 −
M∏
i=1

P(BTAMES

i ≤ x)).

Notice that for each 1 ≤ i ≤ M , P(BTAMES

i ≤ x) is given in Appen-

dix A (12).

P(BTAMES

i ≤ x) = P(Sni
2
≤ x).

5.2 TRUST
A�er introducing R, the group bid of дk under TRUST is

BTRUST

k = nkb
k
(1)1bk(1)≥R

+

nk∑
i=2

1(bk(i−1)<R)
1(bk(i )≥R)

(nk − i + 1)bk(i).

We denote by B−kmax = max{BTRUST

1
,BTRUST

k−1
,BTRUST

k+1
, ..,BTRUST

M }
�e winning group which is composed by nwin players will not pay

always the second highest group bid. In fact, we can distinguish

two cases: if R × nwin ≥ B−kmax then each player of the winning

group pays R i.e., the revenue equal to R × nwin otherwise each

player of the winning group pays
B−kmax
nwin

i.e., the revenue equal to

B−kmax . Let us compute the payment PTRUST

k of the group k .

PTRUST

k = 1bk(1)≥R
1
nkbk(1)≥B

−k
max

(
B−kmax1B−kmax ≥nkR

+

nkR1B−kmax <nkR

)
+

nk−1∑
i=1

1bk(i )<R
1bk(i+1)≥R

1
(nk−i)bk(i+1)≥B

−k
max(

B−kmax1B−kmax ≥(nk−i)R
+ (nk − i)R1B−kmax <(nk−i)R

)
�erefore, the average payment

�PTRUST

k of the group k is given by:

�PTRUST

k =

∫ b

R

∫ nkbk(1)

nkR
fbk(1)

f
B−kmax

B−kmax dB−kmax dbk(1)+

nkR

∫ b

R

∫ nkR

0

fbk(1)
f
B−kmax

dB−kmax dbk(1)+

nk−1∑
i=1

∫ R

0

∫ b

R

( ∫ (nk−i)bk(i+1)

(nk−i)R
B−kmax fB−kmax

dB−kmax+∫ (nk−i)R
0

(nk − i)RfB−kmax
dB−kmax

)
fbk(i )b

k
(i+1)

dbk(i) dbk(i+1)

Notice that the CDF of B−kmax is given by:

P(B−kmax ≤ x) =
M∏

i=1,i,k

P(BTRUST

i ≤ x) (5)

With P(BTRUST

i ≤ x) = P(Sni
1
≤ x) (see Appendix B) and the joint

CDF of (b(i)k ,bki+1
) is given in Appendix B (10) and by replacing n

with nk Hence the average revenue �RevTRUST is given by:

�RevTRUST =

M∑
k=1

�PTRUST

k .

5.3 VCG
Under VCG the groupbid of a group k is the sum of bids of its mem-

bers. Bk =
N∑
i=1

bi1i ∈дm 1bi ≥R . We denote byM−k = max{B1, ..,Bk−1

,Bk+1
, ..,BM }. To win the auction, group k has to propose a bid

BVCG

k greater than M−k . A�er introducing the minimum amount,

the revenue from a player i is:
R, if B−ik ≤ M−k =≤ R ≤ bi

M−k , if B−ik < R ≤ M−k < bi

max{R,M−k − B−ik }, if R ≤ B−ik , R < M−k < Bk .

(6)

Hence the average revenue from a player i is:

pVCG

i =

∫ b

R

∫ R

0

∫ R

0

Rf
M−k

f
B−ik

f dM−k dB−ik dbi+∫ b

R

∫ R

0

∫ bi

R
M−k f

M−k
f
B−ik

f dM−k dB−ik dbi+∫ b

R

∫ (nm−1)b

R

∫ B−ik +bi

B−ik +R
(M−k − B−ik )

f
M−k

f
B−ik

fi dM−k dB−ik dbi+∫ b

R

∫ (nm−1)b

R

∫ B−ik +R

0

R

f
M−k

f
B−ik

fi dM−k dB−ik dbi

where:

• f
B−ik

: PDF of B−ik which is computed in Appendix C (18)

and by replacing n with nk − 1

• f
M−k

: PDF of M−k which is given by

∏M
i=1,i,k f Rni where

f Rni is given in Appendix C (18) and by replacing n with ni

Finally Rev
VCG =

N∑
i=1

pVCG

i .

5.4 PAM’s average revenue
�e average payment of a player i is given by:�pPAM

i = Ev1, ...,vN (pPAM

i ) (7)

Before computing (7), let us introduce the following notations:

• fi probability density function of valuation of player i .
• Fi cumulative density function of valuation of player i .

• φ(vi ): virtual valuation of player i , φ(vi ) = vi −
1−Fi (vi )
fi (vi ) .

We will use Rougharden’s formula [12] for the expected revenue

of an auction. �is formula can be illustrated as follows: if the

allocation rule is monotone and the cumulative density function of

5



each player Fi is regular, i.e. the virtual valuation is an increasing

function of vi then we have

�pPAM

i = Ev1, ...,vN

(
(αi (vi )φ(vi )

)
(8)

Notice that there is no need to compute the revenue generated from

each player: hence players are iid, the average revenue generated

by players of the same group is the same.

Let us compute
�pPAM

1
the average payment of player 1. Without

loss of generality, we suppose that

• Player 1 belongs to д1.

• д1 is composed by the �rst n1 players.

Using (8) we get

�pPAM

1
=

1

(b − a)N

∫ b

a︸︷︷︸
N

φ(v1)
v1 + B

−1

д

v1 + B
−1

д + B
−д1

Tot

1v1≥R dV (9)

Using Appendix D we get:
�pPAM

1
= 1

(b−a)N I3(n1,N ) Finally the

average revenue of PAM RevPAM is: RevPAM =
∑N
i=1

�pPAM

i .

6 WHAT MECHANISM TO CHOOSE?
In this section we numerically compare the di�erent mechanisms,

by performing simulations for fairness and evaluating our previ-

ously deduced analytical expressions of average revenue in a given

scenario.

6.1 Estimating fairness: simulation setting
We have �xed 100 players (N = 100) distributed among �ve groups

such that n1 = 25, n2 = 30, n3 = 15, n4 = 10 and n5 = 20. Valu-

ations are drawn from the uniform distribution over the interval

[0; 50]. For each reserve price per bidder R, we compute the average

fairness –using Jain’s index as introduced in (1)–, generated by

those mechanisms over 1000 independent draws. �e normalized

utility is computed using (2), where Rev
max

is the maximum rev-

enue which could be obtained over the set of candidate mechanisms

for all possible values of R.

6.2 Revenue-fairness tradeo�
In terms of fairness, as shown in Figure 2, PAM is the best for all

reserve prices. In terms of revenue, Figure 3 suggests that VCG can

generate the highest revenue if the reserve price is set optimally.

�e trade-o� between those criteria is illustrated in Figure 4 when

β = 0.5: the auctioneer can then maximize his average utility by

choosing PAM and �xing R ≈ 16. Generally, with our parame-

ter values, when β < 0.42 the regulator should choose VCG to

maximize the utility, while for β ≥ 0.42 he should choose PAM.

Table 2 shows the optimal mechanisms for some given values of β ,

together with the best choice of the reserve price, and the resulting

utilities. Notice that other structures of groups may lead to di�erent

outcomes.
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Figure 2: Average Fairness as a function of the reserve price.
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Figure 3: Average Revenue as a function of the reserve price.
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Figure 4: Average normalized utility of the regulator as a
function of the reserve price for β = 0.5

β Optimal R Optimal Mechanism Average utility

0 ≈ 26 VCG 1

0.4 ≈ 24 VCG 0.66

0.5 ≈ 16 PAM 0.62

1 0 PAM 0.91

Table 2: Optimal mechanisms and reserve prices for some
speci�c values of β .
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7 CONCLUSION
In this paper, we have considered four possible auction mechanisms

for allocating and pricing spectrum in the context of LSA, which

all have good incentive properties.

Since the revenues from those mechanisms can be very low, we

have shown how to enhance them by introducing a per-bidder

reserve price while maintaining their incentive compatibility. We

have also conducted an analytical study of the expected revenue

from those auction schemes under some speci�c assumptions, but

numerical methods can also be applied in any se�ing.

We have �nally shown how a regulator could trade-o� the al-

location fairness and the auction revenue, and how it could select

the best-performing mechanism once the relative weights on those

criteria are set.

As directions for future works, we would like to relax some of

the assumptions made. In particular we want to treat the cases

when one base station can be in several groups, and when one

player (operator) controls several base stations, which complicates

the auction analysis since that player could coordinate several bids.

Finally, we intend to focus on the grouping process itself–which

was out of the scope of this paper–and its impact on the auction

outcome
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APPENDIX A PROOF OF TRUTHFULNESS OF THE MODIFIED VERSION OF TRUST
Proof. Recall that with TRUST, as for TAMES, only one group wins the whole auctioned spectrum, whose quantity is normalized to 1.

Consider a player i who belongs to a group k .

Case 1: vi < R. �e player has no interest to propose a bid above R because if she wins she would pay at least R, hence a strictly negative

utility. Proposing bi = vi (or any other bid below R) maximizes her utility, which is zero in this situation.

Case 2: vi ≥ R. We consider the following situations:

• if vi > (bk(1))
−i

i.e., i was not the lowest bidder of her group, then:

– If (bk(1))
−ink > BTRUST

second
then bidding truthfully ensures a positive utility (because group k is the winning group). By proposing any

other bid bi >
BTRUST

second

nk
i is still a winning player, and bid bi ≤

BTRUST

second

nk
would make group k lose the auction and bidder i gets null utility.

�erefore, proposing a bid bi = vi maximizes her utility.

– (bk(1))
−ink ≤ BTRUST

second
: bidding truthfully leads to a null utility, player i could not change the outcome by changing her bid (se�ing

bi ≥ (bk(1))
−i

has no impact on the groupbid, and se�ing bi < (bk(1))
−i ) lowers the groupbid and group k is still a losing group). �us, any

bid bi generates a utility equal to zero.

• if vi < (bk(1))
−i

, then:

– if vink > BTRUST

second
: if player i proposes a bid bi = v = i then group k is a winning group. Any other bid bi >

BTRUST

second

nk
generates the same

utility because group k is still the winning group, and bids below that value make the group lose the auction, yielding utility 0.

– if vink ≤ BTRUST

second
then if i proposes a bid bi = vi then group k is a losing group, by proposing bi ≤

BTRUST

second

nk
group k is still a losing group

and by proposing bi >
BTRUST

second

nk
group k could be a winning a group (depending on the other bids in her group), however, if it is the case

then i would pay at least

BTRUST

second

nk
leading to a strictly negative utility.

Hence, in all possible scenarios, bidding truthfully maximizes the utility. �

APPENDIX B CALCULATIONS RELATED TO TAMES AND TRUST
We denote by B = {b1,b2, ..,bn } n independent and identically distributed random variables drawn from a distribution with PDF and CDF f
and F respectively. We denote by {b(1),b(2), ..,b(n)} the order statistics i.e., b(1) = min{b1,b2, ..,bn } and b(n) = max{b1,b2, ..,bn }. Let R be a

constant. We denote by B̄ the set B a�er excluding variables below R. �e objectives of this chapter are as follows:

(1) To compute the joint CDF of (b(j),b(j+1)) for j ∈ {1, ..,n − 1}.
(2) To compute the CDF of Sn

1
= min{B̄}|B̄ |.

(3) To compute the CDF of Sn
2
= min{B̄}(|B̄ | − 1).

�e �rst two points are needed to compute the revenue of TRUST, the third point is needed for TAMES.

(1) For computing the joint CDF of (b(j),b(j+1)), we can distinguish two cases, if x ≤ y then this event happens either if we have exactly

j variables lower than x , and all the remaining n − j variables must be greater than x but not all greater than y or when we have at

least j + 1 variables lower than x . On the other hand, if y < x then this event happens when we have at least j + 1 variables lower

than y.

Hence, P(b(j) < x ,b(j+1) < y) =
( j
n
)
F (x)j

(
(1 − F (x))n−j − (1 − F (y))n−j

)
+

n∑
i=j+1

( i
n
)
F (x)i (1 − F (x))n−i , if x ≤ y

n∑
i=j+1

( i
n
)
F (y)i (1 − F (y))n−i , otherwise

(10)

(2) To derive P(Sn
1
≤ x), we can distinguish the following cases:

• x < R: the event Sn
1
< x happens when all variables are lower than R i.e., b(n) < R.

• jR < x < (j + 1)R where j ∈ {1, .., (n − 1)}, the event S1 < x is the union of the following disjoint events:

– All variables are lower than R
– (b(n−i) < R ≤ b(n−i+1) ≤ x

i ) for i ∈ {1, .., j}
• nR ≤ x ≤ nb, the event S1 < x is the union of the following disjoint events:

– R ≤ b(1) ≤ x
n

– b(i−1) < R ≤ b(i) ≤ x
n−i+1

– b(n) ≤ R

8



• nb ≤ x , the event S1 < x happens always.

Hence, P(Sn
1
≤ x)=



P(b(n) ≤ R), if x ≤ R

P(b(n) ≤ R) +
j∑

i=1

P(b(n−i) < R ≤ b(n−i+1) ≤ x
i ), if jR ≤ x ≤ (j + 1)R,

j ∈ {1, ..,n − 1}

P(b(n) ≤ R) +
n∑
i=2

P(b(i−1) < R ≤ b(i) ≤ x
n−i+1

+ P(R ≤ b(1) ≤ x
n ), if nR ≤ x ≤ nb

1 otherwise

(11)

(3) By using an analogous reasoning, we can derive the distribution of Sn
2

which is given by:

P(Sn
2
≤ x)=



P(b(n−1) ≤ R), if x ≤ R

P(b(n−1) ≤ R) +
j∑

i=1

P(b(n−i−1) < R ≤ b(n−i) ≤ x
i ), if jR ≤ x ≤ (j + 1)R,

j ∈ {1, ..,n − 2}

P(b(n−1) ≤ R) +
n−1∑
i=2

P(b(i−1) < R ≤ b(i) ≤ x
(n−i) + P(R ≤ b(1) ≤ x

(n−1) ), if (n − 1)R ≤ x ≤ (n − 1)b

1 otherwise

(12)

Finally, to evaluate Sn
1

and Sn
2

, we have to compute the following probabilities:

• P(b(j) ≤ y): the event b(j) ≤ y happens when at least j among n variables are lower than y, this is given by:

G j (y) = P(b(j) < y) =
n∑
i=j

(
i

n

)
F (y)i (1 − F (y))n−i (13)

• P(b(j) < y1 < b(j+1) < y2) where (j ≤ n − 1) and (y2 > y1), this event happens when we have exactly j variables lower than y1, and

all the remaining n − j variables must be greater than y1 but not all greater than y2:

P(b(j) < y1 < b(j+1) < y2) =
(
j

n

)
F (y1)j

( (
1 − F (y1)

)n−j − (
1 − F (y2)

)n−j )
(14)

APPENDIX C CALCULATIONS RELATED TO VCG
Let y be a random variable drawn from the uniform distribution [a,b]. Let ȳ be a random variable constructed from y such that ȳ = y1y≥R .

Let (ȳ1, .., ȳn ) be n independent random variables drown from the same distribution as ȳ. Let Ȳ be the sum of those variables. Ȳ =
n∑
i
ȳi

Let f Rn denotes the PDF of Ȳ . �e objective of this chapter is to compute f Rn .

�e CDF of ȳ is given by : p(ȳ ≤ x) = {
R−a
b−a , if 0 ≤ x ≤ R
x−a
b−a if R ≤ x ≤ b

(15)

Hence the PDF of ȳ ,f R is given by:

R − a
b − a δ (x) +

1

b − a1x ∈[R b] (16)

Hence

f Rn = f R ~ f R .. ~ f R︸               ︷︷               ︸
n

(17)

Where ~ is the convolution product.
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Proposition C.1. �e PDF of f Rn is given by

f Rn (x) =
1

2(b − a)n
n∑

k=1

k∑
j=0

(−1)j
(
k

n

) (
j

k

)
(R − a)n−k
(k − 1)! (x + Rj − bj − Rk)

k−1siдn(x + Rj − bj − Rk)

+
(R − a)n
(b − a)n δ (x)

(18)

where x ∈ [0,nb] and siдn(x) = 
0, if x = 0

1, if x > 0

−1 if x < 0

(19)

Proof. We denote by TF the Fourier transform.

f Rn = f R ~ f R .. ~ f R︸               ︷︷               ︸
n

= TF−1 ◦TF (f R ~ f R .. ~ f R︸               ︷︷               ︸
n

)

TF (f R ~ f R .. ~ f R︸               ︷︷               ︸
n

)) = TF (f R )n

=
1

(b − a)n

( ∫ ∞
−∞

(
(R − a)δ (x)e−i2πvx + e−i2πvx1x ∈[R b]

)
dx

)n
=

1

(b − a)n

(
(R − a) + e−i2πvR − e−i2πvb

2πiv

)n
=

1

(b − a)n

( n∑
k=0

(
k

n

)
(R − a)n−k (e

−i2πvR − e−i2πvb )k

(2πiv)k

)
=

1

(b − a)n

( n∑
k=0

(
k

n

)
(R − a)n−k

)(2πiv)k
k∑
j=0

(
j

k

)
(−1)j (e−i2πvR(k−j)e−i2πvbj )

)
=

1

(b − a)n

( n∑
k=0

k∑
j=0

(
k

n

) (
j

k

)
(R − a)n−k

(2πiv)k
(−1)j (ei2πv(Rj−Rk−jb))

)

TF−1 ◦ (TF (f R ))n = 1

(b − a)n

( n∑
k=0

k∑
j=0

(
k

n

) (
j

k

)
(R − a)n−k (−1)j

∫ ∞
−∞

ei2πv(x+Rj−Rk−jb)

(2πiv)k
dv

)
=

1

(b − a)n

( n∑
k=1

k∑
j=0

(
k

n

) (
j

k

)
(R − a)n−k (−1)j (x + Rj − Rk − jb)k∫ ∞

−∞

ei2πv(x+Rj−Rk−jb)

(2πiv(x + Rj − Rk − jb))k
dv

)
+
(R − a)n
(b − a)n δ (x)

=
1

(b − a)n

( n∑
k=1

k∑
j=0

(
k

n

) (
j

k

)
(R − a)n−k (−1)j (x + Rj − Rk − jb)k−1

siдn(x + Rj − Rk − jb)
∫ ∞
−∞

ei2πV

(2πiV )k
dV

)
+
(R − a)n
(b − a)n δ (x)

=
1

2(b − a)n

( n∑
k=1

k∑
j=0

(−1)j
(
k

n

) (
j

k

)
(R − a)n−k
(k − 1)! (x + Rj − bj − Rk)

k−1

siдn(x + Rj − bj − Rk)
)
+
(R − a)n
(b − a)n δ (x)

�
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In the previous demonstration we have used

∫ ∞
−∞

e i2πV
(2π iV )k dV = 1

2(k−1)! . Hence the CDF of Ȳ , FRn is given by:

P(FRn < y) =
1

2(b − a)n

( n∑
k=1

k∑
j=0

(−1)j
(
k

n

) (
j

k

)
(R − a)n−k
(k)!(

(−1)1y≤b j+Rk−Rj (y + Rj − bj − Rk)k + (Rj − bj − Rk)k
) )
+
(R − a)n
(b − a)n

(20)

Notice that we have used:

k

∫ y

0

(x − t)k−1siдn(x − t)dx = (−1)1y≤t (y − t)k + (−t)k

APPENDIX D CALCULATIONS RELATED TO PAM
Let (c1, .., cn ) be n iid random variables drawn from the uniform distribution [a,b]. Let k and m be two constants such that k < n and

m = n − k . �e objective of this chapter is to compute:

I3(k,n) =
∫ b

a︸︷︷︸
n

(2c1 − b)(c1 +
k∑
i=2

ci1ci ≥R )

c1 +
∑n
i=2

ci1ci ≥R
1c1≥R dc1.. dcn (21)

I3 can be wri�en as:

I3 =

∫ b

a
2(c1 − b)

∫ b

a︸︷︷︸
k−1

(c1 +

k∑
i=2

ci1ci ≥R )
∫ b

a︸︷︷︸
m

1

c1 +
n∑
i=2

ci1ci ≥R

dCnk+1
dCk

2
1c1≥R dc1

where dCki =
∏k

j=i dc j .

To compute I3 we start by evaluating I1 which is given by:

I1 =

∫ b

a︸︷︷︸
m

1

c1 +
k∑
i=2

ci1ci ≥R +
n∑

i=k+1

ci1ci ≥R

dCnk+1

Proposition D.1. Let c be a constant,m ≥ 1. �en,∫ b

a︸︷︷︸
m

1

c +
∑m
i=1

ci1ci ≥R
dCm

1
=

m∑
j=1

(
j

m

)
(R − a)m−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+
(R − a)m

c
(22)

Proof. By induction onm. Form = 1: ∫ b

a

1

c + c11c1≥R
=

R − a
c
+

∫ b

R

1

c + c1

(true)

we assume the induction hypothesis, that is, we assume that∫ b

a︸︷︷︸
m

1

c +
∑m
i=1

ci1ci ≥R
dCm

1
=

m∑
j=1

(
j

m

)
(R − a)m−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+
(R − a)m

c

11



Now we have

I1(m + 1) =
∫ b

a

m∑
j=1

(
j

k

)
(R − a)m−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci + cm+11cm+1≥R
dC

j
1
+

(R − a)m
c + cm+11cm+1≥R

dcm+1

=

m∑
j=1

(
j

m

)
(R − a)m+1−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+

m∑
j=0

(
j

m

)
(R − a)m−j

∫ b

R︸︷︷︸
j+1

1

c +
∑j+1

i=1
ci

dC
j+1

1
+
(R − a)(m+1)

c

=

m∑
j=1

(
j

m

)
(R − a)m+1−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+

m+1∑
j=1

(
j − 1

m

)
(R − a)m+1−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+
(R − a)m+1

c

=
(R − a)m+1

c
+

m∑
j=1

((
j

m

)
+

(
j − 1

m

))
(R − a)m+1−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+

∫ b

R︸︷︷︸
m+1

1

c +
∑m+1

i=1
ci

dCm+1

1

=
(R − a)m+1

c
+

m∑
j=1

(
j

m + 1

)
(R − a)m+1−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+

∫ b

R︸︷︷︸
m+1

1

c +
∑m+1

i=1
ci

dCm+1

1

=

m+1∑
j=1

(
j

m + 1

)
(R − a)m+1−j

∫ b

R︸︷︷︸
j

1

c +
∑j
i=1

ci
dC

j
1
+
(R − a)m+1

c

�

Proposition D.2. Let c be a constant, j ≥ 1. �en

A(j) =
∫ b

R︸︷︷︸
j

1

c +
j∑

i=1

ci

dC
j
1
=

j∑
i=0

(−1)i
(j − 1)!

(
i

j

) (
c + iR + (j − i)b

) j−1
(
ln(c + iR + (j − i)b) −

j−1∑
t=1

1

t

)

Proof. For j = 1: ∫ b

R

1

c + c1

= ln(c + b) − ln(c + R) (true)

We assume the induction hypothesis, we have

A(j + 1) =
∫ b

R

j∑
i=0

(−1)i
(j − 1)!

(
i

j

) (
c + c j+1 + iR + (k − i)b

) j−1
(
ln(c + c j+1 + iR + (j − i)b) −

j−1∑
t=1

1

t

)
dc j+1

=

j∑
i=0

(−1)i
(j − 1)!

(
i

j

)
1

j

[
(c + c j+1 + iR + (j − i)b)j

(
ln(c + c j+1 + iR + (j − i)b) −

j∑
t=1

1

t

)]b
R

12



A(j + 1) =
j∑

i=0

(−1)i
(j − 1)!

(
i

j

)
1

j

(
c + iR + (j + 1 − i)b)j

(
ln(c + iR + (j + 1 − i)b) −

j∑
t=1

1

t

)
−

j∑
i=0

(−1)i
(j − 1)!

(
i

j

)
1

j

(
c + (i + 1)R + (j − i)b)j

(
ln(c + (i + 1)R + (j − i)b) −

j∑
t=1

1

t

)
=

j∑
i=0

(−1)i
(j − 1)!

(
i

j

)
1

j

(
c + iR + (j + 1 − i)b)j

(
ln(c + iR + (j + 1 − i)b) −

j∑
t=1

1

t

)
+

j+1∑
i=1

(−1)i
(j − 1)!

(
i − 1

j

)
1

j
(c + iR + (j + 1 − i)b)j

(
ln(c + iR + (j + 1 − i)b) −

j∑
t=1

1

t

)
=

j∑
i=1

(−1)i
(j − 1)!

((
i − 1

j

)
+

(
i

j

))
1

j
(a + iR + (j + 1 − i)b)j

(
ln(a + iR + (j + 1 − i)b) −

j∑
t=1

1

t

)
+
(−1)(j + 1)
(j)!

(
j

j

)
(c + (j + 1)R)j

(
ln(c + (j + 1)R) −

j∑
t=1

1

t

)
+

1

(j)!

(
0

j

)
(c + (j + 1)b)j

(
ln(c + (j + 1)b) −

j∑
t=1

1

t

)
=

j+1∑
i=0

(−1)i
(j)!

(
i

j + 1

)
(c + iR + (j + 1 − i)b)j

(
ln(c + iR + (j + 1 − i)b) −

j∑
t=1

1

t

)
�

Proposition D.3. �e �rst integral I1 is given by:

I1 =
m∑
j=1

(
j

m

)
(R − a)m−j

j∑
i=0

(−1)i
(j − 1)!

(
i

j

) (
c1 +

k∑
i=2

ci1ci ≥R + iR + (j − i)b
) j−1

(
ln(c1 +

k∑
i=2

ci1ci ≥R + iR + (j − i)b) −
j−1∑
t=1

1

t

)
+

(R − a)m

c1 +
k∑
i=2

ci1ci ≥R

Proof. Direct application of proposition D.1 and D.2 and by replacing c with c1 +
k∑
i=2

ci1ci ≥R �

We denote by Sk
2
=

k∑
i=2

ci1ci ≥R and by I2 =

∫ b

a︸︷︷︸
k−1

(c1 + S
k
2
)I1 dCk

2

A1 =

∫ b

a︸︷︷︸
k−1

(c1 + S
k
2
+ iR + (j − i)b)j

(
ln(c1 + S

k
2
+ iR + (j − i)b) −

j−1∑
t=1

1

t

)
dCk

2

A2 =

∫ b

R︸︷︷︸
z

(c1 + S
k
2
+ iR + (j − i)b)j

(
ln(c1 + S

k
2
+ iR + (j − i)b) −

j−1∑
t=1

1

t

)
dCk

2

To compute the second integral, we will use the following propositions, (the proof is by induction)

Proposition D.4.

A1 =

k−1∑
z=0

(
z

k − 1

)
(R − a)k−1−z

∫ b

R︸︷︷︸
z

(c1 + S
k
2
+ iR + (j − i)b)j

(
ln(c1 + S

k
2
+ iR + (j − i)b) −

j−1∑
t=1

1

t

)
dCk

2

Proposition D.5.

A2 =

z∑
h=0

j!

(j + z)! (−1)h
(
h

z

)
(c1 + (i + h)R + (j − i)b + (z − h)b)j+z

(
ln(c1 + (i + h)R + (j − i)b + (z − h)b) −

j+z∑
t=1

1

t
+

1

j

)
13



I2 =

∫ b

a︸︷︷︸
k−1

(c1 + S
k
2
)I1 dCk

2

=

m∑
j=1

j∑
i=0

(
j

m

) (
i

j

)
(R − a)m−j (−1)i

(j − 1)!

∫ b

a︸︷︷︸
k−1

(c1 + S
k
2
+ iR + (j − i)b)j

(
ln(c1 + S

k
2
+ iR + (j − i)b) −

k−1∑
t=1

1

t

)
dCk

2
−

m∑
j=1

j∑
i=0

(
j

m

) (
i

j

)
(R − a)m−j (−1)i

(j − 1)!∫ b

a︸︷︷︸
k−1

(c1 + S
k
2
+ iR + (j − i)b)j−1

(
ln(c1 + S

k
2
+ iR + (j − i)b) −

k−1∑
t=1

1

t

)
dCk

2
+ (R − a)m (b − a)k−1

=I1

2
+ I2

2
+ I3

2

I1

2
=

m∑
j=1

j∑
i=0

(
j

m

) (
i

j

)
(R − a)m−j (−1)i

(j − 1)!

∫ b

a︸︷︷︸
k−1

(c1 + S
k
2
+ iR + (j − i)b)j

(
ln(c1 + S

k
2
+ iR + (j − i)b) −

k−1∑
t=1

1

t

)
dCk

2

=

m∑
j=1

j∑
i=0

k−1∑
z=0

z∑
h=0

[(
j

m

) (
i

j

) (
z

k − 1

) (
h

z

)
(R − a)m+k−(j+1+z)(−1)i

j

(j + z)! (−1)h
(
c1 + (i + h)R + (j − i)b + (z − h)b

) j+z
(

ln(c1 + (i + h)R + (j − i)b + (z − h)b) −
j+z∑
t=1

1

t
+

1

j

)]
I2

2
=

m∑
j=1

j∑
i=0

(
j

m

) (
i

j

)
(R − a)m−j (−1)i

(j − 1)!∫ b

a︸︷︷︸
k−1

(c1 + S
k
2
+ iR + (j − i)b)j−1

(
ln(c1 + S

k
2
+ iR + (j − i)b) −

k−1∑
t=1

1

t

)
dCk

2

=

m∑
j=1

j∑
i=0

k−1∑
z=0

z∑
h=0

[(
j

m

) (
i

j

) (
z

k − 1

) (
h

z

)
(R − a)m+k−(j+1+z)(−1)i

(
iR + (j − i)b

) (−1)h
(j + z − 1)!

(
c1 + (i + h)R + (j − i)b + (z − h)b

) j+z−1

(
ln

(
c1 + (i + h)R + (j − i)b + (z − h)b

)
−

j+z−1∑
t=1

1

t

)]
I3

2
= (R − a)m (b − a)k−1

Once I2 is evaluated, we can derive the expression of I3.

I3 =

∫ b

R
(2c1 − b)I2(c1) dc1 (23)

(24)

To simplify the expression of I3, let us introduce the following notations:
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• ϕ = (i,h, j, z,R,b)
• θ = (ϕ,m,k,a)
• C1(θ ) =

( j
m

) (i
j
) ( z
k−1

) (h
z
)
(R − a)m+k−(j+1+z)(−1)i j

(j+z)! (−1)h

• C2(θ ) =
( j
m

) (i
j
) ( z
k−1

) (h
z
)
(R − a)m+k−(j+1+z)(−1)i

(
iR + (j − i)b

) (−1)h
(j+z−1)!

• ind1(ϕ) = (i + h)R + (j + z + 1 − h − i)b
• ind2(ϕ) = (i + h + 1)R + (j + z − h − i)b
• ind3(ϕ) = (i + h)R + (j + z − h − i)b

I1

3
=

∫ b

R
(2c1 − b)I1

2
dc1

=

m∑
j=1

j∑
i=0

k−1∑
z=0

z∑
h=0

C1(θ )
[(

2

j + z + 2

ind1(ϕ)j+z+2
(
ln(ind1(ϕ)) −

j+z+2∑
t=1

1

t
+

1

j
+

1

j + z + 1

) )
−

(
2

j + z + 2

ind2(ϕ)j+z+2
(
ln(ind2(ϕ)) −

j+z+2∑
t=1

1

t
+

1

j
+

1

j + z + 1

) )
−(

(2ind3(ϕ) + b)
j + z + 1

ind1(ϕ)j+z+1
(
ln(ind1(ϕ)) −

j+z+1∑
t=1

1

t
+

1

j

) )
+

(
ind2(ϕ)j+z+1

(2ind3(ϕ) + b)
j + z + 1

(
ln(ind2(ϕ)) −

j+z+1∑
t=1

1

t
+

1

j

) )]

I2

3
=

∫ b

R
(2c1 − b)I2 dc1

=

m∑
j=1

j∑
i=0

k−1∑
z=0

z∑
h=0

C2(θ )
[(

2

j + z + 1

ind1(ϕ)j+z+1
(
ln(ind1(ϕ)) −

j+z+1∑
t=1

1

t
+

1

j + z

) )
−

(
2

j + z + 1

ind2(ϕ)j+z+1
(
ln(ind2(ϕ)) −

j+z+1∑
t=1

1

t
+

1

j + z

) )
−(

(2ind3(ϕ) + b)
j + z

ind
j+z
1

(
ln(ind1(ϕ)) −

j+z∑
t=1

1

t

) )
+

(
ind2(ϕ)j+z

(2ind3(ϕ) + b)
j + z

(
ln(ind2(ϕ)) −

j+z∑
t=1

1

t

) )]

I3

3
=

∫ b

R
(2c1 − b)I3

2
dc1 = (bR − R2)(b − a)k−1(R − a)m

Finally

I3 = I1

3
+ I2

3
+ I3

3
. (25)
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