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Hilbertian fields and Hilbert’s irreducibility theorem

Rodney Coleman, Laurent Zwald

September 25, 2018

Abstract

Hilbert’s irreducibility theorem plays an important role in inverse Galois theory. In this arti-
cle we introduce Hilbertian fields and present a clear detailed proof of Hilbert’s irreducibility
theorem in the context of these fields.

An important result in inverse Galois theory is Hilbert’s irreducibility theorem. Unfortunately
it is difficult to find a clear proof, probably because such a proof requires many detailed steps.
Those that we have seen lack important details or have errors and so make reading difficult. For
this reason we set out to write a clear, detailed proof, which a reader with a certain mathematical
maturity should not find difficult. We will use some basic results from Galois theory, which we
detail in an appendix. (The word Result in the text refers to these results.)

We begin by introducing Hilbertian fields. Let f(X,Y ) be a nonzero polynomial in two
variables over a field F . Collecting monomials having the same power of Y , we may write

f(X,Y ) = a0(X) + a1(X)Y + a2(X)Y 2 + · · ·+ an(X)Y n,

where the ai(X) are polynomials in X alone and an(X) 6= 0, i.e., we may consider f as a member
of F [X][Y ]. The number n is the degree of f with respect to Y . We recall that a nonzero element
a in an integral domain R is irreducible if it is a nonunit and, whenever a = bc, either b or c
is a unit. As a polynomial ring over an integral domain is an integral domain, F [X][Y ] is an
integral domain. For reasons which will become obvious further on, we will say that f ∈ F [X,Y ]
is irreducible, if f is irreducible as an irreducible element of the ring F [X][Y ] and has degree
greater than 0 in Y , i.e., the polynomial has at least one monomial containing a power of Y . If
a polynomial is not irreducible, then we will say it is reducible.

We may extend this definition to polynomials in more than two variables. If f ∈ F [X1, . . . , Xk],
with k ≥ 3, then we may consider f as an element of F [X1, . . . , Xk−1][Xk]. We will say that f is
irreducible if f is irreducible in the polynomial ring F [X1, . . . , Xk−1][Xk] and has degree greater
than 0 in Xk. (This definition is not entirely satisfactory, because it depends on which variable
we set in the last position.)

Let f ∈ F [X,Y ] be a polynomial of degree greater than 0 in Y . For every b ∈ F , we may
define a polynomial fb ∈ F [Y ] by setting fb(Y ) = f(b, Y ). If an(b) 6= 0, then fb has n roots,
counted according to their multiplicity. If these roots are distincts, then we say that b is a regular
value.

propHILBERTreduc1 Proposition 1 Let f(X,Y ) be a polynomial of degree greater than 0 in Y over a field F of
characteristic 0. Then all but a finite number of values b ∈ F are regular.

proof If we eliminate those values of b, which are roots of the leading coefficient an, then the
polynomial fb has a positive degree. We now consider f as an element of F (X)[Y ] and it is
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not difficult to see that ∆(f)(b) = ∆(fb), where ∆(f) (resp. ∆(fb)) denotes the discriminant
of f (resp. fb). As ∆(f) is a polynomial with coefficients in F (X), there is a finite number of
elements u of F (X) for which ∆(f)(u) = 0; in particular, there is a finite number of values of
b ∈ F for which ∆(f)(b) = 0. If exclude these values, then ∆(fb) = ∆(f)(b) 6= 0, i.e., b is regular.
2

We may now define the notion of a Hilbertian field. If for any f ∈ F [X,Y ] which is irre-
ducible, there exists an infinite number of values of b ∈ F such that fb(Y ) = f(b, Y ) ∈ F [Y ] is
irreducible, then we say that the field F is Hilbertian. We say that fb is a specialization of F .
Clearly a finite field cannot be Hilbertian. This is also the case for a field which is algebraically
closed. An important example of a Hilbertian field is that of the rational numbers Q. This is
known as Hilbert’s irreducibility theorem. We will prove this in Section 4. of the article. For the
moment we will consider certain important properties of Hilbertian fields.

1. Properties of Hilbertian fields

In this section we present some technical results, which enable us to illustrate how the notion
of a Hilbertian field intervenes in inverse Galois theory. In particular, the aim is to arrive at
an important result at the end of the section, namely Theorem

thmHILBERTprop1
1. It could be useful to look at

this theorem before reading the section in detail, this in order to appreciate the direction of the
section.

lemHILBERTprop1 Lemma 1 Let R be an integral domain, S a subring of R and f, h ∈ S[X], with f monic. If
g ∈ R[X] and fg = h, then g ∈ S[X].

proof As f is monic, there exist q, r ∈ S[X] such that h = fq+ r, with deg r < deg f . We have

fq + r = fg =⇒ r = f(g − q).

As R is an integral domain,

deg r = deg f + deg(g − q) =⇒ g − q = 0,

because deg r < deg f . Therefore g = q ∈ S[X]. 2

The next preliminary result concerns Galois extensions of fields of fractions and is interesting
in its own right.

proposHILBERTprop1 Proposition 2 Suppose that R is an integral domain and F its field of fractions. In addition,
let E be a separable extension of F of degree n. Then there exists α ∈ E such that E = F (α)
and m(α, F ) ∈ R[X].

proof From the primitive element theorem we know that there exists β ∈ E such that E = F (β).
As F is the field of fractions of R, we may multiply m = m(β, F ) by a nonzero constant d ∈ R
to obtain dm ∈ R[X]. Setting α = dβ, we have F (α) = F (β). We now look for m(α, F ). If

f(X) = dnb0 + dn−1b1X + · · ·+ dbn−1X
n−1 +Xn,

where
m(X) = b0 + b1X + · · ·+ bn−1X

n−1 +Xn,

then f ∈ R[X] and
f(α) = f(dβ) = dnm(β) = 0.
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Also, f is monic and
[E : F ] = [F (α) : F ] = [F (β) : F ] = n

and so f is the minimal polynomial of α over F and f ∈ R[X]. This proves the result. 2

At this point we introduce some notation. If R is a subring of the field F and A a subset of
an extension E of F , then we will write R[A] for the subring of E generated by R and A. If A is
composed of a single element a, then we will write R[a] for R[{a}]. From now on we will suppose
that rings and fields have characteristic 0. The next result is fundamental.

lemHILBERTprop2 Lemma 2 We take R, F , E, α as in Proposition
proposHILBERTprop1
2, with f = m(α, F ) ∈ R[X], and A a finite

subset of E containing α such that

∀x ∈ A ∀σ ∈ Gal(E/F ), σ(x) ∈ A.

Then there exists u ∈ R such that, for any field F ′ and ring homomorphism ω : R −→ F ′,
with ω(u) 6= 0, we may find a Galois extension E′ of F ′ and a ring homomorphism extension
ω̃ : R[A] −→ E′ of ω with the following properties:

• E′ = F ′(α′), where α′ = ω̃(α);

• If f ′ ∈ F ′[X] is the polynomial obtained from f by applying ω to the coefficients of f and
f ′ is irreducible, then G′ = Gal(E′/F ′) is isomorphic to G = Gal(E/F ).

proof The proof of this result is rather long, so we will proceed by steps.

1. Definition of u: Let u = ∆(f), the discriminant of f . (For a definition of the discriminant,
see for example

rotman
[4]). As charF = 0, because charR = 0, and f is irreducible, f has no multiple

root. This implies that u 6= 0. If F ′ is a field and ω : R −→ F ′ a ring homomorphism such that
ω(u) 6= 0, then ∆(f ′) = ω(u) 6= 0, hence f ′ is strongly separable.

2. A first extension of R and ω: We now construct a ring R̃, containing R and we extend ω to
this ring. As E = F (α) and A ⊂ E, for every x ∈ A, there exists gx ∈ F [X] such that x = gx(α).
In addition, F is the field of fractions of R, and so there exists dx ∈ R∗ such that dxgx ∈ R[X].
We now set

d =
∏
x∈A

dx.

Then dgx ∈ R[X], for all x ∈ A. We now set

R̃ = R[d−1] ⊂ F

and extend ω to ω1 : R̃ −→ F ′ by setting ω1(d−1) = ω(u)−1.
It should be noticed that R̃[A] = R̃[α]. First, α ∈ A implies that R̃[α] ⊂ R̃[A]. On the other

hand, if x ∈ A and gx(X) =
∑n
i=0 aiX

i, with a0, . . . , an ∈ F , then

x = gx(α) =

n∑
i=0

aiα
i =⇒ dx =

n∑
i=0

 ∏
y∈A,y 6=x

dy

 (dxai)α
i,

which lies in R[α], because dxai ∈ R, for all i, and dy ∈ R, for all y. However, R[α] ⊂ R̃[α] and
x = d−1(dx) ∈ R̃[α]. Hence, A ⊂ R̃[α] and so R̃[A] ⊂ R̃[α].
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3. R̃[X]/(f) and R̃[α] are isomorphic: There is a natural homomorphism from R̃[X] into R̃[α]:

φ : R̃[X] −→ R̃[α], g 7−→ g(α).

If h ∈ kerφ, then there exists g ∈ F [X] such that h = fg, because f = m(α, F ). From LemmalemHILBERTprop1
1, g ∈ R̃[X], because R̃ is a subring of F . Therefore kerφ ⊂ (f). On the other hand, if g ∈ (f),
then g(α) = 0 and so g ∈ kerφ. It follows that kerφ = (f). As φ is surjective, we have an
isomorphism

φ̄ :
R̃[X]

(f)
−→ R̃[α].

4. Construction of the extension E′ of F ′: Our next task is to construct a Galois extension E′
of F ′ and a ring homomorphism ω̃ from R̃[A] into E′, extending ω1 and hence ω. Let g′ be
an irreductible factor of f ′ and ρ : F ′[X] :−→ F ′[X]/(g′) the natural projection. From the
homomorphism ω1 : R̃ −→ F ′ constructed above, we obtain the natural homomorphism ω̂1 :
R̃[X] −→ F ′[X]. We now compose ω̂1 with ρ to obtain the homomorphism

ρ ◦ ω̂1 : R̃[X] −→ F ′[X]/(g′)

and then use this to define another homomorphism:

γ :
R̃[X]

(f)
−→ F ′[X]

(g′)
, v + (f) 7−→ ρ ◦ ω̂1(v).

(As ρ ◦ ω̂1(f) = f ′ + (g′) and g′|f ′, we must have ρ ◦ ω̂1(v) = 0, for all v ∈ (f), hence γ is
well-defined.)

Now we set
E′ =

F ′[X]

(g′)
and ω̃ = γ ◦ φ̄−1.

As g′ is irreducible E′ is a field, which is clearly an extension of F ′. Also, R̃[A] = R̃[α] and so ω̃
is a homomorphism from R̃[A] into E′. We need to check that ω̃ extends ω. If x ∈ R ⊂ R̃[A],
then

ω̃(x) = γ ◦ φ̄−1(x) = γ(x+ (f)) = ρ ◦ ω̂1(x)

= ρ(ω1(x)) = ρ(ω(x)) = ω(x) + (g′),

therefore ω̃ extends ω to R̃[A]. If we restrict ω̃ to R[A], then we have the homomorphism we are
looking for, under the conditions that E′ = F ′(α′) and that E′ is a Galois extension of F ′.

5. E′ = F ′(α′): As
φ̄−1(α) = X + (f)

and
γ(X + (f)) = ρ(ω̂1(X)) = ρ(X) = X + (g′),

we have
α′ = ω̃(α) = X + (g′)

and, by Result
lemSPLIT1
2,

F ′(α′) = F ′(X + (g′)) =
F ′[X]

(g′)
= E′.
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6. E′ is a Galois extension of F ′: As charF ′ = 0, we only need to show that E′ is a normal
extension of F ′. Let α1, . . . , αn be the roots of f . Since f is irreducible over F and E is a
splitting field of f , Theorem

thGALPOLYirred1
10 ensures that the Galois group G = G(E/F ) acts transitively on

the roots of f . This implies that the roots of f belong to A, because α ∈ A. Moreover, the
roots of f ′ are ω̃(α1), . . . , ω̃(αn), since, by the relations between the roots of a polynomial and
its coefficients,

f ′(X) = (−ω̃(α1) +X) · · · (−ω̃(αn) +X).

Consequently,
E′ = F ′(α′) = F ′(ω̃(α1), . . . , ω̃(αn))

is a splitting field of f ′ and, by Theorem
NORMALth1
7, E′ is a normal extension of F ′.

7. The special case g′ = f ′: In this case, f ′ is irreducible. As above, let α1, . . . , αn be the con-
jugates of α. Since E = F (α), from Result

propSPLIT2
4 there exists a unique σi ∈ G such that σi(α) = αi.

Similarly, α′1, . . . , α′n are the conjugates of α′ and, since E′ = F ′(α′) and f ′ is irreducible over
F ′, Result

propSPLIT2
4 ensures the existence of a unique σ′i ∈ G′ = Gal(E′/F ′) such that σ′i(α′) = α′i.

From Step 1. of our proof (the definition of u), the values of α1, . . . , αn are distinct. Conse-
quently, the automorphisms σ1, . . . , σn are different elements of G. Moreover, Result

thGALGRP1
9 ensures

that G has cardinal n. Thus G = {σ1, . . . , σn}. Similarly, since f ′ is irreducible, G′ is of cardinal
n and G′ = {σ′1, . . . , σ′n}.

We now define a mapping Φ from G into G′ by setting Φ(σi) = σ′i. We will prove that this
mapping is an isomorphism. First we will show that

∀s ∈ R̃[A], ∀σi ∈ G, ω̃(σi(s)) = σ′i(ω̃(s)). (1) eqnHILBERTprop1

As R̃[A] = R̃[α], it is sufficient to prove the identity for α and for the elements of R̃. For α we
have

ω̃(σi(α) = ω̃(αi) = α′i = σ′i(α
′) = σ′i(ω̃(α)).

If x ∈ R̃, then x ∈ F , hence

ω̃(σi(x)) = ω̃(x) = γ ◦ φ̄−1(x) = γ(x+ (f)) = ρ ◦ ω̂1(x)

= ω̂1(x) + (g′) = ω̂1(x) + (f ′),

because g′ = f ′. However, ω̂1(x) ∈ F ′, therefore

ω̂1(x) + (f ′) = σ′i(ω̂1(x) + (f ′)).

Thus
ω̃(σi(x)) = σ′i(ω̃(x)).

It follows that the identity (
eqnHILBERTprop1
1) applies. We now use this identity to prove that Φ is a homomor-

phism. Since σi(α) ∈ A, for i = 1, . . . , n, we have

(σiσj)
′(α′) = (σiσj)

′(ω̃(α))

= ω̃((σiσj)(α))

= ω̃(σi(σj(α)))

= σ′i(ω̃(σj(α)))

= σ′iσ
′
j(ω̃(α))

= σ′iσ
′
j(α
′).
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Therefore Φ is a homomorphism. Clearly Φ is surjective. As |G| = |G′|, Φ is also injective, hence
an isomorphism. This finishes the proof. 2

In inverse Galois theory we are confronted with the problem of determining whether a given
group H may be considered as the Galois group of a Galois extension E of a certain field F ,
usually Q. This may be difficult to decide directly. However, it may be possible to take another
field F ′ and find a Galois extension E′ of this field such that H is isomorphic to the Galois group
Gal(E′/F ′), which is in turn isomorphic to the group Gal(E/F ). We will now consider this
question.

Let F be a Hilbertian field and E a Galois extension of degree n of F (X), the field of fractions
of the polynomial ring F [X]. From Proposition

proposHILBERTprop1
2, we know that there is an element α ∈ E, such

that E = F (X)(α) and f(Y ) = m(α, F (X)) ∈ F [X][Y ]. Then f is irreducible in F [X][Y ] (in
the sense of our definition at the beginning of the article).

thmHILBERTprop1 Theorem 1 For an infinite number of values b ∈ F , fb(Y ) = f(b, Y ) is irreducible in F [Y ]
and E′ = F [Y ]/(fb) is a Galois extension of F , with G = Gal(E/F (X)) isomorphic to G′ =
Gal(E′/F ).

proof We apply Lemma
lemHILBERTprop2
2. If A is the set of roots of f in E, then

∀x ∈ A ∀σ ∈ G = Gal(E/F (X)), σ(x) ∈ A

and α ∈ A. We choose b ∈ F and consider the homomorphism

ωb : F [X] −→ F, g 7−→ g(b).

From Lemma
lemHILBERTprop2
2, there exists u ∈ F [X] such that, if ωb(u) 6= 0, then there is an isomorphism Φb

from Gal(E/F (X)) onto Gal(E′/F ), if fb is irreducible. Indeed, if f(X,Y ) =
∑n
i=0 ai(X)Y i,

then

f ′(Y ) =

n∑
i=0

ωb(ai(X))Y i =

n∑
i=0

ai(b)Y
i = fb(Y ),

where f ′ is defined as in Lemma
lemHILBERTprop2
2. Moreover, in Step 4. of Lemma

lemHILBERTprop2
2 we saw that E′ = F ′[X]/(f ′),

which leads to the form of E′ in the statement of the theorem. We notice that u ∈ F [X], so
that u(b) = 0 for a finite number of values b. Eliminating these values from the infinite num-
ber of values b with fb irreducible leaves us with an infinite number of values b, hence the result.2

Remark Suppose that we have a finite group H and we wish to know whether it can be repre-
sented as a Galois group over a given Hilbertian field F , then we may look for a Galois extension
E of the field F (X) such that H is isomorphic to the Galois group G = Gal(E/F (X)). (As E
is a finite extension of a field of functions, we say that E is a function field.) From the theorem,
we know that there is a Galois extension E′ of F such that H is isomorphic to G′ = Gal(E′/F ).
However, we do not know how to find such an extension.

2. A characterization of Hilbertian fields

In this section we continue our discussion of extensions of Hilbertian fields and find a useful
characterization of Hilbertian fields. As in Theorem

thmHILBERTprop1
1, we consider a Hilbertian field F and E a

Galois extension of degree n of F (X) and we take an element α ∈ E, such that E = F (X)(α)
and let f(X,Y ) = m(α, F (X)) ∈ F [X][Y ].

6



propHILBERText1 Proposition 3 Let L be a finite extension of F such that L(X) ⊂ E and h ∈ L[X][Y ] irreducible
with roots in E. Up to a finite number of the values b ∈ F such that fb(Y ) is irreducible hb(Y )
is irreducible in L[Y ].

proof Let β′1, . . . , β′m be the roots of hb in an extension E′ of L, where fb is irreducible in
F [Y ] ⊂ L[Y ]. If hb is reducible, then we can write hb = ubvb, with ub, vb ∈ L[Y ] and deg ub > 0,
deg vb > 0. Without loss of generality we may write

ub(Y ) = γ(−β′1 + Y ) · · · (−β′s + Y )

vb(Y ) = δ(−β′s+1 + Y ) · · · (−β′m + Y ),

with γ, δ ∈ L. If σ ∈ Gal(E′/L), then σ permutes the roots of ub and of vb, which cannot be
possible if Gal(E′/L) acts transitively on the roots. It follows that, if Gal(E′/L) acts transitively
on the roots of hb, then hb is irreducible. We will show that, with the exception of a finite set
of values of b, there is an extension E′ of L containing the roots of hb and such that the Galois
group Gal(E′/L) acts transitively on these roots.

As L is a finite extension of F and charF = 0, by the primitive element theorem, there exists
x ∈ L such that L = F (x). We notice that

F ⊂ F (x) = L =⇒ F (X) ⊂ L(X) ⊂ E.

In addition, as x ∈ L, we have x ∈ L(X), so we may consider the conjugates of x over F (X).
The roots β1, . . . , βm of h(X,Y ) are, by hypothesis, in E. We let A be the subset of E composed
of x, with its conjugates over F (X), α, with its conjugates over F (X), and the roots of h(X,Y ).
If σ ∈ Gal(E/F (X)) and a ∈ A, then clearly σ(a) ∈ A. We notice that the roots of hb are
distinct if the discriminant ∆(hb) 6= 0. However, ∆(hb) = ∆(h)(b), which has the value 0 for a
finite number of values of b. Therefore, if we exclude these values, we can be sure that the roots
of hb are distinct.

As in Theorem
thmHILBERTprop1
1, we consider the valuation homomorphism

ωb : F [X] −→ F, g 7−→ g(b),

where b ∈ F . Lemma
lemHILBERTprop2
2 ensures the existence of u ∈ F [X] such that, if ωb(u) 6= 0, we may extend

ωb to a homomorphism
ω̃b : F [X][A] −→ E′,

where E′ is a Galois extension of F . Moreover, u(b) = 0 for a finite number of values b, so we
may suppose that ωb(u) 6= 0. As a generator of L over F is included in A, we have L ⊂ F [X][A].
Also, ω̃b restricted to F is the identity and so ω̃b restricted to L is not trivial. Given that a ring
homomorphism of a field into another field is either trivial or injective, it must be so that ω̃b
restricted to L is injective. We will note L̃ the image of L under ω̃b in E′. As L̃ is isomorphic to
L, E′ is an extension of L.

We now let χb be the natural homomorphism from F [X][A][Y ] into E′[Y ] generated by ω̃b. We
may identify F [A][X] and F [X][A]. To see this it is sufficient to notice that, If A = {a1, . . . , an},
then F [A][X] is composed of sums of expressions of the form cas11 . . . asnn X

t and F [X][A] of sums
of expressions of the form cXtas11 . . . asnn , where c ∈ F and s1, . . . sn, t ∈ N. Thus we may consider
that L[X] = F (x)[X] is included in F [X][A], because x ∈ A. We may write

h(X,Y ) =

m∑
i=0

hi(X)Y i,

7



where the coefficients hi(X) lie in L[X], a subset of F [X][A]. We are interested in finding the
form of χb(h). We may write

hi(X) =

n∑
j=1

aijX
j ,

with aij ∈ L. As L = F (x), we can express each aij in the form

aij =

m∑
k=1

uijk x
k,

with uijk ∈ F . Hence,

ω̃b

 n∑
j=1

aijX
j

 =

n∑
j=1

ω̃b(aij)ω̃b(X
j)

=

n∑
j=1

ω̃b

(
m∑
k=1

uijk x
k

)
bj

=

n∑
j=1

(
m∑
k=1

uijk ω̃b(x)k

)
bj .

Therefore, if we identify L̃ and L and consider the polynomial h̃ ∈ L̃[X][Y ] corresponding to
h ∈ L[X][Y ], then we find an expression for the coefficients of h̃b by replacing x with ω̃b(x). Let
us write h̃b for this polynomial. Then we have

χb(h(X,Y )) = h̃b(Y ).

We notice that the roots of h lie in A so their images under ω̃b are in E′. We have

h(X,Y ) = hm(X)(−β1 + Y ) · · · (−βm + Y ) =⇒ h̃b(Y ) = h̃m(b)(−β′1 + Y ) · · · (−β′m + Y ),

where βj′ = χb(βi), for some i. So we have found expressions for the roots of h̃b.
From our work at the beginning of the proof, to show that h̃b is irreducible, it is sufficient to

prove that the Galois group Gal(E′/L̃) acts transitively on the roots β′j (for any b in the infinite
set we have retained). This we will now do. As h(X,Y ) is irreducible in L[X][Y ], from Gauss’s
lemma, h(X,Y ) is also irreducible in L(X)[Y ]. E is a normal extension of F (X) containing L(X),
hence, by Result

NORMALprop2
6, E is a normal extension of L(X). Moreover, by Result

NORMALth1
7, E is the splitting

field of a polynomial g ∈ L(X)[Y ]. From Result
thGALPOLYirred1
10, the Galois group G1 = Gal(Ē/L(X)), where

Ē is a splitting field of h included in E, acts transitively on the roots βi. Now, Result
thSPLIT2
3, with

F = F ′ = Ē and f = f∗ = g, implies that any element σ ∈ G1 may be extended to an element
σ̃ ∈ G2 = Gal(E/L(X)). This implies that G2 acts transitively on the roots βi. Supposing that
fb is irreducible, then, from Theorem

thmHILBERTprop1
1, G = Gal(E/F (X)) is isomorphic to G′ = Gal(E′/F ),

where E′ = F [Y ]/(fb). (This is the same E′ as that obtained earlier in the proof after applying
Lemma

lemHILBERTprop2
2.)

If we restrict the isomorphism from G onto G′ to the subgroup G2, then we obtain a subgroup
G′2 of G′. We claim that G′2 is a subgroup of the Galois group G′′ = Gal(E′/L̃). To prove this
we need to show that the automorphisms of G′2 fix the elements of L̃. We use the identity (

eqnHILBERTprop1
1)

and the explicit form of the isomorphism Φ from G onto G′. If z̃ ∈ L̃, σ ∈ G2 and σ′ the
corresponding automorphism in G′2, then

σ′(z̃) = σ′(ω̃b(z)) = ω̃b(σ(z)) = ω̃b(z) = z̃.
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This proves that G′2 ⊂ G′′ and so the claim.
We now show that G′′ acts transitively on the roots β′j . There exists σ ∈ G2 such that σ(βi) =

βj , because G2 acts transitively on the roots βi. Let σ′ be the element of G′2 corresponding to
σ. Then, using the identity (

eqnHILBERTprop1
1) again, we have

σ′(β′i) = σ′(ω̃b(βi)) = ω̃b(σ(βi)) = ω̃b(βj) = β′j .

Therefore G′′ acts transitively on the roots β′j . This finishes the proof. 2

We can now establish the characterization of Hilbert fields, which we referred to at the
beginning of the section.

thHILBERText1 Theorem 2 The field F is Hilbertian if and only if, for every finite extension L of F and finite
set of irreducible polynomials h1, . . . , hk ∈ L[X,Y ], there is an infinite number of values b ∈ F
such that hi,b(Y ) = hi(b, Y ) ∈ L[Y ] is irreducible, for i = 1, . . . , k.

proof Let F be an Hilbertian field, L a finite extension of F and h1, . . . , hk irreducible polynomi-
als in L[X,Y ] = L[X][Y ]. (From Gauss’s Lemma, these polynomials are irreducible in L(X)[Y ].)
Adding the roots of the polynomials hi to L(X), we obtain a finite extension M of L(X). From
Result

thSEPext4
5, L(X) is a finite extension of F (X), so M is a finite extension of F (X). Now let E be

a normal closure of M over F (X). Then E is finite Galois extension of F (X) (Result
NormalClos1
8). From

Result
proposHILBERTprop1
2, we may find α ∈ E such that E = F (α) and m(α, F (X)) ∈ F [X][Y ]. As usual, we

write f(X) for m(α, F (X)). In addition, L(X) ⊂ E and the roots of each hi are in E. From
Proposition

propHILBERText1
3, for each i, for all but a finite number of the b ∈ F such that fb(Y ) is irreducible,

hi,b(Y ) is irreducible. It follows that hi,b(Y ) is irreducible, for all i, for an infinite number of
values of b.

The converse is elementary. We only need to choose L = F and k = 1. 2

We know that Q is a Hilbertian field. The next two results will show us that there are many
other such fields.

Theorem 3 If F is a Hilbertian field, then any finite extension E of F is also Hilbertian.

proof Let E be a finite extension of the Hilbertian field F and f ∈ E[X,Y ] irreducible. From
Theorem

thHILBERText1
2, there are infinitely many b ∈ F , such that fb is irreducible. As F ⊂ E, there are

infinitely many b ∈ E such that fb is irreducible. Hence E is Hilbertian. 2

We recall that a number field is a finite extension in C of the field Q.

Corollary 1 Number fields are Hilbertian.

3. The Kronecker specialization

We have considered extensions of fields of fractions of polynomials in one variable. In this
section we aim to consider the case of polynomials in several variables. We use a tool known as
the Kronecker specialization. We fix an integer d > 1. For a field F and an integer k > 2, we
define a mapping Sd from F [X1, . . . , Xk] into F [X,Y ] by

Sd(f)(X,Y ) = f(X,Y, Y d, Y d
2

, . . . , Y d
k−2

).

The mapping Sd is called a Kronecker specialization. We note Vd the collection of polynomials
in F [X1, . . . , Xk] whose degree is less than d in each variable X2, . . . , Xk] and Wd the collection
of polynomials in F [X,Y ] whose degree is inferior to dk−1 in the variable Y .
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Proposition 4 The mapping Sd defines a bijection from Vd onto Wd.

proof First let f ∈ Vd be a monomial. Then f has the form aXα1
1 · · ·X

αk

k and so

Sd(f) = aXα1Y α2+α3d+α4d
2+...+αkd

k−2

.

If g ∈ Vd, with g = bXβ1

1 · · ·X
βk

k , and Sd(g) = Sd(f), then

b = a β1 = α1 β2 + β3d+ β4d
2 + . . .+ βkd

k−2 = α2 + α3d+ α4d
2 + . . .+ αkd

k−2.

As the representation in base d is unique, we must have αi = βi, for all i ≥ 2. Hence g = f and
Sd defines an injection from the monomials in Vd into the monomials in Wd. Also, any integer
s < dk−1 has a unique representation in base d:

s = α2 + α3d+ α4d
2 + · · ·+ αkd

k−2,

which implies that Sd restricted to the monomials of Vd defines a bijection onto the monomials
of Wd. As

Sd(m1 + · · ·+mk) = Sd(m1) + · · ·+ Sd(mk),

for monomials m1, . . . ,mk, the mapping Sd defines a bijection from Vd onto Wd 2

Remark It is not difficult to see that, if the product fg is in Vd, then

Sd(fg) = Sd(f)Sd(g).

We now see that the Hilbertian property "carries over" to multivariable polynomials. (We
advise the reader to return to the beginning of the article to revise the definition of an irreducible
polynomial in several variables.)

thHILBERTkron1 Theorem 4 If F is a Hilbertian field and f ∈ F [X1, . . . , Xk] is irreducible, then there exists an
infinite number of values b ∈ F such that f(b,X2, . . . , Xk) ∈ F [X2, . . . , Xk] is irreducible.

proof Let d be an integer superior to the degree of each variable Xi in f . We can write

Sd(f)(X,Y ) = g(X)
∏
i∈C

gi(X,Y ), (2) eqnHILBERTkron1

where the gi are irreducible polynomials in F [X][Y ] and C is a finite index set. As F is Hilbertian,
from Theorem

thHILBERText1
2, for an infinite number of values of b ∈ F , gi,b(Y ) = gi(b, Y ) is irreducible in

F [Y ]. If we exclude the values b which are roots of g, then we still have an infinite number of
values of b ∈ F such that gi(b, Y ) is irreducible, for all i ∈ C. For any b in the remaining set, we
have the factorization into prime factors in F [Y ]:

Sd(f)(b, Y ) = g(b)
∏
i∈C

gi(b, Y ).

For any such b, suppose now that fb = f(b,X2, . . . , Xk) is reducible, i.e., fb = uv, with u and
v nonconstant. We may consider fb, u and v as members of F [X1, . . . , Xk]. As fb ∈ Vd, we have
u, v ∈ Vd and

Sd(u)Sd(v) = Sd(uv) = Sd(fb) = Sd(f)(b, Y ) = g(b)
∏
i∈C

gi(b, Y ).
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We now have a partition {A,B} of C, with A and B nonempty, since u and v are nonconstant,
and α, β ∈ F such that g(b) = αβ and

Sd(u) = α
∏
i∈A

gi(b, Y ) and Sd(v) = β
∏
i∈B

gi(b, Y ).

At this point we set

U(X,Y ) =
∏
i∈A

gi(X,Y ) and V (X,Y ) =
∏
i∈B

gi(X,Y ).

As U, V ∈Wd, there exist unique ũ, ṽ ∈ Vd such that Sd(ũ) = U and Sd(ṽ) = V . Then

Sd(ũb) = Sd(ũ)(b, Y ) = U(b, Y ) =
∏
i∈A

gi(b, Y ) = α−1Sd(u) = Sd(α
−1u),

which implies that ũb = α−1u. In the same way, ṽb = β−1v and so

ũbṽb = α−1β−1uv = g(b)−1fb.

Our next step is to show that ũṽ /∈ Vd. If this is not the case, then

Sd(gũṽ) = gSd(ũ)Sd(ṽ) = gUV = Sd(f),

from which we deduce that
gũṽ = f,

which contradicts the irreducibility of f , since ũ and ṽ are nonconstant. Hence ũṽ /∈ Vd.
We are now in a position to prove that fb is irreducible for an infinite number of values of

b. We may consider f as a polynomial in F [X1][X2, . . . , Xk]. Thus a monomial is of the form
a(X1)Xn2 · · ·Xnk . As ũṽ /∈ Vd and ũbṽb = g(b)−1fb, to avoid a contradiction, b must be a root
of a(X1), whenever there is an i such that the power ni of Xi is greater than d − 1. We can
eliminate these values of b for each such monomial. As the number of these monomials is finite,
we are left with an infinite number of values of b for which fb is irreducible. 2

Corollary 2 Let F be a Hilbertian field and f ∈ F [X1, . . . , Xk], with k ≥ 2, irreducible.
For every polynomial p ∈ F [X1, . . . , Xk−1], there exist elements b1, . . . , bk−1 ∈ F such that
p(b1, . . . , bk−1) 6= 0 and the polynomial f(b1, . . . , bk−1, Xk) is irreducible.

proof Let f ∈ F [X1, . . . , Xk] be irreducible. We aim to prove by induction on n that, for every
polynomial p ∈ F [X1, . . . , Xn], with n < k, there exist b1, . . . , bn ∈ F such that p(b1, . . . , bn) 6= 0
and f(b1, . . . , bn, Xn+1, . . . , Xk) is irreducible. First, let p ∈ F [X1]. From Theorem

thHILBERTkron1
4, there is an

infinite number of values of b ∈ F such that f(b,X2, . . . , Xk) is irreducible. If we take one such
b which is not a root of p, then we have a value of b satisfying the required conditions. Thus the
result is true for n = 1.

We now suppose that the result is true for n < k − 1 and consider the case n + 1. Let
p ∈ F [X1, . . . , Xn+1]. We may consider p as an element of F [Xn+1][X1, . . . , Xn]. Each co-
efficient has a finite number of roots. If c is not one of these roots, then p(X1, . . . , Xn, c) is
a nonzero polynomial in F [X1, . . . , Xn]. From the induction hypothesis, there exist b1, . . . , bn
such that p(b1, . . . bn, c) 6= 0 and f(b1, . . . , bn, Xn+1, . . . , Xk) is irreducible. Using Theorem

thHILBERTkron1
4,

we know that there is an infinite number of values of b, such that f(b1, . . . , bn, b,Xn+2, . . . , Xk)
is irreducible. As p(b1, . . . , bn, Xn+1) ∈ F [Xn+1], if we eliminate any b which is a root of this
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polynomial, then we have p(b1, . . . , bn, b) 6= 0. Therefore the result is true for n+1. This finishes
the induction step. 2

To prove the next theorem, which will provide us with more Hilbertian fields, we will need
Result

ufd
1.

thHILBERTkron2 Theorem 5 If F is Hilbertian field, then F (X1, . . . , Xk) is Hilbertian field, for any k ∈ N∗.

proof Let f ∈ F (X1, . . . , Xk)[X,Y ] be irreducible. There exists g ∈ F (X1, . . . , Xk)∗ such that
gf ∈ F [X1, . . . Xk, X][Y ]. We may write gf = c(gf)h, where c(h) = 1. We have

h =
g

c(gf)
f and

g

c(gf)
∈ F (X1, . . . , Xk, X)∗.

We notice that h ∈ F (X1, . . . , Xk, X)[Y ] is primitive and irreducible. From Gauss’s Lemma, h is
also irreducible in F [X1, . . . , Xk, X][Y ]. Now, using Theorem

thHILBERTkron1
4, we see that there are infinitely

many values of b ∈ R such that h(X1, . . . , Xk, b, Y ) is irreducible in F [X1, . . . , Xk][Y ]. Using
Gauss’s Lemma again, we see that h(X1, . . . , Xk, b, Y ) is irreducible in F (X1, . . . , Xk)[Y ]. To
finish, we notice that

f(X1, . . . , Xk, b, Y ) =
c(gf)b
g

h(X1, . . . , Xk, b, Y ),

where c(gf)b is the polynomial in F [X1, . . . , Xk] obtained by replacing the variable X by b. Now
c(fg) ∈ F (X1, . . . Xk)[X], so there can only be a finite number of values of b such that c(gf)b = 0.
If we exclude these values, then c(gf)b

g is a unit in F (X1, . . . , Xk) and so f(X1, . . . , Xk, b, Y ) is
irreducible in F (X1, . . . Xk)[Y ]. We have shown that F (X1, . . . , Xk) is Hilbertian. 2

We may now extend Theorem
thmHILBERTprop1
1.

HREDthm1a Theorem 6 If F is an Hilbertian field and E a Galois extension of F (X1, . . . , Xk), then there
exists a Galois extension E′ of F such that Gal(E/F (X1, . . . , Xk)) is isomorphic to Gal(E′/F ).

proof We prove this result by induction on k. For k = 1, it is sufficient to apply TheoremthmHILBERTprop1
1. Suppose now that the result is true for k and let us consider the case k + 1. E is a Galois
extension of F (X1, . . . , Xk, Xk+1). From Theorem

thHILBERTkron2
5, F (X1, . . . , Xk) is Hilbertian and so there

is a Galois extension E′ of F (X1, . . . , Xk) such that

Gal(E/F (X1, . . . , Xk, Xk+1)) ' Gal(E′/F (X1, . . . , Xk)).

From the induction hypothesis there is an extension E′′ such that

Gal(E′/F (X1, . . . , Xk)) ' Gal(E′′/F ),

therefore
Gal(E/F (X1, . . . , Xk, Xk+1)) ' Gal(E′′/F ).

This finishes the induction step and the proof. 2

Remark We recall that the general polynomial of degree k over a field F has the form

f(Y ) = Y n −X1Y
n−1 +X2Y

n−2 + · · ·+ (−1)n−1Xn−1Y + (−1)nXn ∈ F (X1, . . . , Xk)[Y ],
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where F (X1, . . . , Xk) is the rational function field over F in k variables. The Galois group of
f is the symmetric group Sk (see

spindler
[5]). In particular, this is the case if F = Q. Writing E for

the splitting field of f over Q(X1, . . . , Xk) and using the fact that Q is a Hilbertian field, from
Theorem

HREDthm1a
6 we deduce that Sk is realizable as a Galois group over Q.

4. Proof of Hilbert’s irreducibility theorem

Above we stated without proof Hilbert’s irreducibility theorem, namely that the field of
rational numbers Q is a Hilbertian field, i.e., for any f ∈ Q[X,Y ], which is irreducible, there
exists an infinite number of values b ∈ Q such that f(b, Y ) ∈ Q[Y ] is irreducible. We aim now to
provide a detailed proof of this result. Our proof is based on that given in

hadlock
[1], with modifications.

We now suppose that our field is C, the complex numbers. For any z ∈ C, the polynomial f(z, Y )
has n roots which may or may not be distinct. For any z, we may write u1(z), . . . , un(z) for
these roots. Thus we obtain n functions defined on C. If b is a regular value, then the roots
u1(b), . . . , un(b) are distinct. We can say more.

lemHILBIRRED1 Lemma 3 If b is a regular value of the polynomial f(X,Y ) over C, then there is a neighbourhood
N of b in C such that the functions u1(z), . . . , un(z) are analytic on N .

proof We will suppose that the functions ui exist and find the possible forms, then we will
show that the functions so obtained satisfy the conditions. Let u(z) be one such function and,
to begin, we will suppose that b = 0 and u(0) = 0. We seek a power series

u(z) =

∞∑
k=1

bkz
k,

with bk ∈ C, which converges on some set N = {z ∈ C : |z| < R}, with R > 0, within which

f(z, u(z)) = 0.

We may write f(z, u(z)) in the form

f(z, u) = a10z + a01u+
∑
i+j≥2

aijz
iuj .

The sum on the right is finite, because f is a polynomial. Let fu be the derivative of f with
respect to the variable u. As z = 0 is a regular value, fu(0, 0) = a01 6= 0, so we may write

f(z, u) = −a01

−a10
a01

z − u+
∑
i+j≥2

− aij
a01

ziuj

 = −a01

a′10z − u+
∑
i+j≥2

a′ijz
iuj

 . (3) eqnHILBERTreduc1

From this we deduce
fu(z, u) = −a01 (−1 + g(z, u)) ,

where every monomial of g has degree at least 1.
We now substitute u(z) =

∑∞
k=1 bkz

k in the equation f(z, u(z)) = 0:

f(z, u(z)) = −a01

a′10z −∑
k≥1

bkz
k +

∑
i+j≥2

a′ijz
i

∑
k≥1

bkz
k

j
 = 0.
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As this is a power series in z, which we suppose convergent on a neighbourhood of 0, the coefficient
of z, namely a′10 − b1, has the value 0, which implies that b1 = a′10.

Our next step is to take a Taylor expansion of the polynomial f(z, u) in u, around the point
u0 =

∑k−1
i=1 biz

i. For u(z) =
∑
k≥1 bkz

k, we obtain

f(z,

∞∑
i=1

biz
i) = f(z,

k−1∑
i=1

biz
i) +

(
−a01

(
−1 + g(z,

k−1∑
i=1

biz
i)

)) ∞∑
i=k

biz
i

+ terms of degree at least 2k.

The value of this expression is 0, so the coefficient of each power of z must be 0. In particular,
the coefficient of zk is a01bk plus the coefficient ck of zk in the expression of the polynomial
f(z,

∑k−1
i=1 biz

i). Therefore bk = − ck
a01

. With this rule and the initial value b1 = a′10 the entire
sequence of bis is determined. We now have a candidate for the series

∑∞
k=1 bkz

k. We must
show that it has a positive radius of convergence. We will do this by constructing a power series∑∞
k=1Akz

k with positive radius of convergence R and such that, for every k, Ak ≥ |bk|.
For each k, there is a polynomial in several variables with positive integer coefficients, which

we note pk, such that bk is is the value of pk evaluated at the set of coefficients a′ij . We will write
bk = pk(a′ij). Let A be an element of Z such that A ≥ |a′ij |, for all a′ij . If we replace a′ij by A in
the equation (

eqnHILBERTreduc1
3), then we obtain

h(z, v) = Az − v +A
∑
i+j≥2

zivj = 0.

Now, redoing the calculations which we did on the equation (
eqnHILBERTreduc1
3), we obtain a solution of the form∑∞

k=1Akz
k, where Ak is the polynomial expression derived from pk(a′ij) by replacing the a′ijs by

A. Clearly Ak ≥ |bk|, for every k, since the coefficients of the pk are positive. For |z| < 1 and
|u| < 1, we have

0 = Az − v +Az0
∞∑
j=2

vj +Az1
∞∑
j=1

vj +A

∞∑
i=2

zi

 ∞∑
j=0

vj


= Az − v +A

v2

1− v
+A

zv

1− v
+A

(
z2

1− t
1

1− z

)
.

Multiplying by 1− v we obtain

0 = Az(1− v)− v(1− v) +Av2 +Azv +A
z2

1− z
= (A+ 1)v2 − v +

Az

1− z
, (4) eqnHILBERTreduc2

which is a quadratic equation in v. If we set, for z sufficiently small,

v(z) =
1−

(
1− 4(A+ 1) Az1−z

) 1
2

2(A+ 1)
,

then v(z) is the solution of the equation (
eqnHILBERTreduc2
4), with v(0) = 0, where the square root in the

expression is the principal value (for example, see
henrici
[2]). We would like to show that v(z) is

analytic for z sufficiently small. However, the principal value of the function w1(z) = (1− z) 1
2 is

analytic, which is also the case for the function w2(z) = z
1−z . Moreover, for z sufficiently small,

|w2(z)| < 1. Therefore, given that the composition of analytic functions is analytic, we see that
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v(z) is analytic in a neighbourhood of 0. It now follows that u(z) is analytic in a neighbourhood
of 0.

We have supposed that u(0) = 0. If we have u(0) = a, where a is not necessarily 0, then,
writing y(z) = u(z) − a, we have y(0) = 0 and so we have y(z) analytic for z sufficiently small,
which implies that u(z) is analytic for z sufficiently small. Finally, if we suppose that u(b) = a,
then writing y(z) = u(b− z), we have y(0) = a and y(z) is analytic for z sufficiently close to 0,
which implies that u(z) is analytic for u sufficiently close to b.

For each root ai of fb we can find an analytic root function ui(z), with ui(b) = ai, defined on
a neighbourhood Ni of b. As the ai are distincts, by continuity, we may choose a neighbourhood
N of b such that the functions ui(z) are analytic on N and, for any z ∈ N , distinct. This finishes
the proof. 2

Remark For z ∈ N , we may write

f(z, Y ) = an(z)

n∏
i=1

(−ui(z) + Y ) ,

where an(z) is a polynomial in z and the un are analytic functions defined on N .

We need another preliminary result. We take m + 1 increasing values of the real variable t:
t0 < t1 < t2 < · · · < tm and we write Vm for the Vandermonde determinant of the tis, i.e.,

Vm =

∣∣∣∣∣∣∣∣∣
1 t0 t20 . . . tm−10 tm0
1 t1 t21 . . . tm−11 tm1
...

...
...

. . .
...

...
1 tm t2m . . . tm−1m tmm

∣∣∣∣∣∣∣∣∣ .
Now let f : [t0, tm] −→ R be an m times differentiable function. We set

Wm =

∣∣∣∣∣∣∣∣∣
1 t0 t20 . . . tm−10 f(t0)
1 t1 t21 . . . tm−11 f(t1)
...

...
...

. . .
...

...
1 tm t2m . . . tm−1m f(tm)

∣∣∣∣∣∣∣∣∣ .
lemHILBIRRED2 Lemma 4 There exist u ∈ (t0, tm) such that

Wm

Vm
=
f (m)(u)

m!
.

proof Suppose that g : [t0, tm] −→ R is anm times differentiable function and that g(ti) = f(ti),
for all i. By Rolle’s theorem, in each interval (ti, ti+1), there exists ai such that g(1)(ai) = f (1)(ai).
So we have m points a0 < a1 < · · · < am−1 such that g(1)(ai) = f (1)(ai), for all i. We now applly
Rolle’s theorem again and obtain m−1 points b0 < b1 < · · · < bm−2 such that g(2)(bi) = f (2)(bi),
for all i. Continuing in the same way, we finally obtain a point u such that g(m)(u) = f (m)(u)

We now consider the system1 t0 . . . tm0
...

...
. . .

...
1 tm . . . tmm


a0

...
am

 =

 f(t0)
...

f(tm)

 .
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This system has a unique solution and so there exists a unique polynomial g(X) of degree less
than m in R[X] such that g(ti) = f(ti), for all i. From what we have just seen, there exists an
element u ∈ (t0, tm) such that

f (m)(u) = g(m)(u) = m!am =⇒ am =
f (m)(u)

m!
.

Using Cramer’s rule, we obtain

am =
Wm

Vm
=⇒ Wm

Vm
=
f (m)(u)

m!
.

This ends the proof. 2

The next preliminary result is interesting in that it shows that we often only need know that
two functions have the same values at a limited number of points to establish that they have the
same values at all points.

lemHILBIRRED3 Lemma 5 Let G be a connected open subset of C and f , g analytic functions from G into C.
Suppose that there exists a sequence (zn)∞n=1 in Gand z0 ∈ G such that

• for all n ≥ 1, zn 6= z0;

• limn→∞ zn = z0;

• for all n ≥ 1, f(zn) = g(zn).

Then, for all z ∈ G, f(z) = g(z).

proof As f and g are analytic on G, for all z ∈ G, we may find r > 0 (depending on z) such
that, for any z̃ with |z̃ − z| < r, we have

f(z̃) =

∞∑
n=0

an(z̃ − zn)n and g(z̃) =

∞∑
n=0

bn(z̃ − zn)n,

where the coefficients an and bn are in C. Let H be the subset of points z ∈ G where the Taylor
series of f and g coincide, i.e., an = bn, for all n ≥ 0. We aim to show that H = G, which is
sufficient to prove the result. First we show that z0 ∈ H and so H is nonempty. As f and g are
analytic, we may find r > 0 such that, for |z − z0|, we have

f(z) =

∞∑
n=0

an(z − z0)n and
∞∑
n=0

bn(z − z0)n,

where the coefficients an and bn are in C. We will use an induction argument to show that, for
all n, an = bn. To see this, we first notice that f and g are continuous at z0, hence

a0 = f(z0) = lim
n→∞

f(zn) = lim
n→∞

g(zn) = g(z0) = b0.

Suppose now that we have established that am = bm up to a certainm. We set, for all |z−z0| ≤ r,

f∗(z) = am+1+am+2(z−z0)+am+3(z−z0)2+· · · and g∗(z) = bm+1+bm+2(z−z0)+bm+3(z−z0)2+· · · .
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Then, for 0 < |z − z0| < r, we have

f∗(z) =
1

(z − z0)m+1
(f(z)− (a0 + a1(z − z0) + · · ·+ am(z − z0)m))

and
g∗(z) =

1

(z − z0)m+1
(g(z)− (b0 + b1(z − z0) + · · ·+ bm(z − z0)m))

and so, for all n ≥ 1, f∗(zn) = g∗(zn), since zn 6= z0 and f(zn) = g(zn), for all n ≥ 1. It follows
that am+1 = bm+1, because f∗ and g∗ are continuous at z. By induction, for all n, an = bn.
Hence the Taylor series of f and g coincide at z0, which implies that H 6= ∅

The statement that z ∈ H is equivalent to saying that f (n)(z) = g(n)(z) for all n ≥ 0. As the
functions f (n) and g(n) are continuous, H is closed in G. If z ∈ H, then there exists r > 0 such
that f = g on the open disk D(z, r). For any ζ ∈ D(z, r), there is a neighbourhood N of ζ on
which f = g and so have the same Taylor series at ζ. Therefore D(z, r) ⊂ H and it follows that
H is open in G. Since G is connected, we must have H = G and so f(z) = g(z), for all z ∈ G.2

In proving Hilbert’s irreducibility theorem which follows (Theorem
thmHILBIRRED1
7), we will use two more

preliminary results whose proofs we leave as exercises.

exerHILBIRRED1 Exercise 1 Suppose that g ∈ C[X], with deg g = m, and m+ 1 integers ti such that g(ti) ∈ Q.
Show that g ∈ Q[X].

exerHILBIRRED2 Exercise 2 Let m ≥ 1 and f(X) =
∑m
i=0 aiX

i ∈ Z[X]. Show that, if α = p
q , with (p, q) = 1,

is a root of f , then p|a0 and q|am. Deduce that, if f is monic, then any rational root of f is an
integer.

We now turn to the proof of Hilbert’s result.

Theorem 7 (Hilbert’s irreducibility Theorem) If f(X,Y ) ∈ Q[X,Y ] is irreducible, then therethmHILBIRRED1
exists an infinite number of rational numbers b such that fb(Y ) = f(b, Y ) is irreducible in Q[Y ].

proof The proof is rather long and detailed, so we will proceed by steps.

1. The coefficient functions yj : From Proposition
propHILBERTreduc1
1, we know that all but a finite number number

of values b ∈ Q are regular values of f . Consequently, we may choose s0 ∈ Q, a regular value
of f . Lemma

lemHILBIRRED1
3 garantees the existence of n roots u1(s), . . . , un(s) of f(s, Y ), which are analytic

functions on a C-neighbourhood N of s0, which we may suppose to be connected. (This is of
importance later.) As usual we write

f(X,Y ) = a0(X) + a1(X)Y + a2(X)Y 2 + · · ·+ an(X)Y n,

where the ai ∈ Q[X], for i = 0, 1, . . . , n , and an(X) 6= 0. Let us now consider

f(Y ) = a0 + a1Y + a2Y
2 + · · ·+ anY

n,

where, for i = 0, 1, . . . , n, ai is the polynomial function (with coefficients in Q) associated with
the polynomial ai(X). These functions are defined on N . Clearly, f ∈ F [Y ], where F is the
ring of polynomial functions defined on N , with coefficients in Q. Moreover, it is clear that the
functions u1, . . . , un are roots of f and belong to the ring A of analytic functions defined on N .
We have

f(Y ) = an

n∏
i=1

(−ui + Y ).
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We now let S be a proper subset of Nn = {1, . . . , n}, i.e., S 6= ∅,Nn and write

α(Y ) =

n∏
i=1

(−ui + Y ) β(Y ) =
∏
i∈S

(−ui + Y ) γ(Y ) =
∏
i/∈S

(−ui + Y ).

Then α, β, γ ∈ A[Y ] and α = βγ. If the coefficients of both β and γ are in F , then the polynomial
f(X,Y ) can be written as a product of polynomials of degree at least one in Q[X][Y ]. To see
this, it is sufficient to write the equalities satisfied by the coefficients a0, a1, . . . , an in the equality
f(Y ) = anβγ, where an 6= 0. Indeed, let

β(Y ) =

k∏
i=0

biY
i and γ(Y ) =

l∏
j=0

cjY
j ,

where b0, . . . , bk, c0, . . . cl ∈ F . Then

a0(s) = an(s)b0(s)c0(s),

for an infinite number of rational numbers s, hence

a0(X) = an(X)b0(X)c0(X).

Also,
a1(s) = an(s) (b0(s)c1(s) + b1(s)c0(s)) ,

for an infinite number of rational numbers s, hence

a1(X) = an(X) (b0(X)c1(X) + b1(X)c0(X)) .

Continuing in the same way, we find that

ak(X) = an(X)
∑
i+j=k

bi(X)cj(X),

for k = 0, 1, . . . , n. If we set

β(X,Y ) =

k∑
i=0

bi(X)Y i and γ(X,Y ) =

l∑
j=0

cj(X)Y j ,

then
f(X,Y ) = an(X)β(X,Y )γ(X,Y ),

which implies that f(X,Y ) is not irreducible, a contradiction. It follows that, for any proper
subset S of Nn, either β or γ has a coefficient y which is not a polynomial function with rational
coefficients.

If we replace the bi and cj with quotients of polynomial functions with rational coefficients,
then analogous calculations to those which we have just employed show that f(X,Y ) is re-
ducible in F (X)[Y ], which from Gauss’s Lemma is not possible, because f(X,Y ) is irreducible
in F [X][Y ]. Therefore we may assume that y is not even a quotient of polynomial functions with
rational coefficients. We number the distinct functions functions y1, . . . , y2n−2. (We do not say
that these functions are distinct; certain of them may be the same.)
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2. A condition for the irreducibility of f(s, Y ): Suppose that s ∈ N∩Q and that y1(s), . . . , y2n−2(s)
are all in C \Q. We claim that f(s, Y ) is irreducible in Q[Y ]. Indeed, we can always write

f(s, Y ) = an(s)
∏
i∈S

(−ui(s) + Y )
∏
i/∈S

(−ui(s) + Y ) ,

for any proper subset S of Nn. As s is rational, an(s) is also rational. If we evaluate the coeffi-
cients of β and γ at s, we obtain the coefficients of

∏
i∈S (−ui(s) + Y ) and

∏
i/∈S (−ui(s) + Y ).

By the choice of s, at least one of these coefficients is not rational. Thus, f(s, Y ) is irreducible
in Q[Y ]. In order to prove our theorem, it is sufficient to obtain an infinite number of elements
s ∈ N ∩Q such that y1(s), . . . , y2n−2(s) are all in C \Q.

3. Studying the functions yj : We aim to look at the functions yj in more detail. To simplify the
notation, let us write y for yj . We notice that there exists T ′ > 0 such that s0 + 1

t ∈ N , if t > T ′.
We define the function δ on (T ′,∞) by

δ(t) = y(s0 +
1

t
).

Let us denote G the set of functions defined on (T ′,∞) by

ξ(t) =
h(t)

g(t)
,

where h and g are polynomial functions with rational coefficients and g is not the zero function.
Clearly, G is a field. We claim that δ is algebraic over G. To see this, first let us define the
function vi on (T ′,∞) by

vi(t) = ui(s0 +
1

t
).

Then, for all t > T ′, we have

a0(s0 +
1

t
) + a1(s0 +

1

t
)vi(t) + a2(s0 +

1

t
)vi(t)

2 + · · ·+ an(s0 +
1

t
)vi(t)

n = 0.

Multiplying by the appropriate power of t, we obtain the expression

h0(t) + h1(t)vi(t) + h2(t)vi(t)
2 + · · ·+ hn(t)vi(t)

n,

where h0, . . . , hn are polynomial functions defined on (T ′,∞), with coefficients in Q. Hence,

h0 + h1vi + h2v
2
i + · · ·+ hnv

n
i

is the zero function and so vi is algebraic over G. As the algebraic elements over a field form a
field, δ is algebraic over G and so is the root of an equation

d0 + d1H . . .+ . . . dmH
m = 0,

where d0, . . . , dm ∈ G and 0 denotes the zero function. We may suppose that the di are polynomial
functions. (It is sufficient to multiply by the product of the denominators of the di, if necessary.)
We may even suppose that the coefficients of the polynomial functions di are integers. We now
multiply the coefficients of the equation satisfied by δ by dm−1m to obtain

d0d
m−1
m + d1d

m−2
m dmδ + d2d

m−3
m (dmδ)

2 + · · ·+ dm−1(dmδ)
m−1 + (dmδ)

m = 0.
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Thus z = dmδ is a root of the polynomial

g(Z) = b0 + b1Z + · · ·+ bm−1Z
m−1 + Zm, (5) eqnHILBIRRED2

where bj = djd
m−j−1
m , for j = 0, 1, . . . ,m − 1. Clearly, the coefficients of g(Z) are integers. We

claim that, if t ∈ Z, with t > T ′, and δ(t) ∈ Q, then z(t) ∈ Z. Indeed, z(t) = dm(t)δ(t) implies
that z(t) ∈ Q. Also, z(t) is a root of the equation

b0(t) + b1(t)Z + · · ·+ bm−1(t)Zm−1 + Zm,

which is a monic polynomial with coefficients in Z. From Exercise
exerHILBIRRED2
2, z(t) is an integer.

4. Studying the functions zj : To simplify the notation, we will write z for zj : Our next step is
to show that there are relatively few integers t > T ′ such that z(t) is an integer. If this is the
case, then we may find many integers t such that z(t) is not an integer. For such t, δ(t) cannot
be rational, which implies that y(s0 + 1

t ) is not rational.
Lemma

lemHILBIRRED1
3 ensures us that, for i = 1, . . . , n, ui is an analytic function on the neighbourhood

N of s0. As sums and products of analytic functions are analytic, for j = 1, . . . , 2n − 2, yj is
analytic on N . Reducing the size of N to a neighbourhood N ′ of s0 if necessary, for s0 +x ∈ N ′,
we may write

y(s0 + x) = e0 + e1x+ e2x
2 + . . .+ ekx

k + . . . ,

where the coefficients ei ∈ C. There exists T ′′ ≥ T ′ such that, if t > T ′′, then y(s0 + 1
t ) ∈ N

′

and so

y(s0 +
1

t
) = e0 + e1

1

t
+ e2

(
1

t

)2

+ . . .+ ek

(
1

t

)k
+ . . . .

As dm is a polynomial, we may write

z(t) = dm(t)δ(t) = dm(t)y(s0 +
1

t
) = clt

l + · · ·+ c1t+ c0 + c−1t
−1 + · · ·+ c−kt

−k + · · · ,

with ci ∈ C.
There are three possibilities:

• a. z is a polynomial function;

• b. z is not a polynomial function and has at least one coefficient ci ∈ C \R;

• c. z is not a polynomial function and all the coefficients of z are real.

We consider the first case. We claim that at least one of the coefficients must be in C \Q.
If this is not the case, then δ(t) = z(t)

dm(t) , for t > T ′′. Let (tn) be sequence of values of t > T ′′

converging to ∞. If we set sn = s0 + 1
tn
, then the numbers sn converge to s0 and

y(sn) = y(s0 +
1

tn
) = δ(tn) =

z(tn)

dm(tn)
=

z((sn − s0)−1)

dm((sn − s0)−1)
.

If we multiply both z and dm by an appropriate power of sn − s0, then we may find polynomial
functions with rational coefficients ẑ and d̂m such that

z((sn − s0)−1)

dm((sn − s0)−1)
=

ẑ(sn)

d̂m(sn)
.
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From Lemma
lemHILBIRRED3
5, we obtain that y = ẑ

d̂m
, a contradiction. (We can apply Lemma

lemHILBIRRED3
5, because y

and ẑ
d̂m

are defined on the connected set N .) This proves our claim. Thus at least one coefficient
of z belongs to the set C \Q. Consequently, from Exercise

exerHILBIRRED1
1, there can only be a finite number

of integers t such that z(t) is an integer. In this case we may choose T ′′′ > T ′′ such that z(t) is
not an integer, if t > T ′′′.

Let us now consider the second case. Suppose that i0 is the largest subscript i for which
ci ∈ C \R. Then

lim
t→∞

Im z(t)

ti0
= Im c′i0 6= 0.

Hence, we may find T ′′′ ≥ T ′′ such that z(t)
ti0

/∈ R, for t > T ′′′. This implies that z(t) /∈ R and so
is not an integer, for t > T ′′′.

The third case is more difficult to handle. Here all the coefficients ci are real and at least one
coefficient ci, with i negative, is nonzero. By differentiating z a sufficient number of times we
can eliminate all nonnegative powers of t to obtain

z(m)(t) = pt−q + · · · ,

where p is a nonzero real number, q a positive integer greater than m and the dots represent
terms of higher powers of t−1. As

lim
t→∞

tqz(m)(t) = p,

there exists T ′′′ ≥ T ′′ such that

t > T ′′′ =⇒ 0 < |z(m)(t)| ≤ 2|p|t−q.

Now we use Lemma
lemHILBIRRED2
4. Let t0 < t1 < · · · < tm be integers such that ti ≥ T ′′′ and z(ti) ∈ Z, for

all i. For a certain number u ∈ (t0, tm) we have

2|p|
m!tq0

>
2|p|
m!uq

≥ |z
(m)(u)|
m!

=
|Wm|
|Vm|

.

As z(m)(u) 6= 0,Wm 6= 0, which implies thatWm is a positive integer and so |Wm| ≥ 1. Therefore

m!

2|p|
tq0 < |Vm| =

∏
i>j

(ti − tj) < (tm − t0)
m(m−1)

2 .

This implies that there are positive constants α and β such that αtβ0 < tm − t0.
Now let r be the number of distinct functions zj in this third case. Without loss of generality,

let us suppose that these are the functions z1, . . . , zr. For each j, we have mj , αj and βj such
that, if we have integers t0 < t1 < . . . < tmj

, with zj(ti) ∈ Z, for i = 0, 1, . . . ,mj , then
αjt

βj

0 < tmj
− t0. We set m̄ = maxmj and take U ∈ Z such that αjUβj ≥ rm. We now consider

the interval I = [U,U + rm]. If t0 < t1 < . . . < tmj
is a sequence of mj + 1 integers in I, then

αjt
βj

0 ≥ αjUβj ≥ rm = (t0 + rm)− t0.

This implies that I contains at most mj integers t such that zj(t) ∈ Z.
If we now consider all the zj in the third case, we see that the interval contains at most

m1 + . . . + mr integers t such that zj(t) ∈ Z for some j = 1, . . . , r, i.e., at most rm integers t
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such that zj(t) ∈ Z, for some j = 1, . . . , r. However, I contains nm + 1 integers, so there is at
least one integer t ∈ I such that zj(t) /∈ Z, for j = 1, . . . , r. We may find an infinite number of
such t by taking a sequence of intervals Ik = [Uk, Uk + rm], with Uk+1 > Uk + rm.

5. The final step: Using ou previous work, we show that there is an infinite sequence of integers
t such that zj(t) is not an integer, for all zj . As we have seen, there are three possibilities for zj .
For those which fall in the categories a or b., there is a number T ′′′ such that, if t > T ′′′, then
zj(t) /∈ Z. If we take T ′′′′ equal to be the maximum of all such T ′′′, then zj(t) /∈ Z, for those
zj(t), where zj is in either category a. or b. If the category c. is empty, then we have finished.

If this is not the case and z1, . . . , zr belong to the third case, then we can find a sequence of
integers t such that zj(t) /∈ Z, for j = 1, . . . , r. We may take these integers greater than T ′′′′ and
so we have an infinite sequence of integers t such that zj(t) /∈ Z for all j. This finishes the proof.2

Remark The rational numbers b, which we have found, such that fb(Y ) is irreducible are of the
form s0 + t−1, where t is a positive integer. Of course, there are certainly others: we only need
to take s′0 sufficiently far from s0.

Exercise 3 In section 4 of the above proof, we assumed that Wm is an integer. Why is this so?

Remark In this article we have been concerned with irreducible specializations. We have not
considered reducible specializations. For many number fields K the number of reducible special-
izations of irreducible polynomials in K[X,Y ] is infinite. However, there are number fields with
irreducible polynomials for which this is not the case. For a recent discussion of this question
see

muller
[3].

Basic results from Galois theory

ufd Result 1 Let R be a unique factorization domain, with quotient field F , and f ∈ R[X]. Then,
if f is nonconstant and irreducible in R[X], then f is irreducible in F [X]. On the other hand, if
f is primitive and irreducible in F [X], then f is irreducible in R[X].

lemSPLIT1 Result 2 Let f ∈ F [X] be irreducible and E an extension of F which contains a root α of f .
Then there is an isomorphism

Φ : F [X]/(f) −→ F (α)

which fixes F , i.e., for g constant, Φ(g + (f)) = g, and such that Φ(X + (f)) = α.

thSPLIT2 Result 3 Let F and F ′ be fields, σ : F −→ F ′ an isomorphism, f ∈ F [X] and f∗ ∈ F ′[X] the
polynomial corresponding to f . If E is a splitting field of f and E′ a splitting field of f∗, then
there is an isomorphism σ̃ : E −→ E′ extending σ.

propSPLIT2 Result 4 Let σ : F −→ F ′ be an isomorphism and f ∈ F [X] irreducible. If E (resp. E′) is an
extension of F (resp. F ′) and α (resp. α′) a root of f (resp. f∗) in E (resp. E′), then there is
an isomorphism σ̂ : F (α) −→ F ′(α′) extending σ, with σ̂(α) = α′. This isomorphism is unique.

thSEPext4 Result 5 Let E be a finite separable extension of a field F of degree n. Then the field of fractions
E(X) is a finite extension of degree n of the field of fractions F (X).
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NORMALprop2 Result 6 Suppose that K/F and E/K, with E normal over F . Then E is normal over K.

NORMALth1 Result 7 The finite extension E of F is normal if and only if E is the splitting field of a
polynomial f ∈ F [X].

NormalClos1 Result 8 If E is finite extension of the field F and N the normal closure of E over F , then N
is a finite extension of F .

thGALGRP1 Result 9 If E is a finite Galois extension of F , then we have |Gal(E/F )| = [E : F ].

thGALPOLYirred1 Result 10 Let f be a separable polynomial in F [X] of degree n with Galois group G = Gal(E/F ).
If f ∈ F [X] is irreducible, then the action of G on the set of roots of f is transitive.
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