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Hilbertian fields and Hilbert’s irreducibility theorem

Rodney Coleman, Laurent Zwald

September 25, 2018

Abstract

Hilbert’s irreducibility theorem plays an important role in inverse Galois theory. In this arti-
cle we introduce Hilbertian fields and present a clear detailed proof of Hilbert’s irreducibility
theorem in the context of these fields.

An important result in inverse Galois theory is Hilbert’s irreducibility theorem. Unfortunately
it is difficult to find a clear proof, probably because such a proof requires many detailed steps.
Those that we have seen lack important details or have errors and so make reading difficult. For
this reason we set out to write a clear, detailed proof, which a reader with a certain mathematical
maturity should not find difficult. We will use some basic results from Galois theory, which we
detail in an appendix. (The word Result in the text refers to these results.)

We begin by introducing Hilbertian fields. Let f(X,Y) be a nonzero polynomial in two
variables over a field F'. Collecting monomials having the same power of Y, we may write

f(X,Y) = ao(X) + a1 (X)Y + ap(X)Y? + - +a,(X)Y™",

where the a;(X) are polynomials in X alone and a,,(X) # 0, i.e., we may consider f as a member
of F[X][Y]. The number n is the degree of f with respect to Y. We recall that a nonzero element
a in an integral domain R is irreducible if it is a nonunit and, whenever a = bc, either b or ¢
is a unit. As a polynomial ring over an integral domain is an integral domain, F[X]|[Y] is an
integral domain. For reasons which will become obvious further on, we will say that f € F[X,Y]
is irreducible, if f is irreducible as an irreducible element of the ring F[X][Y] and has degree
greater than 0 in Y, i.e., the polynomial has at least one monomial containing a power of Y. If
a polynomial is not irreducible, then we will say it is reducible.

We may extend this definition to polynomials in more than two variables. If f € F[X7,..., X,
with k& > 3, then we may consider f as an element of F[Xy,..., X;_1][X;]. We will say that f is
irreducible if f is irreducible in the polynomial ring F[X1, ..., Xx—1][Xx] and has degree greater
than 0 in Xj. (This definition is not entirely satisfactory, because it depends on which variable
we set in the last position.)

Let f € F[X,Y] be a polynomial of degree greater than 0 in Y. For every b € F, we may
define a polynomial f, € F[Y] by setting f,(Y) = f(b,Y). If a,(b) # 0, then f;, has n roots,
counted according to their multiplicity. If these roots are distincts, then we say that b is a regular
value.

Proposition 1 Let f(X,Y) be a polynomial of degree greater than 0 in'Y over a field F of
characteristic 0. Then all but a finite number of values b € F' are regular.

PROOF If we eliminate those values of b, which are roots of the leading coefficient a,,, then the
polynomial f, has a positive degree. We now consider f as an element of F(X)[Y] and it is
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not difficult to see that A(f)(b) = A(fs), where A(f) (resp. A(fp)) denotes the discriminant
of f (resp. fp). As A(f) is a polynomial with coefficients in F(X), there is a finite number of
elements u of F(X) for which A(f)(u) = 0; in particular, there is a finite number of values of
b € F for which A(f)(b) = 0. If exclude these values, then A(fy) = A(f)(b) # 0, i.e., b is regular.
O

We may now define the notion of a Hilbertian field. If for any f € F[X,Y] which is irre-
ducible, there exists an infinite number of values of b € F such that f,(Y) = f(b,Y) € F[Y] is
irreducible, then we say that the field F' is Hilbertian. We say that f; is a specialization of F'.
Clearly a finite field cannot be Hilbertian. This is also the case for a field which is algebraically
closed. An important example of a Hilbertian field is that of the rational numbers Q. This is
known as Hilbert’s irreducibility theorem. We will prove this in Section 4. of the article. For the
moment we will consider certain important properties of Hilbertian fields.

1. Properties of Hilbertian fields

In this section we present some technical results, which enable us to illustrate how the notion
of a Hilbertian field intervenes in inverse Galois theory. In par&il%ﬂﬁg,ﬂépe%oailm is to arrive at
an important result at the end of the section, namely Theorem h.—mﬁ—ﬁ%useful to look at
this theorem before reading the section in detail, this in order to appreciate the direction of the
section.

Lemma 1 Let R be an integral domain, S a subring of R and f,h € S[X], with f monic. If
g € R[X] and fg = h, then g € S[X].

PROOF As f is monic, there exist ¢, € S[X] such that h = fq+r, with degr < deg f. We have
fo+r=fg=r=1Flg—q).
As R is an integral domain,
degr = deg f +deg(g —q) = g —q¢ =0,

because degr < deg f. Therefore g = ¢ € S[X]. o

The next preliminary result concerns Galois extensions of fields of fractions and is interesting
in its own right.

Proposition 2 Suppose that R is an integral domain and F its field of fractions. In addition,
let E be a separable extension of F of degree n. Then there exists @ € E such that E = F(a)
and m(a, F') € R[X].

PROOF From the primitive element theorem we know that there exists 8 € E such that E = F(3).
As F is the field of fractions of R, we may multiply m = m(3, F') by a nonzero constant d € R
to obtain dm € R[X]. Setting o = df, we have F(a) = F(S). We now look for m(«, F). If

f(X) = d”bo + dnflbIX 4+ dbn_lxnfl + Xn,

where
m(X)=by +b01 X+ +b, 1 X"+ X",
then f € R[X] and
fla) = f(dB) = d"m(B) = 0.
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Also, f is monic and
[E: F] = [F(a): F| = [F(8): F] = n

and so f is the minimal polynomial of « over F and f € R[X]. This proves the result. |

At this point we introduce some notation. If R is a subring of the field F' and A a subset of
an extension E of F, then we will write R[A] for the subring of F generated by R and A. If A is
composed of a single element a, then we will write R[a] for R[{a}]. From now on we will suppose
that rings and fields have characteristic 0. The next result is fundamental.

X . roposHILBERTpropl )
Lemma 2 We take R, F', E, a as in Proposition 12, w? =mlo, F) € R[X], and A a finite

subset of E containing o such that
Vr € AVo € Gal(E/F), o(x) € A.

Then there exists uw € R such that, for any field F' and ring homomorphism w : R — F’,
with w(u) # 0, we may find a Galois extension E' of F' and a ring homomorphism extension
@ : R[A] — E’ of w with the following properties:

o £/ =F'(d), where o/ = &(a);

o If f' € F'[X] is the polynomial obtained from f by applying w to the coefficients of f and
1! is irreducible, then G' = Gal(E'/F') is isomorphic to G = Gal(E/F).

PROOF The proof of this result is rather long, so we will proceed by steps.

1. Definition of (4 Hlllaelic u = A(f), the discriminant of f. (For a definition of the discriminant,
see for example hﬁﬁ%s charF = 0, because charR = 0, and f is irreducible, f has no multiple
root. This implies that w # 0. If F’ is a field and w : R — F’ a ring homomorphism such that
w(u) # 0, then A(f") = w(u) # 0, hence f’ is strongly separable.

2. A first extension of R and w: We now construct a ring R, containing R and we extend w to
this ring. As F = F(«a) and A C E, for every x € A, there exists g, € F[X] such that = g, ().
In addition, F is the field of fractions of R, and so there exists d, € R* such that d,g, € R[X].

We now set
d=[] da-
TEA
Then dg, € R[X], for all z € A. We now set

R=R[d 'Y CcF

and extend w to wy : R — F' by setting wi(d™") = w(u)~". ) )
It should be noticed that R[A] = R[a]. First, o € A implies that R[a] C R[A]. On the other
hand, if z € A and ¢,(X) = >, a; X", with ag,...,a, € F, then

n

x = gy(a)= zn:aiai = dx = Z H dy | (dsa;)a’,

i=0 i=0 \ycA,y#zx

which lies in R[a], because d,a; € R, for all 4, and d,, € R, for all y. However, R[a] C R[a] and
xr =d 1(dz) € R[a]. Hence, A C R[a] and so R[A] C R[a].



3. R[X]/(f) and R[a] are isomorphic: There is a natural homomorphism from R[X] into R[a/]:

¢ : RIX] — R[o], g — g(a).

£ h&ker o, then there exists g € F'[X] such that h = fg, because f = m(a, F'). From Lemma
, g€ , because R is a subring of F. Therefore ker ¢ C (f). On the other hand, if g € (f),

then g(a) = 0 and so g € ker¢. It follows that ker¢ = (f). As ¢ is surjective, we have an
isomorphism .

_ R[X] -

¢: —— — R|a].

(f)

4. Construction of the extension £’ of F’: Our next task is to construct a Galois extension E’
of F' and a ring homomorphism @ from R[A] into F’, extending w; and hence w. Let ¢’ be
an irreductible factor of f and p : F'[X] :— F'[X]/(g’) the natural projection. From the
homomorphism wy : R — F " constructed above, we obtain the natural homomorphism @ :
R[X] — F'[X]. We now compose & with p to obtain the homomorphism

poin: RIX] — F'[X]/(g)
and then use this to define another homomorphism:

CRIx) L PIX]

-
(f) (9')
(As poin(f) = f'+ (¢') and ¢'|f’, we must have p o dy(v) = 0, for all v € (f), hence v is
well-defined.)
Now we set

L0+ (f) — podn(v).

F'[X -
E = [/ ) and O=~o0¢ L
(9)
As ¢’ is irreducible £’ is a field, which is clearly an extension of F'. Also, R[A] = R|a] and so @
is a homomorphism from R[A] into E’. We need to check that @ extends w. If v € R C R[A],
then

Gx) = yod ' (x) = @+ (f) = poin(r)
= plwr(@) = pw) = w@)+(9),

therefore & extends w to R[A]. If we restrict & to R[A], then we have the homomorphism we are
looking for, under the conditions that E' = F’'(a’) and that E’ is a Galois extension of F”.

5. ' =F'(d/): As
¢~ Ha) =X +(f)
and

VX + () = pl@n(X)) = p(X) = X + (9,

we have

1emSPLIT1
and, by Result b?m

Fl(o) = FI(X +(g) =~ = .




6. F' is a Galois extension of F’: As charF’ = 0, we only need to show that E’ is a normal
extension of F’. Let aq,... Q@nggﬁlll% Loots of f. Since f is irreducible over F and FE is a
splitting field of f, Theorem %m the Galois group G = G(E/F) acts transitively on
the roots of f. This implies that the roots of f belong to A, because o« € A. Moreover, the
roots of [’ are @(ay),...,0(ay), since, by the relations between the roots of a polynomial and
its coefficients,

f(X) = (=@(a1) + X) - (=@ (an) + X).

Consequently,
E' =F'(d)=F(0(a),...,0(an))

NORMALth1
is a splitting field of f’ and, by Theorem [7, E"1s a normal extension of F.

7. The special case ¢’ = f’: In this case, [ is irredpgible. As above, let a1,...,a, be the con-
jugates of a. Since E = F(a), from Result E thore exists a unique o; € G such that o;(a) = a.
Similarly, o, . ' are the conjugates of o’ and, since £’ = F'(¢/) and f’ is irreducible over
%g pSPLT TR ’
F’, Result ehsures the existence of a unique o} € G’ = Gal(E’/F") such that o}(¢/) = .
From Step 1. of our 'proof (the definition .of u), the values of ay, ..., a, are distinc‘gﬁh&%ﬁq—
quently, the automorphisms o1, ..., 0, are different elements of G. Moreover, Result b ensures
that G has cardinal n. Thus G = {01, ...,0,}. Similarly, since f’ is irreducible, G’ is of cardinal
nand G = {o},...,00}.
We now define a mapping ® from G into G’ by setting ®(o;) = o}. We will prove that this
mapping is an isomorphism. First we will show that

Vs € R[A], Yo, € G, @(0oi(s)) = al(@(s)). (1) [eqnHILBERTpropl

As R[A] = R[a], it is sufficient to prove the identity for o and for the elements of R. For o we
have

If z € R, then z € F, hence
o(oi(z)) = @) = vo¢ ' (2) = z+(f)) = poan(z)
= (@) +(9) = @lz)+ (),
because ¢’ = f’. However, & () € F', therefore
@1(z) + (f) = i@ (z) + (f)-

Thus
@(0i(x)) = o(@(x)).
. . egnHILBERTpropil L. . .
It follows that the identity (I ; applies. W now use this identity to prove that ® is a homomor-

phism. Since o;(«) € A, for i = 1,...,n, we have
(0i0)' (@) = (0i0;)(@(a))
= @((oi05)(a))
= w(oi(oj(a)))
= 0oi(@(oj(a)))
= J;O’;((:) a))
= oo5(a’).
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Therefore ® is a homomorphism. Clearly ® is surjective. As |G| = |G'|, ® is also injective, hence
an isomorphism. This finishes the proof. O

In inverse Galois theory we are confronted with the problem of determining whether a given
group H may be considered as the Galois group of a Galois extension E of a certain field F,
usually Q. This may be difficult to decide directly. However, it may be possible to take another
field F’ and find a Galois extension E’ of this field such that H is isomorphic to the Galois group
Gal(E'/F"), which is in turn isomorphic to the group Gal(E/F). We will now consider this
question.

Let F' be a Hilbertian field and E a Galois GXE%%S%)%EI?.ggﬁtirr%e v of FI(X), the field of fractions

of the polynomial ring F[X]. From Proposition 2, we know that there is an element o € E, such
that £ = F(X)(a) and f(Y) = m(«a, F(X)) € F[X][Y]. Then f is irreducible in F[X][Y] (in
the sense of our definition at the beginning of the article).

Theorem 1 For an infinite number of values b € F, fi,(Y) = f(b,Y) is irreducible in F[Y]
and E' = F[Y]/(fy) is a Galois extension of F, with G = Gal(E/F(X)) isomorphic to G' =
Gal(E'/F).

PROOF We apply Lemma E%et of roots of f in F, then
Ve € AVo € G=Gd(E/F(X)), o(z) € A
and o € A. We choose b € F and consider the homomorphism
wp : F[X] — F,g+— g(b).

1emHILBERTprop2
From Lemma b,e thete exists u € F [X] such that, if wy(u) # 0, then there is an isomorphism @,
from Gal(E/F(X)) onto Gal(E'/F), if f, is irreducible. Indeed, if f(X,Y) = 7"  a;(X)Y",
then

fy) = Zwb(ai(X))Yi = Zai(b)Yi = fu(Y),

—0 =0

_ , | enHILBERTprop? ' LemHILBERTprop2
where [’ is defined as in Lemma S Moreover, in Step 4. of Lemma bResow that 2/ = F/ (X1/(f"),
which leads to the form of E’ in the statement of the theorem. We notice that u € F[X], so

that u(b) = 0 for a finite number of values b. Eliminating these values from the infinite num-
ber of values b with f, irreducible leaves us with an infinite number of values b, hence the result.O

Remark Suppose that we have a finite group H and we wish to know whether it can be repre-
sented as a Galois group over a given Hilbertian field F', then we may look for a Galois extension
E of the field F(X) such that H is isomorphic to the Galois group G = Gal(E/F(X)). (As E
is a finite extension of a field of functions, we say that E is a function field.) From the theorem,
we know that there is a Galois extension E’ of F' such that H is isomorphic to G’ = Gal(E'/F).
However, we do not know how to find such an extension.

2. A characterization of Hilbertian fields

In this section we continue our discussion of extensi ?EBE{_lHIj‘l)biertian fields and find a useful
characterization of Hilbertian fields. As in Theorem [I, we consider a Hilbertian field F' and E a

Galois extension of degree n of F(X) and we take an element o € E, such that £ = F(X)(«)
and let f(X,Y) =m(o, F(X)) € FIX][Y].
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Proposition 3 Let L be a finite extension of F such that L(X) C E and h € L[X][Y] irreducible
with roots in E. Up to a finite number of the values b € F such that f,(Y) is irreducible hy(Y)
is wrreducible in L[Y].

PROOF Let f31,..., 0., be the roots of hy in an extension E’ of L, where f, is irreducible in
F[Y] C L[Y]. If hy is reducible, then we can write hy = upvp, with up, vy € L[Y] and degup > 0,
deg vy > 0. Without loss of generality we may write

w(Y) = (=B +Y)-- (=B, +Y)
u(Y) = d(=Bip +Y) (=B, +Y),

with 7,0 € L. If o0 € Gal(E'/L), then o permutes the roots of u; and of v, which cannot be
possible if Gal(E'/L) acts transitively on the roots. It follows that, if Gal(E’/L) acts transitively
on the roots of hy, then hy is irreducible. We will show that, with the exception of a finite set
of values of b, there is an extension E’ of L containing the roots of h; and such that the Galois
group Gal(E’'/L) acts transitively on these roots.

As L is a finite extension of F' and charF = 0, by the primitive element theorem, there exists
x € L such that L = F(z). We notice that

FCF(r)=L= F(X)CL(X)CE.

In addition, as x € L, we have z € L(X), so we may consider the conjugates of x over F(X).
The roots fS1, .. ., Bm of h(X,Y) are, by hypothesis, in E. We let A be the subset of E composed
of z, with its conjugates over F(X), o, with its conjugates over F'(X), and the roots of h(X,Y).
If o € Gal(E/F(X)) and a € A, then clearly o(a) € A. We notice that the roots of h; are
distinct if the discriminant A(hy) # 0. However, A(hy) = A(h)(b), which has the value 0 for a
finite number of values of b. Therefore, if we exclude these values, we can be sure that the roots

of hy are distinct. - hmHILBERTorond . .
As in Theorem [T, we consider the valuation homomorphism

wp : F[X] — F,g — g(b),

LenHILBERTprop2
where b € F'. Lemma 2 ensures the existence of v € F[X] such that, if wy(u) # 0, we may extend
wp to a homomorphism

@y F[X][A] — E,

where E’ is a Galois extension of F. Moreover, u(b) = 0 for a finite number of values b, so we
may suppose that wy(u) # 0. As a generator of L over F' is included in A, we have L C F[X][A].
Also, @y restricted to F' is the identity and so @, restricted to L is not trivial. Given that a ring
homomorphism of a field into another field is either trivial or injective, it must be so that @
restricted to L is injective. We will note L the image of L under @, in E’. As L is isomorphic to
L, E’ is an extension of L.

We now let xp be the natural homomorphism from F[X][A][Y] into E'[Y] generated by &p. We
may identify F[A][X] and F[X][A]. To see this it is sufficient to notice that, If A = {aq,...,a,},
then F[A][X] is composed of sums of expressions of the form caj' ...a3» X* and F[X][A] of sums
of expressions of the form cX'aj* ... a", where ¢ € F and sy, ... s,,t € N. Thus we may consider
that L[X] = F(x)[X] is included in F[X][A], because x € A. We may write

WX,Y) = zm: hi (XY,

1=0



where the coefficients h;(X) lie in L[X], a subset of F[X][A]. We are interested in finding the
form of x;(h). We may write
=D auX’,
j=1

with a;; € L. As L = F(z), we can express each a;; in the form

zgk
aw—gu 5

with ufg € F. Hence,

Zainj = Z@b(aij)@b(Xj>

=Y (Z u;'g@b(z)k> b
j=1 \k=1
Therefore, if we identify L and L and consider the polynomial h e L[X][Y] corresponding to

h € LIX][Y], then we find an expression for the coefficients of h;, by replacing x with @,(z). Let
us write hy for this polynomial. Then we have

Xb(h(X7 Y)) = Bb(Y)-

We notice that the roots of h lie in A so their images under &, are in E’. We have

WX, Y) = hn(X) (=61 +Y) - (=B +Y) = W(Y) = hin (D) (=51 +Y) - (=57, +Y),

where 85" = x4 (5;), for some i. So we have found expressions for the roots of hy.

From our work at the beginning of the proof, to show that hy is irreducible, it is sufficient to
prove that the Galois group Gal(E'/L) acts transitively on the roots f3; (for any b in the infinite
set we have retalned This we will now do. As h(X,Y) is irreducible in L[X][Y], from Gauss’s

lemma, h(X,Y) isalsqirreducible in L(X)[Y]. E is a normal extension of F/(X) containing L(X),
hence, by Result is a normal extensmn of %E}ggggpo}}@o;eo er, by Result [7; £7is the splitting
field of a polynomlal g € L(X)[Y]. From Result e Galois group G; = Gal(E/L( )

E'is a splitting field of h included in E, acts transitively on the roots ;. Now, Result B, wi
F=F =Fand f = f* = g, implies that any element o € G; may be extended to an element

¢ € G2 = Gal(E/L(X)). This implies that (Ga acts tr answlvely on the roots 5;. Supposing that
fb is irreducible, then, from Theorem I, G = Gal % is isomorphic to G’ = Gal(E'/F),

where E{e meIlQEEM ( By ;2 (This is the same E’ as that obtamed earlier in the proof after applying

Lemma

If we restrict the isomorphism from G onto G’ to the subgroup G, then we obtain a subgroup
G of G'. We claim that G, is a subgroup of the Galois group G” :~Gal(E’/I~/) To prove this . ocor
we need to show that the automorphisms of G fix the elements of L. We use the identity (Il iR
and the explicit form of the isomorphism ® from G onto /. If 2 € L, 0 € G5 and ¢’ the
corresponding automorphism in G4, then

d'(2) = o' (0p(2)) = @p(0(2)) = @wp(2) = 2.



This proves that G5 C G” and so the claim.
We now show that G” acts transitively on the roots 7. There exists o € Go such that o(3;) =

B;, because Ga acts transitivngHQPBHﬁe Togts Bi. Let ¢’ be the element of G, corresponding to

o. Then, using the identity (I) again, we have
o'(B;) = o’ (@u(Bi)) = w0 (Bs)) = @u(B;) = B;-

Therefore G" acts transitively on the roots 7. This finishes the proof. |

We can now establish the characterization of Hilbert fields, which we referred to at the
beginning of the section.

Theorem 2 The field F is Hilbertian if and only if, for every finite extension L of F' and finite

set of irreducible polynomials hy, ..., hy € L[X,Y], there is an infinite number of values b € F
such that h; ,(Y) = h;i(b,Y) € L[Y] is irreducible, fori=1,...,k.

PROOF Let F' be an Hilbertian field, L a finite extension of F' and hy, ..., hy irreducible polynomi-
alsin L[X,Y] = L[X][Y]. (From Gauss’s Lemma, these polynomials are irreducible in L(X)[Y].)
Adding the roofs of the polynomials h; to L(X), we obtain a finite extension M of L(X). From
esult %, L{X]) is a finite extension of F'(X), so M is a finite extension of F(X). Now let F be
a norm%l‘ ggg%%%é\go gyer F (X). Then FE is finite Galois extension of F(X) (Result m
Result 2, we may find a € F such that E = F(a) and m(a, F(X)) € F[X][Y]. As usual, we
write f(X) Eorro mfae k(X)) In addition, L(X) C E and the roots of each h; are in E. From
Proposition B, for each z, for all but a finite number of the b € F' such that f,(Y) is irreducible,
hip(Y) is irreducible. It follows that h;,(Y) is irreducible, for all 4, for an infinite number of
values of b.
The converse is elementary. We only need to choose L = F and k = 1. m|

We know that Q is a Hilbertian field. The next two results will show us that there are many
other such fields.

Theorem 3 If F' is a Hilbertian field, then any finite extension E of F is also Hilbertian.

PROOF Lj‘ghﬂﬂ%ﬁﬁg}g}tc extension of the Hilbertian field F' and f € E[X,Y] irreducible. From
Theorem 2, there are infinitely many b € F', such that f;, is irreducible. As F' C E, there are
infinitely many b € E such that f, is irreducible. Hence F is Hilbertian. 0O

We recall that a number field is a finite extension in C of the field Q.

Corollary 1 Number fields are Hilbertian.

3. The Kronecker specialization

We have considered extensions of fields of fractions of polynomials in one variable. In this
section we aim to consider the case of polynomials in several variables. We use a tool known as
the Kronecker specialization. We fix an integer d > 1. For a field F' and an integer k > 2, we
define a mapping Sy from F[Xq,...,X] into F[X,Y] by

Sa(F)(X,Y) = f(X, Y, yLy® . yd ),

The mapping Sy is called a Kronecker specialization. We note V; the collection of polynomials
in F[X3,...,X}y] whose degree is less than d in each variable X, ..., X;] and Wy the collection
of polynomials in F[X,Y] whose degree is inferior to d*~! in the variable Y.
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Proposition 4 The mapping Sy defines a bijection from Vg onto Wy.
PROOF First let f € V; be a monomial. Then f has the form a X7 --- X** and so

Sd(f) _ aXalYa2+a3d+a4d2+...+akdk_2.
If g € Vy, with g = bX /" -~-X,f’“, and S4(g) = Sa(f), then

b=a fri=um Bo + B3d + Bad® + ... + Brd* 2 = ag + asd + aud® + ... + o d 2.

As the representation in base d is unique, we must have a; = ;, for all i > 2. Hence g = f and
Sq defines an injection from the monomials in V; into the monomials in Wy. Also, any integer
s < d*~1 has a unique representation in base d:

5=y +azd+agd® + -+ apd”

which implies that Sy restricted to the monomials of V; defines a bijection onto the monomials
of Wy. As

Sd(ml +otmy) = Sd(ml) +--- 4+ Sd(mk)a

for monomials my, ..., mg, the mapping Sy defines a bijection from V; onto Wy a
Remark It is not difficult to see that, if the product fg is in Vy, then

Sa(fg) = Sa(f)Sa(g).

We now see that the Hilbertian property "carries over" to multivariable polynomials. (We
advise the reader to return to the beginning of the article to revise the definition of an irreducible
polynomial in several variables.)

Theorem 4 If F is a Hilbertian field and f € F[Xy,..., Xy] is irreducible, then there exists an
infinite number of values b € F such that f(b, Xa,...,Xk) € F[Xa,..., X}] is irreducible.

PROOF Let d be an integer superior to the degree of each variable X; in f. We can write

ieC
where the g; are jrreducible polynomials in /[X][Y] and C'is a finite index set. As F'is Hilbertian,
from Theorem 2, for an infinite number of values of b € F, g;,(Y) = ¢;(b,Y) is irreducible in
F[Y]. If we exclude the values b which are roots of g, then we still have an infinite number of
values of b € F such that ¢;(b,Y) is irreducible, for all i € C. For any b in the remaining set, we
have the factorization into prime factors in F[Y]:

Sa(f)(b,Y) = g(b) [J 9:(0. V).

i€C

For any such b, suppose now that f, = f(b, Xo,..., X)) is reducible, i.e., f, = uv, with v and
v nonconstant. We may consider fp, u and v as members of F[X1,..., Xi]|. As f, € Vy, we have
u,v € Vg and

Sa(w)Sa(v) = Sa(uwv) = Sa(fy) = Sa(f)(b,Y) = g(b) [ ] 9:(b, ).
icC

10
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We now have a partition {A, B} of C, with A and B nonempty, since u and v are nonconstant,
and «, 8 € F such that g(b) = a8 and

Sa(u)=a ] g, Y) and  Sa(v) =B ][] gi®.Y).

i€A i1€EB
At this point we set

UXY)=[]e(X,Y) and V(XY)=]]aX.Y).
€A i€B

As U,V € Wy, there exist unique @, v € Vy such that Sy(@) = U and Sg(v) = V. Then

Sa(iiy) = Sa(@)(0,Y) =U®D,Y) = [[ 9:(0,Y) = " Sa(u) = Sa(a™ u),

icA
which implies that @, = a~'u. In the same way, 7, = 8~ 'v and so
Uyt = a B uv = g(b) " fi.
Our next step is to show that ad ¢ V. If this is not the case, then
Sa(guv) = gS4(@)Sa(v) = gUV = Sa(f),

from which we deduce that
guv = f,

which contradicts the irreducibility of f, since & and ¢ are nonconstant. Hence a0 ¢ V.

We are now in a position to prove that f; is irreducible for an infinite number of values of
b. We may consider f as a polynomial in F[X;][Xs,..., Xx]. Thus a monomial is of the form
a(Xp)X"2 ... X™. As ad ¢ Vg and 1yt = g(b) "1 fp, to avoid a contradiction, b must be a root
of a(Xy), whenever there is an ¢ such that the power n; of X; is greater than d — 1. We can
eliminate these values of b for each such monomial. As the number of these monomials is finite,
we are left with an infinite number of values of b for which f; is irreducible. O

Corollary 2 Let F be a Hilbertian field and f € F[Xi,...,Xg], with k > 2, irreducible.
For every polynomial p € F[X1,...,Xk_1], there exist elements by,...,by—1 € F such that
p(b1,...,bg—1) # 0 and the polynomial f(by,...,bx—1,Xk) is irreducible.

PROOF Let f € F[X;,..., X}] be irreducible. We aim to prove by induction on n that, for every
polynomial p € F[X;,..., X,], with n < k, there exist by,...,b, € F such that p(b HHIL’B%}ﬁéogl
and f(b1,...,bn, Xnt1,...,Xg) is irreducible. First, let p € F[X;]. From Theorem E, there 1s an
infinite number of values of b € F' such that f(b, Xs,..., X)) is irreducible. If we take one such
b which is not a root of p, then we have a value of b satisfying the required conditions. Thus the
result is true for n = 1.

We now suppose that the result is true for n < k — 1 and consider the case n + 1. Let
p € F[Xy,...,X,+1]. We may counsider p as an element of F[X,,+1][X1,...,X,]. Each co-
efficient has a finite number of roots. If ¢ is not one of these roots, then p(Xi,...,X,,c) is

a nonzero polynomial in F[Xy,...,X,]. From the induction hypothesis, there exist by, ..., lEﬂlHILBERTkronl

such that p(by,...bs,c) # 0 and f(b1,...,bn, Xnt1,...,Xg) is irreducible. Using Theorem K,
we know that there is an infinite number of values of b, such that f(by,...,b,,0, Xpnio,..., Xg)
is irreducible. As p(by,...,bn, Xnt1) € F[Xn41], if we eliminate any b which is a root of this

11
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polynomial, then we have p(by,...,b,,b) # 0. Therefore the result is true for n+ 1. This finishes
the induction step. O

To rqve the next theorem, which will provide us with more Hilbertian fields, we will need
Result T

Theorem 5 If F is Hilbertian field, then F(Xy,...,Xy) is Hilbertian field, for any k € N*.

PROOF Let f € F(Xy,...,X;)[X,Y] be irreducible. There exists g € F(Xy,...,X;)* such that
gf € F[Xq,... Xy, X][Y]. We may write gf = ¢(gf)h, where ¢(h) = 1. We have

It and L _ecP(Xxi,.... XpX)".

"=l (o7)

We notice that h € F(X7,..., Xy, X)[Y] is primitive and irred %M%Eg&r%lnpauss’s Lemma, h is
also irreducible in F[X,..., Xk, X]|[Y]. Now, using Theorem %, we see that there are infinitely

many values of b € R such that h(Xy,...,X,b,Y) is irreducible in F[Xy,...,X;][Y]. Using
Gauss’s Lemma again, we see that h(Xy,..., Xk, b,Y) is irreducible in F(Xq,...,X)[Y]. To
finish, we notice that

c(gf)
g

f(Xq,..., X, 0Y) = h(Xy,..., X, 0,Y),

where ¢(gf)p is the polynomial in F[X7, ..., Xj] obtained by replacing the variable X by b. Now
e(fg) € F(Xy,...Xk)[X], so there can only be a finite number of values of b such that ¢(gf), = 0.
If we exclude these values, then % is a unit in F(Xy,...,Xy) and so f(X1,..., Xk, b,Y) is
irreducible in F(X,...X}y)[Y]. We have shown that F(X,..., X)) is Hilbertian. O

thmHILBERTprop1
We may now extend Theorem [I.

Theorem 6 If F is an Hilbertian field and E a Galois extension of F(Xy,...,Xg), then there
exists a Galois extension E' of F' such that Gal(E/F (X1, ..., X)) is isomorphic to Gal(E'/F).

Em&%ﬁﬁlergr{)ve this result by induction on k. For k = 1, it is sufficient to apply Theorem
h.—SW&—I%W that the result is true for k and I&I}Iﬁ ir%%g the case k + 1. E is a Galois
extension of F(Xy,..., Xk, Xk41). From Theorem%ﬁ(ﬁgﬁ?%Xk) is Hilbertian and so there
is a Galois extension E’ of F|(Xq,...,X}) such that

Ga’l(E/F(Xla v 7Xk; Xk+1)) = Ga’l(E,/F(Xla s 7Xk))
From the induction hypothesis there is an extension E” such that
Gal(E'/F(X1,...,Xk)) ~ Gal(E"/F),

therefore
Gal(E/F(X1,..., Xk, Xps1)) ~ Gal(E"[F).

This finishes the induction step and the proof. O

Remark We recall that the general polynomial of degree k over a field F' has the form

) =Y" - XY P XV 2 (D)X, Y+ (1) X, € F(X,. .., X3)[Y],

12
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where F'(X1,...,X}) is the rational function field over F' in k variables. The Galois group of
f is the symmetric group Sy (see 5. In particular, this is the case if FF = Q. Writing F for

the splitti ﬁc{%lnqa()f f over Q(X1,...,X) and using the fact that Q is a Hilbertian field, from
Theorem % we deduce that Sy is realizable as a Galois group over Q.

4. Proof of Hilbert’s irreducibility theorem

Above we stated without proof Hilbert’s irreducibility theorem, namely that the field of
rational numbers Q is a Hilbertian field, i.e., for any f € Q[X,Y], which is irreducible, there
exists an infinite number of values b € Q such that f(b,Y) € Q[Y] is irreducjble, We aim now to
provide a detailed proof of this result. Our proof is based on that given in [T], with modifications.
We now suppose that our field is C, the complex numbers. For any z € C, the polynomial f(z,Y)
has n roots which may or may not be distinct. For any z, we may write uq(2),...,u,(2) for
these roots. Thus we obtain n functions defined on C. If b is a regular value, then the roots
up(b), ..., un(b) are distinct. We can say more.

Lemma 3 Ifb is a regular value of the polynomial f(X,Y) over C, then there is a neighbourhood
N of b in C such that the functions ui(2),...,u,(z) are analytic on N.

PROOF We will suppose that the functions u; exist and find the possible forms, then we will
show that the functions so obtained satisfy the conditions. Let u(z) be one such function and,
to begin, we will suppose that b = 0 and u(0) = 0. We seek a power series

u(z) = Z bp2",
k=1
with by, € C, which converges on some set N = {z € C: |z| < R}, with R > 0, within which

f(z,u(z)) =0.

We may write f(z,u(z)) in the form

f(z,u) = arpz + apru + Z aijziuj.
i+j>2

The sum on the right is finite, because f is a polynomial. Let f, be the derivative of f with
respect to the variable u. As z = 0 is a regular value, f,,(0,0) = ag1 # 0, so we may write

aio Qi i s , P
flzyu)=—ap | ——z—u+ E ——L2 | = —ap; [ ajpz —u+ E ag; 2w’ | (3)
a a
o1 i+j>2 0 i+5>2

From this we deduce
fu(Z,’U,) = —aop1 (71 + g(z,u)) 3

where every monomial of g has degree at least 1.
We now substitute u(z) = Y -, bpz" in the equation f(z,u(z)) = 0:

f(z,u(z)) = —ap1 | ajpz — Zbkzk + Z agjzi Zbkzk =0.

E>1 i+5>2 E>1

13
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As this is a power series in z, which we suppose convergent on a neighbourhood of 0, the coefficient
of z, namely a}, — b1, has the value 0, which implies that b; = af,.

Our next step is to take a Taylor expansion of the polynomial f(z, ) in u, around the point
ug = Zf;ll bizt. For u(z) =, bxz¥, we obtain

9] k—1 k—1 )
i=1 i=1 i=1 i=k
+ terms of degree at least 2k.

The value of this expression is 0, so the coefficient of each power of z must be 0. In particular,
the coefficient of z* is ag1b; plus the coefficient ¢; of z* in the expression of the polynomial
f(z, Zi:ll b;z'). Therefore by = — o= With this rule and the initial value by = ayo the entire
sequence of b;s is determined. We now have a candidate for the series Z;ozl brz®. We must
show that it has a positive radius of convergence. We will do this by constructing a power series
Y he, Apz" with positive radius of convergence R and such that, for every k, Ay > |by|.

For each k, there is a polynomial in several variables with positive integer coefficients, which
we note pg, such that by, is is the value of py, evaluated at the set of coefficients a;j. We will write

br. = pr(aj;). We;egﬁ%ﬂ%d%lgpent of Z such that A > |aj,|, for all a};. If we replace a;; by A in

the equation ( , then we obfain
h(z,v) =Az—v+ A Z 2l = 0.
i+j=2
egnHILBERTreduci
Now, redoing the calculations which we did on the equation (&3 i, we obtain a solution of the form
> he Apz", where Ay, is the polynomial expression derived from py (ai;) by replacing the aj;s by

A. Clearly Ay > |bg|, for every k, since the coefficients of the pj are positive. For |z| < 1 and
lu] <1, we have

o
|

Az —U—I—Azoivj +Azlivj +Aizi ivj
=2 j=1 i=2 i=0

v? 20U 22 1
= Az-— A A A .
vt ATt ATt <1tlz)

Multiplying by 1 — v we obtain

2 A
0=Az(1—-v)—v(l —v)+ A + Azv + A S (A4 1)v* —v+ 1 : ) (4) ’ eqnHILBERTreduc?
-z -z

1

which is a quadratic equation in v. If we set, for z sufficiently small,

1

2

1 (1—4(A+1)1%)
2(4+1) ’
. . . egnHILBERTreduc2 .
then v(z) is the solution of the equation (h’?mﬁ% 0, where the square root in the
expression is the principal value (for example, see . e would like to show that v(z) is

analytic for z sufficiently small. However, the principal value of the function w;(z) = (1 — z)% is
analytic, which is also the case for the function wy(z) = 1% . Moreover, for z sufficiently small,
|wa(z)| < 1. Therefore, given that the composition of analytic functions is analytic, we see that

v(z) =

14
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v(z) is analytic in a neighbourhood of 0. It now follows that u(z) is analytic in a neighbourhood
of 0.

We have supposed that «(0) = 0. If we have u(0) = a, where a is not necessarily 0, then,
writing y(z) = u(z) — a, we have y(0) = 0 and so we have y(z) analytic for z sufficiently small,
which implies that u(z) is analytic for z sufficiently small. Finally, if we suppose that u(b) = a,
then writing y(z) = u(b — z), we have y(0) = a and y(z) is analytic for z sufficiently close to 0,
which implies that u(z) is analytic for u sufficiently close to b.

For each root a; of f, we can find an analytic root function w;(2), with u;(b) = a;, defined on
a neighbourhood N; of b. As the a; are distincts, by continuity, we may choose a neighbourhood
N of b such that the functions w;(z) are analytic on N and, for any z € N, distinct. This finishes
the proof. o

Remark For z € N, we may write
f(z,Y) =an(z) H (—ui(2)+Y),
i=1

where a,(z) is a polynomial in z and the w,, are analytic functions defined on N.

We need another preliminary result. We take m + 1 increasing values of the real variable ¢:
to < t1 <t <--- <ty and we write V,,, for the Vandermonde determinant of the ¢;s, i.e.,

1ty 3 ... tg”—i tr

1t 2 ot oy
Vm: .

1ty t3, ... tm-l ¢m

Now let f : [to, t] — R be an m times differentiable function. We set

1ty 3 ... tg%i f(to)
1ty 2 .0t f(h)
Wm: . . . 1. .
1t B2 tm=t f(tm)

Lemma 4 There exist u € (to,t,,) such that

Wi _ flm) (u)

Vin m!

PROOF Suppose that g : [to, t,n] — R is an m times differentiable function and that g(¢;) = f(t;),

for all i. By Rolle’s theorem, in each interval (t;,;, 1), there exists a; such that g™ (a;) = £ (a;).

So we have m points ag < a; < - -+ < a@y,_1 such that g (a;) = f1)(a;), for all i. We now applly

Rolle’s theorem again and obtain m — 1 points by < by < - -- < by,_5 such that g(® (b;) = f@)(b;),

for all i. Continuing in the same way, we finally obtain a point u such that ¢(™) (u) = f0™ (u)
We now consider the system

1 to ... t™\ [ao f(to)
1 tm ... t7) \am f(tm)

15



This system has a unique solution and so there exists a unique polynomial g(X) of degree less
than m in R[X] such that g(t;) = f(¢;), for all ;. From what we have just seen, there exists an
element u € (o, tn,) such that

(m)

Using Cramer’s rule, we obtain

am

_ W
-7

Wi ) (w)
Vi  oml

m/!

This ends the proof. O

The next preliminary result is interesting in that it shows that we often only need know that
two functions have the same values at a limited number of points to establish that they have the
same values at all points.

Lemma 5 Let G be a connected open subset of C and f, g analytic functions from G into C.

Suppose that there exists a sequence (z,)52, in Gand zg € G such that
o foralln>1, z, # z;
e lim, .. 2n = 20;
o foralln>1, f(z,) = g(zn).
Then, for all z € G, f(z) = g(z).
PROOF As f and g are analytic on G, for all z € G, we may find r > 0 (depending on z) such
that, for any 2z with |2 — z| < r, we have

f(é) = Zan(é — z”)n and g(i) = Z bn(g _ Zn)n7
n=0 n=0

where the coefficients a,, and b, are in C. Let H be the subset of points z € G where the Taylor
series of f and g coincide, i.e., a, = by, for all n > 0. We aim to show that H = G, which is
sufficient to prove the result. First we show that zp € H and so H is nonempty. As f and g are
analytic, we may find 7 > 0 such that, for |z — 2|, we have

flz)= Z an(z —29)" and Z bn(z — 20)",
n=0 n=0

where the coefficients a,, and b,, are in C. We will use an induction argument to show that, for
all n, a, = b,. To see this, we first notice that f and g are continuous at zy, hence

a0 = f(z0) = 1 f(z,) = I g(20) = g(z0) = bo.

Suppose now that we have established that a,, = b, up to a certain m. We set, for all |z—zo| < r,

[5(2) = amy1+amio(z—20)Famis(z—20)%4+ - and  ¢*(2) = by 1+bmao(2—20)+bmas(z—20) 2+ - - .

16
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Then, for 0 < |z — 29| < r, we have

fr(z) = W (f(2) = (a0 + a1(z — 20) + -+ am(z — 20)™))
and )
9" (2) = [CEENGE (9(2) = (bo +b1(z — 20) + -+ - + b (2 — 20)™))

and so, for all n > 1, f*(z,) = g*(2n), since z,, # 2o and f(z,) = g(zn), for all n > 1. It follows
that a,,+1 = b1, because f* and g* are continuous at z. By induction, for all n, a,, = b,.
Hence the Taylor series of f and g coincide at zg, which implies that H = ()

The statement that z € H is equivalent to saying that f(™(z) = g(™(2) for all n > 0. As the
functions £ and g(") are continuous, H is closed in G. If z € H, then there exists r > 0 such
that f = g on the open disk D(z,r). For any ¢ € D(z,r), there is a neighbourhood N of ¢ on
which f = g and so have the same Taylor series at (. Therefore D(z,r) C H and it follows that
H is open in G. Since G is connected, we must have H = G and so f(z) = g(z), for all z € G.O

thmHILBIRRED1
In proving Hilbert’s irreducibility theorem which follows (Theorem [7), we will use two more
preliminary results whose proofs we leave as exercises.

Exercise 1 Suppose that g € C[X], with degg = m, and m + 1 integers t; such that g(t;) € Q.
Show that g € Q[X].

Exercise 2 Let m > 1 and f(X) = 3\% a; X" € Z[X]. Show that, if a = 2, with (p,q) = 1,
is a root of f, then plag and qlan,. Deduce that, if f is monic, then any rational root of f is an
integer.

We now turn to the proof of Hilbert’s result.

Theorem 7 (Hilbert’s irreducibility Theorem) If f(X,Y) € Q[X,Y] is irreducible, then there
exists an infinite number of rational numbers b such that f,(Y) = f(b,Y) is irreducible in Q[Y].

PROOF The proof is rather long and detailed, so we will proceed by steps.

X . . propHILBERTreducil .
1. The coeflicient functions y;: From Proposition I, we know that all but a finite number number
of values b € Q ateptecnlar values of f. Consequently, we may choose sg € Q, a regular value
of f. Lemma bgara—nﬁfhe existence of n roots u1(s),...,u,(s) of f(s,Y), which are analytic
functions on a C-neighbourhood N of sp, which we may suppose to be connected. (This is of
importance later.) As usual we write

fX,Y) =ao(X) + a1 (X)Y + ap(X)Y2 + - + a,(X)Y™,
where the a; € Q[X], for i =0,1,...,n , and a,(X) # 0. Let us now consider
fY)=ao+a1Y +aY? 4+ +a,Y",

where, for i = 0,1,...,n, a; is the polynomial function (with coefficients in Q) associated with
the polynomial a;(X). These functions are defined on N. Clearly, f € F[Y], where F is the
ring of polynomial functions defined on N, with coefficients in Q. Moreover, it is clear that the
functions wyq, ..., u, are roots of f and belong to the ring A of analytic functions defined on N.
We have

n

) =an [[(~u +Y).

=1
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We now let S be a proper subset of N,, = {1,...,n}, i.e.,, S # (), N,, and write

n

aV)=[[(~w+Y) BV =][(-w+Y) ) =]](-u+Y)

i=1 = ¢S

Then «, 8,7 € A[Y] and a = . If the coefficients of both 5 and ~ are in F, then the polynomial
f(X,Y) can be written as a product of polynomials of degree at least one in Q[X][Y]. To see
this, it is sufficient to write the equalities satisfied by the coefficients ag, a1, . . ., a, in the equality

fY) = a, By, where a,, # 0. Indeed, let
BY) = H bY' and  A(Y) = H Y7,
i=0 =0

where bg, ..., bk, co,...c; € F. Then
ao(s) = an(s)bo(s)co(s),
for an infinite number of rational numbers s, hence
a0 (X) = an(X)bo(X)co(X).
Also,
a1(s) = an(s) (bo(s)ci(s) + bi(s)co(s))

for an infinite number of rational numbers s, hence
a1(X) = an(X) (bo(X)c1(X) + b1 (X)co(X)) .

Continuing in the same way, we find that

ar(X) = an(X) D bi(X)e;(X),

i+j=k
for k=0,1,...,n. If we set

k l

BX,Y) =) b(X)Y"  and  y(X,Y)=) ¢ (X)Y7,
i=0 j=0

then
f(X’ Y) = an(X)B(va)’V(X’ Y),

which implies that f(X,Y) is not irreducible, a contradiction. It follows that, for any proper
subset S of N,,, either 3 or v has a coefficient y which is not a polynomial function with rational
coefficients.

If we replace the b; and c¢; with quotients of polynomial functions with rational coeflicients,
then analogous calculations to those which we have just employed show that f(X,Y) is re-
ducible in F(X)[Y], which from Gauss’s Lemma is not possible, because f(X,Y") is irreducible
in F[X][Y]. Therefore we may assume that y is not even a quotient of polynomial functions with
rational coefficients. We number the distinct functions functions yi,...,yan_2. (We do not say
that these functions are distinct; certain of them may be the same.)

18



2. A condition for the irreducibility of f(s,Y): Suppose that s € NNQ and that y;(s), ..., yan_2(s)
are all in C\ Q. We claim that f(s,Y) is irreducible in Q[Y]. Indeed, we can always write

F(5,Y) = an(s) [T (~usls) + 1) ] (~usls) + ),

= ¢S

for any proper subset S of N,,. As s is rational, a,(s) is also rational. If we evaluate the coeffi-
cients of 3 and 7 at s, we obtain the coefficients of [[;c g (—ui(s) +Y) and ;¢4 (—ui(s) +Y).
By the choice of s, at least one of these coefficients is not rational. Thus, f(s,Y) is irreducible
in Q[Y]. In order to prove our theorem, it is sufficient to obtain an infinite number of elements
s € NN Q such that yi(s),...,ym_2(s) are all in C\ Q.

3. Studying the functions y;: We aim to look at the functions y; in more detail. To simplify the

notation, let us write y for y;. We notice that there exists 77 > 0 such that s +% € N,ift >1T.
We define the function 6 on (77, 00) by

3(0) = y(s0 + 7).

Let us denote G the set of functions defined on (77, 00) by

where h and ¢ are polynomial functions with rational coefficients and ¢ is not the zero function.
Clearly, G is a field. We claim that § is algebraic over G. To see this, first let us define the
function v; on (77, 00) by

'Uz(t) = ui(so + %)

Then, for all t > T’, we have
av(s0+ 1)+ an(so + T)uilt) + aa(so + DUl + - anlso + 1 ui(t)" =0,
Multiplying by the appropriate power of ¢, we obtain the expression
ho(t) + hy(t)vi(t) + ha(t)vi(£)* + - + hy (t)vi ()™,
where ho, ..., h, are polynomial functions defined on (7", 00), with coefficients in Q. Hence,
ho + hiv; 4+ hov? 4+ -+« + hpol

is the zero function and so v; is algebraic over G. As the algebraic elements over a field form a
field, § is algebraic over G and so is the root of an equation

do+diH ...+ .. .dnH™=0,

where dy, ..., d,;; € G and 0 denotes the zero function. We may suppose that the d; are polynomial
functions. (It is sufficient to multiply by the product of the denominators of the d;, if necessary.)
We may even suppose that the coefficients of the polynomial functions d; are integers. We now
multiply the coefficients of the equation satisfied by § by d™~! to obtain

dod™ ! 4+ dyd™ 2 d,, 8 + dod™ 3 (d0)? + -+ dpp1(dn )™ 4 (dd)™ = 0.
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Thus z = d,;,0 is a root of the polynomial
9(Z)=bo+ b1 Z+ -+ by 1 2"+ 2T, (5)

where b; = d;d?7~! for j =0,1,...,m — 1. Clearly, the coefficients of g(Z) are integers. We

claim that, if ¢ € Z, with ¢ > 7", and §(¢) € Q, then z(t) € Z. Indeed, z(t) = d,,(¢)d(t) implies
that z(t) € Q. Also, z(t) is a root of the equation
bo(t) + bl(t)Z + -+ bm_1(t)Zm71 +Z™,
exerHILBIRRED2
which is a monic polynomial with coefficients in Z. From Exercise b, Z %) 1S an integer.

4. Studying the functions z;: To simplify the notation, we will write z for z;: Our next step is

to show that there are relatively few integers ¢t > T such that z(t) is an integer. If this is the
case, then we may find many integers ¢ such that z(¢) is not an integer. For such t, 6(¢) cannot
be rational, which implies that y(so + 1) is not rational.

Lemma bmthat, for ¢ = 1,...,n, u; is an analytic function on the neighbourhood
N of s9. As sums and products of analytic functions are analytic, for j = 1,...,2" — 2, y; is
analytic on N. Reducing the size of N to a neighbourhood N’ of sq if necessary, for so +x € N’,
we may write

y(so+1z) =eg+e1x +ex’ + ... +epxt + ...,

where the coefficients e; € C. There exists 7" > T’ such that, if ¢ > T”, then y(so + %) e N’
and so

(+1)—+1+ 12+ + 1k+
Y(So t = €y elt €9 p €L p

As d,, is a polynomial, we may write

1
2(t) = dm (1)0(t) = dm(t)y(so + ;) =qtt+-Fet+cote it 4+ e gtTF 4

with ¢; € C.
There are three possibilities:

e a. z is a polynomial function;
e b. z is not a polynomial function and has at least one coefficient ¢; € C \ R;
e c. z is not a polynomial function and all the coefficients of z are real.

We consider the first case. We claim that at least one of the coefficients must be in C\ Q.
If this is not the case, then §(t) = dz(—?t), for ¢ > T". Let (t,) be sequence of values of t > T"
converging to oco. If we set s, = 5o + ti, then the numbers s,, converge to sy and

2(tn) _ 2((sn—s0)7)

1 t
n) = —)=4(t,) = .
y(S ) y(so + tn) ( ) dm(tn) dm(<5n _ SO)_l)
If we multiply both z and d,, by an appropriate power of s,, — s, then we may find polynomial
functions with rational coefficients Z and d,,, such that

(s =30 _ Zsu)

A (50 = 50)71)  dp(sn)
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From Lemma %, we obfain that y = , a contradiction. (We can apply Lemma %, because y

dm
and == are defined on the connected set N.) This proves our claim. Thus at least one coefficient
dm, _ |exerHILBIRRED1 .
of z belongs to the set C\ Q. Consequently, from Exercise II, there can only be a finite number
of integers t such that z(¢) is an integer. In this case we may choose 7" > T such that z(t) is
not an integer, if t > T"".

Let us now consider the second case. Suppose that iy is the largest subscript ¢ for which
¢i € C\ R. Then
. Imz(?) ,
tlggotT =1Ime; #0.

Hence, we may find 7" > T" such that Zt(z) ¢ R, for t > T"". This implies that z(¢) ¢ R and so
is not an integer, for t > T"".

The third case is more difficult to handle. Here all the coefficients ¢; are real and at least one
coefficient ¢;, with i negative, is nonzero. By differentiating z a sufficient number of times we
can eliminate all nonnegative powers of ¢ to obtain

2y =pt T4

where p is a nonzero real number, ¢ a positive integer greater than m and the dots represent
terms of higher powers of t~!. As
lim 92(™) (1) = p,

t—o0
there exists 7" > T" such that
t>T" = 0< |z @) < 2[plt—.

1emHILBIRRED2 )
Now we use Lemma h Let tg < 11 < --- < t,, be integers such that t; > T"" and z(¢;) € Z, for
all . For a certain number u € (g, t,,) we have

2p| _ 2pl X _ Wil
mltd = mlue = m! [Vin]

As 2™ (u) # 0, W,,, # 0, which implies that W,,, is a positive integer and so [W,,,| > 1. Therefore

m!
2|p|

m(m—1)
t8 < Vil = [ [t = 1;) < (b —10) ™2

i>]

This implies that there are positive constants o and g such that atg <tm —to-

Now let 7 be the number of distinct functions z; in this third case. Without loss of generality,
let us suppose that these are the functions z,..., 2. For each j, we have m;, o; and 3; such
that, if we have integers tg < t1 < ... < tp;, with z;(t;) € Z, for i = 0,1,...,m;, then
ajtgj < tm, —to. We set m = maxm; and take U € Z such that o;U" > rm. We now consider
the interval I = [U,U +rm]. If to <t; < ... <ty is a sequence of m; + 1 integers in I, then

ath > ;U > rm = (tg + rm) — to.
This implies that I contains at most m; integers ¢ such that z;(t) € Z.

If we now consider all the z; in the third case, we see that the interval contains at most
my + ...+ m, integers ¢ such that z;(t) € Z for some j = 1,...,7, i.e., at most rm integers ¢
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such that z;(t) € Z, for some j = 1,...,r. However, I contains nm + 1 integers, so there is at
least one integer ¢ € I such that z;(t) ¢ Z, for j = 1,...,r. We may find an infinite number of
such t by taking a sequence of intervals Iy, = [Uy, Uy, + rm], with U1 > Uy + rm.

5. The final step: Using ou previous work, we show that there is an infinite sequence of integers
t such that z;(¢) is not an integer, for all z;. As we have seen, there are three possibilities for z;.
For those which fall in the categories a or b., there is a number 7" such that, if ¢ > 7", then
zj(t) ¢ Z. If we take T""" equal to be the maximum of all such T, then z;(t) ¢ Z, for those
z;j(t), where z; is in either category a. or b. If the category c. is empty, then we have finished.

If this is not the case and z1,..., 2. belong to the third case, then we can find a sequence of
integers ¢ such that z;(t) ¢ Z, for j = 1,...,r. We may take these integers greater than 7" and
so we have an infinite sequence of integers ¢ such that z;(t) ¢ Z for all j. This finishes the proof.O

Remark The rational numbers b, which we have found, such that f,(Y") is irreducible are of the
form sg +t~1, where t is a positive integer. Of course, there are certainly others: we only need
to take sf sufficiently far from s.

Exercise 3 In section 4 of the above proof, we assumed that W,, is an integer. Why is this so?

Remark In this article we have been concerned with irreducible specializations. We have not
considered reducible specializations. For many number fields K the number of reducible special-
izations of irreducible polynomials in K[X, Y] is infinite. However, there are number fields with
irre 'L)lle polynomials for which this is not the case. For a recent discussion of this question
see %

Basic results from Galois theory

ufd| Result 1 Let R be a unique factorization domain, with quotient field F', and f € R[X]. Then,
if f is nonconstant and irreducible in R[X], then f is irreducible in F[X]. On the other hand, if
f is primitive and irreducible in F[X|, then f is irreducible in R[X].

1emSPLITL | Result 2 Let f € F[X] be irreducible and E an extension of F which contains a root « of f.

Then there is an isomorphism
®: FIX]/(f) — F(o)

which fives F, i.e., for g constant, ®(g+ (f)) = g, and such that (X + (f)) = a.

thSPLIT2| Result 3 Let F' and F' be fields, o : F — F' an isomorphism, f € F[X] and f* € F'[X] the
polynomial corresponding to f. If E is a splitting field of f and E’ a splitting field of f*, then
there is an isomorphism & : E — E’ extending o.

propSPLIT2| Result 4 Let o : F — F’ be an isomorphism and f € F[X] irreducible. If E (resp. E’) is an
extension of F (resp. F') and « (resp. &') a root of f (resp. f*)in E (resp. E'), then there is
an isomorphism 6 : F(a) — F'(&') extending o, with 6(a) = . This isomorphism is unique.

thSEPext4 | Result 5 Let E be a finite separable extension of a field F' of degree n. Then the field of fractions
E(X) is a finite extension of degree n of the field of fractions F(X).
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NORMALprop2

NORMALth1

NormalClos1

thGALGRP1

[ thGALPOLYirredi |

hadlock
henrici
muller
rotman

spindler

Result 6 Suppose that K/F and E/K, with E normal over F. Then E is normal over K.

Result 7 The finite extension E of F is normal if and only if E is the splitting field of a
polynomial f € F[X].

Result 8 If E is finite extension of the field ' and N the normal closure of E over F, then N
is a finite extension of F.

Result 9 If E is a finite Galois extension of F, then we have |Gal(E/F)| = [E : F].

Result 10 Let f be a separable polynomial in F[X]| of degree n with Galois group G = Gal(E/F).
If f € F[X] is irreducible, then the action of G on the set of roots of f is transitive.
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