B. Lim and K. Lee, Stability of the osmoregulated promoter-derived proP mRNA is posttranscriptionally regulated by RNase III in Escherichia coli, J. Bacteriol, vol.197, pp.1297-1305, 2015.

M. Sim, B. Lim, S. H. Sim, D. Kim, E. Jung et al., Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli, PLoS One, vol.9, p.100520, 2014.

S. H. Sim, J. H. Yeom, C. Shin, W. S. Song, E. Shin et al., Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation, Mol. Microbiol, vol.75, pp.413-425, 2010.

K. L. Anderson, C. Roberts, T. Disz, V. Vonstein, K. Hwang et al., Characterization of the Staphylococcus aureus heat shock, cold shock, stringent, and SOS responses and their effects on log-phase mRNA turnover, J. Bacteriol, vol.188, pp.6739-6756, 2006.

E. Redon, P. Loubiere, and M. Cocaign-bousquet, Role of mRNA stability during genome-wide adaptation of Lactococcus lactis to carbon starvation, J. Biol. Chem, vol.280, pp.36380-36385, 2005.

T. R. Rustad, K. J. Minch, W. Brabant, J. K. Winkler, D. J. Reiss et al., Global analysis of mRNA stability in Mycobacterium tuberculosis, Nucleic Acids Res, vol.41, pp.509-517, 2013.

H. Chen, K. Shiroguchi, H. Ge, and X. S. Xie, Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli, Mol. Syst. Biol, vol.11, pp.781-791, 2015.

H. Celesnik, A. Deana, and J. G. Belasco, Initiation of RNA decay in Escherichia coli by 5 pyrophosphate removal, Mol. Cell, vol.27, pp.79-90, 2007.

A. Deana, H. Celesnik, and J. G. Belasco, The bacterial enzyme RppH triggers messenger RNA degradation by 5 pyrophosphate removal, Nature, vol.451, pp.355-358, 2008.

G. A. Mackie, Ribonuclease E is a 5-end-dependent endonuclease, Nature, vol.395, pp.720-723, 1998.

J. Richards and J. G. Belasco, Distinct Requirements for 5-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G, J. Biol. Chem, vol.291, pp.5038-5048, 2016.

A. J. Carpousis, The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E, Annu. Rev. Microbiol, vol.61, pp.71-87, 2007.

M. Lehnik-habrink, R. J. Lewis, U. Mader, and J. Stulke, RNA degradation in Bacillus subtilis: an interplay of essential endo-and exoribonucleases, Mol. Microbiol, vol.84, pp.1005-1017, 2012.

J. Richards, Q. Liu, O. Pellegrini, H. Celesnik, S. Yao et al., An RNA pyrophosphohydrolase triggers 5-exonucleolytic degradation of mRNA in Bacillus subtilis, Mol. Cell, vol.43, pp.940-949, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00714564

S. Even, O. Pellegrini, L. Zig, V. Labas, J. Vinh et al., Ribonucleases J1 and J2: two novel endoribonucleases in B.subtilis with functional homology to E.coli RNase E, Nucleic Acids Res, vol.33, pp.2141-2152, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01636919

K. Shahbabian, A. Jamalli, L. Zig, and H. Putzer, RNase Y, a novel endoribonuclease, initiates riboswitch turnover in Bacillus subtilis, EMBO J, vol.28, pp.3523-3533, 2009.

S. Durand, A. Tomasini, F. Braun, C. Condon, and P. Romby, sRNA and mRNA turnover in Gram-positive bacteria, FEMS Microbiol. Rev, vol.39, pp.316-330, 2015.

Y. Redko, S. Aubert, A. Stachowicz, P. Lenormand, A. Namane et al., A minimal bacterial RNase J-based degradosome is associated with translating ribosomes, Nucleic Acids Res, vol.41, pp.288-301, 2013.

P. Linder, S. Lemeille, and P. Redder, Transcriptome-wide analyses of 5-ends in RNase J mutants of a gram-positive pathogen reveal a role in RNA maturation, regulation and degradation, PLoS Genet, vol.10, p.1004207, 2014.

K. L. Anderson and P. M. Dunman, Messenger RNA turnover processes in Escherichia coli, Bacillus subtilis, and emerging studies in Staphylococcus aureus, Int. J. Microbiol, pp.525491-525504, 2009.

I. Moll, T. Afonyushkin, O. Vytvytska, V. R. Kaberdin, and U. Blasi, Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs, RNA, vol.9, pp.1308-1314, 2003.

T. Nogueira and M. Springer, Post-transcriptional control by global regulators of gene expression in bacteria, Curr. Opin. Microbiol, vol.3, pp.154-158, 2000.

G. Oliva, T. Sahr, and C. Buchrieser, Small RNAs, 5 UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence, FEMS Microbiol. Rev, vol.39, pp.331-349, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01226492

O. Vytvytska, J. S. Jakobsen, G. Balcunaite, J. S. Andersen, M. Baccarini et al., Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.14118-14123, 1998.

T. Romeo, C. A. Vakulskas, and P. Babitzke, Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems, Environ. Microbiol, vol.15, pp.313-324, 2013.

K. J. Bandyra, D. Sinha, J. Syrjanen, B. F. Luisi, D. Lay et al., The ribonuclease polynucleotide phosphorylase can interact with small regulatory RNAs in both protective and degradative modes, RNA, vol.22, pp.360-372, 2016.

V. S. Patil, R. Zhou, and T. M. Rana, Gene regulation by non-coding RNAs, Crit. Rev. Biochem. Mol. Biol, vol.49, pp.16-32, 2014.

A. Smirnov, C. Wang, L. L. Drewry, and J. Vogel, Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA, EMBO J, vol.36, pp.1029-1045, 2017.

G. Storz, J. Vogel, and K. M. Wassarman, Regulation by small RNAs in bacteria: expanding frontiers, Mol. Cell, vol.43, pp.880-891, 2011.

B. Jurgen, T. Schweder, and M. Hecker, The stability of mRNA from the gsiB gene of Bacillus subtilis is dependent on the presence of a strong ribosome binding site, Mol. Gen. Genet, vol.258, pp.538-545, 1998.

J. S. Sharp and D. H. Bechhofer, Effect of translational signals on mRNA decay in Bacillus subtilis, J. Bacteriol, vol.185, pp.5372-5379, 2003.

A. Deana and J. G. Belasco, Lost in translation: the influence of ribosomes on bacterial mRNA decay, Genes Dev, vol.19, pp.2526-2533, 2005.

H. Abe and H. Aiba, Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization, Biochimie, vol.78, pp.1035-1042, 1996.

J. E. Mott, J. L. Galloway, and T. Platt, Maturation of Escherichia coli tryptophan operon mRNA: evidence for 3 exonucleolytic processing after rho-dependent termination, EMBO J, vol.4, pp.1887-1891, 1985.
DOI : 10.1002/j.1460-2075.1985.tb03865.x

E. Holmqvist, P. R. Wright, L. Li, T. Bischler, L. Barquist et al., Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo, EMBO J, vol.35, pp.991-1011, 2016.

P. K. Hsieh, J. Richards, Q. Liu, and J. G. Belasco, Specificity of RppH-dependent RNA degradation in Bacillus subtilis, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.8864-8869, 2013.

J. A. Bernstein, P. H. Lin, S. N. Cohen, and S. Lin-chao, Global analysis of Escherichia coli RNA degradosome function using DNA microarrays, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.2758-2763, 2004.
DOI : 10.1073/pnas.0308747101

URL : http://www.pnas.org/content/101/9/2758.full.pdf

B. K. Mohanty and S. R. Kushner, Genomic analysis in Escherichia coli demonstrates differential roles for polynucleotide phosphorylase and RNase II in mRNA abundance and decay, Mol. Microbiol, vol.50, pp.645-658, 2003.

B. E. Terzaghi and W. E. Sandine, Improved medium for lactic streptococci and their bacteriophages, Appl. Microbiol, vol.29, pp.807-813, 1975.

T. Esquerre, S. Laguerre, C. Turlan, A. J. Carpousis, L. Girbal et al., Dual role of transcription and transcript stability in the regulation of gene expression in Escherichia coli cells cultured on glucose at different growth rates, Nucleic Acids Res, vol.42, pp.2460-2472, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00945048

A. Fouquier-d'herouel, F. Wessner, D. Halpern, J. Ly-vu, S. P. Kennedy et al., A simple and efficient method to search for selected primary transcripts: non-coding and antisense RNAs in the human pathogen Enterococcus faecalis, Nucleic Acids Res, vol.39, p.46, 2011.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

S. M. Madsen, J. Arnau, A. Vrang, M. Givskov, and H. Israelsen, Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis, Mol. Microbiol, vol.32, pp.75-87, 1999.

P. Langella, Y. Le-loir, S. D. Ehrlich, and A. Gruss, Efficient plasmid mobilization by pIP501 in Lactococcus lactis subsp. lactis, J. Bacteriol, vol.175, pp.5806-5813, 1993.
DOI : 10.1128/jb.175.18.5806-5813.1993

URL : https://hal.archives-ouvertes.fr/hal-01123015

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.6640-6645, 2000.
DOI : 10.1073/pnas.120163297

URL : http://www.pnas.org/content/97/12/6640.full.pdf

M. Maligoy, M. Mercade, M. Cocaign-bousquet, and P. Loubiere, Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae, Appl. Environ. Microbiol, vol.74, pp.485-494, 2008.

V. M. Ulve, C. Monnet, F. Valence, J. Fauquant, H. Falentin et al., RNA extraction from cheese for analysis of in situ gene expression of Lactococcus lactis, J. Appl. Microbiol, vol.105, pp.1327-1333, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01195424

M. Morin, D. Ropers, F. Letisse, S. Laguerre, J. C. Portais et al., The post-transcriptional regulatory system CSR controls the balance of metabolic pools in upper glycolysis of Escherichia coli, Mol. Microbiol, vol.110, pp.686-700, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01418224

S. L. Spurgeon, R. C. Jones, and R. Ramakrishnan, High throughput gene expression measurement with real time PCR in a microfluidic dynamic array, PLoS One, vol.3, p.1662, 2008.
DOI : 10.1371/journal.pone.0001662

URL : https://doi.org/10.1371/journal.pone.0001662

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res, vol.29, p.45, 2001.
DOI : 10.1093/nar/29.9.e45

URL : https://academic.oup.com/nar/article-pdf/29/9/e45/9901003/2900e45.pdf

C. Dressaire, F. Picard, E. Redon, P. Loubiere, I. Queinnec et al., Role of mRNA stability during bacterial adaptation, PLoS One, vol.8, p.59059, 2013.
DOI : 10.1371/journal.pone.0059059

URL : https://hal.archives-ouvertes.fr/hal-01268143

P. G. De-ruyter, O. P. Kuipers, M. M. Beerthuyzen, I. Van-alen-boerrigter, and W. M. De-vos, Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis, J. Bacteriol, vol.178, pp.3434-3439, 1996.

J. C. Giard, N. Verneuil, Y. Auffray, and A. Hartke, Characterization of genes homologous to the general stress-inducible gene gls24 in Enterococcus faecalis and Lactococcus lactis, FEMS Microbiol. Lett, vol.206, pp.235-239, 2002.

B. Sperandio, P. Polard, D. S. Ehrlich, P. Renault, and E. Guedon, Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403, J. Bacteriol, vol.187, pp.3762-3778, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01895330

L. Berg, R. Lale, I. Bakke, N. Burroughs, and S. Valla, The expression of recombinant genes in Escherichia coli can be strongly stimulated at the transcript production level by mutating the DNA-region corresponding to the 5-untranslated part of mRNA, Microb. Biotechnol, vol.2, pp.379-389, 2009.

R. Lale, L. Berg, F. Stuttgen, R. Netzer, M. Stafsnes et al., Continuous control of the flow in biochemical pathways through 5 untranslated region sequence modifications in mRNA expressed from the broad-host-range promoter Pm, Appl. Environ. Microbiol, vol.77, pp.2648-2655, 2011.

P. G. De-ruyter, O. P. Kuipers, and W. M. De-vos, Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin, Appl. Environ. Microbiol, vol.62, pp.3662-3667, 1996.

Y. Ah-seng, J. Rech, D. Lane, and J. Y. Bouet, Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids, PLoS Genet, vol.9, p.1003956, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00944950

E. Cambon, S. Barbe, S. Pizzut-serin, M. Remaud-simeon, and I. André, Essential role of amino acid position 226 in oligosaccharide elongation by amylosucrase from Neisseria polysaccharea, Biotechnol. Bioeng, vol.111, pp.1719-1728, 2014.

T. Afonyushkin, I. Moll, U. Blasi, and V. R. Kaberdin, Temperature-dependent stability and translation of Escherichia coli ompA mRNA, Biochem. Biophys. Res. Commun, vol.311, pp.604-609, 2003.

G. Hambraeus, M. Persson, and B. Rutberg, The aprE leader is a determinant of extreme mRNA stability in Bacillus subtilis, Microbiology, vol.146, pp.3051-3059, 2000.

V. Rosenbaum, T. Klahn, U. Lundberg, E. Holmgren, A. Von-gabain et al., Co-existing structures of an mRNA stability determinant. The 5 region of the Escherichia coli and Serratia marcescens ompA mRNA, J. Mol. Biol, vol.229, pp.656-670, 1993.

F. Picard, H. Milhem, P. Loubiere, B. Laurent, M. Cocaign-bousquet et al., Bacterial translational regulations: high diversity between all mRNAs and major role in gene expression, BMC Genomics, vol.13, pp.528-541, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268281

T. E. Arnold, J. Yu, and J. G. Belasco, mRNA stabilization by the ompA 5 untranslated region: two protective elements hinder distinct pathways for mRNA degradation, RNA, vol.4, pp.319-330, 1998.

C. S. Hayes and R. T. Sauer, Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control, Mol. Cell, vol.12, pp.903-911, 2003.

Y. C. Tsai, D. Du, L. Dominguez-malfavon, D. Dimastrogiovanni, J. Cross et al., Recognition of the 70S ribosome and polysome by the RNA degradosome in Escherichia coli, Nucleic Acids Res, vol.40, pp.10417-10431, 2012.

X. Jiang and J. G. Belasco, Catalytic activation of multimeric RNase E and RNase G by 5-monophosphorylated RNA, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.9211-9216, 2004.

K. J. Mcdowall, V. R. Kaberdin, S. W. Wu, S. N. Cohen, and S. Lin-chao, Site-specific RNase E cleavage of oligonucleotides and inhibition by stem-loops, Nature, vol.374, pp.287-290, 1995.

V. Khemici, L. Poljak, B. F. Luisi, and A. J. Carpousis, The RNase E of Escherichia coli is a membrane-binding protein, Mol. Microbiol, vol.70, pp.799-813, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00356021

H. Strahl, C. Turlan, S. Khalid, P. J. Bond, J. M. Kebalo et al., Membrane recognition and dynamics of the RNA degradosome, PLoS Genet, vol.11, p.1004961, 2015.

Y. Redko, M. R. Tock, C. J. Adams, V. R. Kaberdin, J. A. Grasby et al., Determination of the catalytic parameters of the N-terminal half of Escherichia coli ribonuclease E and the identification of critical functional groups in RNA substrates, J. Biol. Chem, vol.278, pp.44001-44008, 2003.

P. Redder, How does sub-cellular localization affect the fate of bacterial mRNA?, Curr. Genet, vol.62, pp.687-690, 2016.

J. R. Moffitt, S. Pandey, A. N. Boettiger, S. Wang, and X. Zhuang, Spatial organization shapes the turnover of a bacterial transcriptome, Elife, vol.5, p.3065, 2016.

E. Segev, Y. Smith, and S. Ben-yehuda, RNA dynamics in aging bacterial spores, Cell, vol.148, pp.139-149, 2012.

D. V. Ignatov, E. G. Salina, M. V. Fursov, T. A. Skvortsov, T. L. Azhikina et al., Dormant non-culturable Mycobacterium tuberculosis retains stable low-abundant mRNA, BMC Genomics, vol.16, pp.954-966, 2015.

A. E. Kuzj, P. S. Medberry, and J. L. Schottel, Stationary phase, amino acid limitation and recovery from stationary phase modulate the stability and translation of chloramphenicol acetyltransferase mRNA and total mRNA in Escherichia coli, Microbiology, vol.144, pp.739-750, 1998.

D. Llull and I. Poquet, New expression system tightly controlled by zinc availability in Lactococcus lactis, Appl. Environ. Microbiol, vol.70, pp.5398-5406, 2004.

L. G. Bermudez-humaran, N. G. Cortes-perez, Y. Le-loir, A. Gruss, C. Rodriguez-padilla et al., Fusion to a carrier protein and a synthetic propeptide enhances E7 HPV-16 production and secretion in Lactococcus lactis, Biotechnol. Prog, vol.19, pp.1101-1104, 2003.

D. Simon and A. Chopin, Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis, Biochimie, vol.70, pp.559-566, 1988.

A. Chopin, M. C. Chopin, A. Moillo-batt, and P. Langella, Two plasmid-determined restriction and modification systems in Streptococcus lactis, Plasmid, vol.11, pp.260-263, 1984.