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Abstract 

 

In this work, we derive two different Darcy-scale models for the transport of biodegradable 

solutes in porous media containing a microbial biomass that developed under the form of a 

biofilm. Biofilms are composed of bacterial populations and extra cellular polymeric substances, 

and grow attached to a solid-fluid interface, e.g. the pore walls of a water-saturated porous 

medium. We begin with the pore-scale description of mass transport, mass transfer between 

phases (fluid phase - generally water - and biofilm phase) and biologically-mediated reactions. 

Then, two limit cases of non-equilibrium transport are identified and characterized. Finally, these 

processes are upscaled using the method of volume averaging to obtain two different macroscale 

mass balance models. The models are derived for specific cases of non-equilibrium reactive 

transport (i.e., spatial concentration gradients may exist in one or both phases), for which 

mechanisms of mass transfer or reaction kinetics limit the rate of biodegradation. In both cases, a 
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one-equation model can be developed even if non-equilibrium conditions exist. The validity 

domains of the two considered transport models (the Reaction Rate Limited Consumption model 

- RRLC model - and the Mass Transfer Limited Consumption model - MTLC model) are 

established in terms of reactive and hydrodynamic conditions of transport (Damköhler number 

and Péclet number). The RRLC model is found to be consistent with direct numerical simulation 

(DNS) results at high Péclet and Damköhler numbers, while the applicability of the MTLC 

model is limited to high Damköhler numbers but low Péclet numbers. 

 

Keywords  

Porous media; biofilm; biodegradation; reactive transport; non-equilibrium; upscaling. 

 

1. Introduction 

 

Porous-medium-supported biofilms have been used to treat contaminants for well over one 

hundred years (e.g.: the use of trickling filters began in the UK in the late 1890s and in the US in 

1901). Since these early uses, porous-medium-supported biofilms have proved to be useful in a 

number of applications from the highly engineered (e.g., immobilized cell reactors, anaerobic 

packed beds, eukaryotic cell propagation) to the more empirically operated (e.g., air filtration in 

composting biofilters). In subsurface systems, biofilms are naturally present in both the saturated 

and unsaturated zones. Such biofilms can degrade contaminants in both passive (natural 

attenuation) and actively-modified systems. This idea has led to the development of in situ 

bioremediation methods (e.g. [32], [28]). There is an extensive literature on this subject, and a 

number of review articles summarize the current state-of-the-art methods for subsurface 

bioremediation (e.g. [3], [10], [42], [45], [47], [52], and [53]).  

One of the challenging features in the development of models for groundwater 
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bioremediation processes (or for bioprocesses in chemical engineering) is the multiscale aspect of 

the phenomenon. Figure 1 shows the main scales involved in the transport of biodegradable 

solutes in porous media, from the cell scale to the application scale (the field scale or the reactor 

scale). Intermediate levels of upscaling could be interjected into this conceptual scheme, if 

additional heterogeneities are to be taken into account(e.g., if the biofilm porosity or additional 

levels of geological heterogeneities need to be considered). Although in principle it should make it 

ideal to solve a model of a large-scale bioreactor (Figure 1, Level IV) at the smallest length scale 

of interest (e.g., the characteristic length associated with the structure of the cell scale) this is 

generally impractical because (1) the full microscale data is generally not available, and (2) the 

resulting model would contain far more detail (i.e., information) than would be useful for practical 

applications, which can be a serious drawback in terms of data storage and computation time. One 

solution to this problem is to develop formal macroscale models that replace the microscale details 

of the system by effective representations. Generally, these effective descriptions are carried out 

by identifying a scaling law that allows one to honor some (usually statistical) aggregate measures 

of the microscale phenomena (cf. [62]). In this work, we adopt a volume averaging method [55] in 

order to filter information from a smaller length scale to a larger one and, eventually, to the length 

scale at which the system analysis takes place. The scaling law used in this analysis is the 

assumption of separation of scales (e.g. [55]) between the micro- and macro-scales of interest. For 

the configuration illustrated above one can theoretically evaluate Darcy scale parameters in a 

relevant way by using successively two times this method (for field scale or reactor scale 

parameters additional upscalings may be necessary to take into account the large scale 

heterogeneities such as fractures, high-permeability lenses, …).  

The averaging of the processes which take place at the smallest length scale associated with 

this problem (i.e., averaging from the cell scale - Figure 1, level I - to the biofilm scale - Figure 1, 

level II - , at which the biofilm is considered as a continuous and homogeneous phase) has been 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 4 

previously examined ([57], [58], [59], [60]). In this work, we start with these previous results to 

perform the second averaging in this hierarchy (boxed in red in Figure 1). The formalism of 

volume averaging should help to define exactly how the Darcy scale effective parameters are 

linked to the pore and biofilm scale processes. Figure 2 details the characteristic lengths of the 

pore scale at which is defined the volume of averaging considered in this work, denoted V . We 

start with this description and we upscale from this scale (Figure 1, level II, with a characteristic 

length   or  ) to the Darcy-scale (Figure 1, level III, with a characteristic length L ). Note here 

that the above-mentioned assumption of separation of scales - required for such an upscaling - 

specifies that the characteristic length of the averaging volume, 0R , should be very large 

compared to   and   and very small relative to L . Several studies have been conducted that 

develop a one-equation macroscopic transport model for the conditions of local mass equilibrium 

([18], [61]), i.e. in the case of equilibrium between both phases with respect to mass transfer 

processes. This model requires that the averaged concentration changes over characteristic lengths 

that are large relative to the characteristic length associated with the averaging volume. The model 

obtained by these studies is similar to the model that is often heuristically posed for biological 

processes in porous media; however, the averaging process allows one to carefully define the 

domain of validity for the equilibrium assumption [18].  

Under non-equilibrium conditions, two one-equation macroscopic transport models can 

also be considered and this is the focus of this paper. The first model is based on the assumption 

that the characteristic time for mass transfer from the fluid phase to the biofilm phase is smaller 

than the characteristic time for microbial kinetic reactions in the biofilm phase. This model has 

been explored extensively in a number of classical works that represent the reaction rate limitation 

by an effectiveness factor (e.g. [2]), and it corresponds to the shallow mass transfer gradient case 

in the terminology of Rittmann and McCarty [43]. For this work, we will refer to it as the 

reaction-rate-limited-consumption (RRLC) case. The second, hereafter referred to as Mass 
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Transfer Limited Consumption (MTLC) model, has also been considered in the literature ([22], 

[29], [56]) and assumes that the exchange mass rate between the two regions is slow relative to the 

biodegradation rate in the biofilm phase. There are numerous examples ([27], [31], [12]), indeed, 

in groundwater systems or in bioengineered reactors for which external (relatively to the reactive 

phase, here the biofilm phase) mass transfer is the limiting step of microbial processes (e.g., 

biofilm growth under oxygen-limiting conditions).  

This paper is organized as follows: in section 2 we present the considered pore-scale 

transport model which is based partly on the previous upscaling work (from level I to level II in 

Figure 1) performed by Wood and Whitaker ([57], [59]). In section 3, we detail in which manner 

the two one-equation non-equilibrium models can be derived from the general two-equation 

model. In section 4 and section 5, the Reaction Rate Limited Consumption model and the Mass 

Transfer Limited Consumption model are developed, respectively. In section 6, we will present 

some numerical validations of the models, and establish the domain of validity associated to both 

models. In section 7, we will present the conclusions and perspectives related to this theoretical 

development.  

 

2. Pore-scale model  

 

 The basis of this investigation is the set of mass balance equations which are used for 

describing mass conservation at the pore scale (Level II in Figure 1) in the fluid (water; -phase) 

and the biofilm (polymeric gel containing bacterial populations which develops on the interface 

fluid-solid; denoted as the  -phase). In the  -phase, only diffusion and reaction phenomena take 

place, while in the  -phase, the transport phenomena are convection and diffusion. For this 

analysis, we have focused on systems with a single substrate (carbon and energy source - species 

A) and a single electron acceptor (such as dioxygen - species B) and have assumed a classical 
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dual-Monod form for the kinetics of biodegradation [30]. For this work we do not consider the 

production of biomass associated with the substrate consumption (nor the biomass decrease due to 

decay or detachment), because we have made the classical approximation that the time scale 

associated with changes in the biomass phase is much larger than the time scale associated with 

the transport and the consumption of the substrate (generally, at least two orders of magnitude 

difference [34]). The mass balance equations for solute transport and biofilm growth are thus 

uncoupled. The solid phase ( -phase) is assumed to be impermeable to all chemical species. 

More details about the development of this set of equations can be found in Golfier et al. [18]). 

Under these assumptions, the mass balance equations for the fluid-biofilm-solid system can be 

written as follows: 

 -phase  

   in the -phase,A A B
A A A

A A B B

c c c
c

t c K c K

  
   

   


  


   

 
D  (1) 

 -phase 

     in the -phase
A

A A A

c
c c

t



   





   v  (2) 

B.C.1 0 at ,A Ac A     n D  (3) 

B.C.2 0, atA Ac A     n  (4) 

B.C.3 , , atA A eq Ac K c A    (5) 

B.C.4 at ,A A A Ac c A          n nD  (6) 

 

Here, Ac  and Ac   represent the concentration of species A (substrate, generally an organic solute) 

in the   and  -phases, respectively [mol.m
-3

]; A  is the diffusion coefficient of species A in the 

fluid and AD is the effective diffusion tensor for species A in the biofilm (its tensorial nature is 

due to the fact that the biofilm phase is not necessarily homogeneous and isotropic; see [57] for 
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more details on this tensor) [m
2
.s

-1
]; v  is the fluid velocity [m.s

-1
]; ,A eqK  is the equilibrium 

partition coefficient between the   and  -phases [-]; A  is the specific degradation rate for the 

substrate [s
-1

];   is the microbial density [mol.m
-3

]; AK   and BK   are the half-saturation 

constants for the substrate and electron acceptor, respectively [mol.m
-3

]; and Bc   is the 

concentration of electron acceptor in the  -phase [mol.m
-3

]. We have used the terminology A  to 

indicate the interface between the  - and   phases and A  and A  for the interface between the 

 - and  -phases and between the  - and  -phases, respectively. The term n  represents the 

unit normal pointing outward from the  -phase toward the  -phase; n  and n  are similarly 

defined. Note that a same set of mass balance equations also holds for species B, but because the 

analysis is identical to that for species A, we will not explicitly derive them here. These two sets of 

mass balance equations are coupled through the dual Monod kinetics of the reaction terms. In this 

work, for the simplicity of the exposure, we will make the assumption that species B is in large 

excess, so that Bc   could be considered as temporally and spatially constant. The resulting system 

of governing equations depends only on species A. Taking into account the coupling between the 

transport of species A and B is possible in the framework developed below, and it will be the 

subject of a further study. 

 

3. Two limit cases leading to the development of simplified non equilibrium 

models 

 

3.1. Unclosed form of the averaged equations 

Referring to the averaging volume, V , illustrated in Figure 1, we define the superficial 

average concentration of species A in the -phase (biofilm) as:  
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1

A A

V

c c dV
V



      (7) 

Here V  represents the volume of the  -phase contained in the averaging volume. A similar 

definition holds for the average concentration of species A in the  -phase:  

 
1

A A

V

c c dV
V



      (8) 

In applications it is often preferable to work with a concentration that represents the 

average over the fluid phase (i.e., the pore space in a saturated porous medium) rather than the 

total volume of the porous medium. This concentration is the intrinsic average concentration of 

the  - phase. An intrinsic average concentration can also be defined in the  - phase; these 

concentrations are defined as follows:  

 
1

A A

V

c c dV
V





 



     (9) 

 
1

A A

V

c c dV
V





 



     (10) 

One can note that the intrinsic and superficial averages are related through the volume fractions of 

the two phases:  

 A Ac c 

        (11) 

 
A Ac c 

        (12) 

where   and   represent the volume fractions of the  - and  - phases respectively. Since we 

supposed that the time scale associated with the biomass production is much larger than the time 

scale associated with the transport and the consumption of the substrate, these volume fractions 

are treated as constants in time. 

In the following development, in order to remove averaged quantities from point values, 

we will make use of Gray‟s decompositions [19] for the concentration fields: 
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 A A Ac c c

       (13) 

 
A A Ac c c

       (14) 

The quantities Ac   and Ac   are referred to as spatial deviation concentrations. 

The process of volume averaging is initiated by forming the superficial average of the 

phase conservation equations, (1) to (6). In order to interchange time derivative and averaging 

operators, one must make use of the general transport theorem [54], while for spatial derivative, 

the spatial averaging theorem ([19], [21]) is required. The complete development for this first step 

in averaging equations (1) to (6) is available in Golfier et al. ([18], Appendix A), and the result is: 

Averaged equation for the biofilm (  phase)  

 

 

 

( ) ( )

( )

Accumulation
Diffusion

Interfacial Flux

1 1

1

A

A A A A

A t A t

A A

A t

A

c
c c dA c dA

t V V

c dA
V

 





  

      

 

  

  

 




  

   
        

  
  

  




 



n n

n

D

D

Reaction

A B

A A B B

c c

c K c K

 

 

 

   

  

     

 (15) 

 

Averaged equation for the fluid ( phase) 

 

 
 

 

( ) ( )

( )

Convection
Accumulation

Diffusion

Inter

1 1

1

A

A

A A A A

A t A t

A A

A t

c
c

t

c c dA c dA
V V

c dA
V

 





   

  



      

 

  

 






 
      

  
       

  
  

  

 



v

n n

n

Dispersive
Transport

facial Flux

Ac  v

 (16) 

At this point, governing equations are unclosed in the sense that deviation quantities – which are 
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unknown - still occur in integral terms. The next upscaling step consists in finding a way of 

representing these unknown deviations in terms of macroscopic variables. The closure of the 

system of balance equations in the case of local mass equilibrium can be found in [18]. In the 

present paper, we will focus on the derivation of the closed-forms of these macroscopic equations 

for two limit cases of non equilibrium. 

 

3.2. Two limit cases: reaction rate limited consumption (RRLC) and mass transfer limited 

consumption (MTLC) 

As emphasized above, different approaches are possible. First, a one-equation model can 

be classically derived from the unclosed averaged equations on the assumption of the existence of 

a local mass equilibrium between the  -phase and  -phase. This condition implies a 

proportionality relationship between intrinsic averaged concentrations of both phases, i.e. 

,A A eq Ac K c 

      . As a consequence, averaged equations, Eqs. (15) and (16), can be summed 

up. Thus, interfacial flux terms are eliminated and one obtains a Darcy-scale description of solute 

transport in terms of a single averaged equation. This is the so-called Local Equilibrium 

Assumption model (LEA model). The limitation of this model is that the restrictive assumption of 

local mass equilibrium is valid only in the case of a diffusive regime of transport and at low 

reaction rate [18].  

 If characteristic times for transport are relatively different between the two regions or if the 

characteristic time for reaction is small compared with the characteristic time for transport in the 

 -phase, then non-equilibrium conditions exist. In principle, a two-medium description involving 

a separate mass balance equation for each phase could be adopted to adequately describe the mass 

transport within the system. Such a model is analogous to the “mobile-immobile” models 

classically used in solute transport for heterogeneous porous media exhibiting a non-Fickian 

behaviour (e.g. [1], [11]). In this context, convective and dispersive transport occurs in the more 

permeable zone, i.e., the fluid phase, called the „„mobile‟‟ zone, while water inside the less 
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permeable zone or „„immobile‟‟ zone, i.e., the biofilm phase, is assumed to be stagnant. The mass 

exchange between the two regions is controlled by a diffusive process and is often 

macroscopically described by a first-order kinetics. A two-equation model is currently derived for 

application to bioremediation problems. However, the counterpart of this improved description is 

the increasing number of macroscopic effective coefficients that have to be determined and that 

depend on the properties of each phase in a complex way. Therefore, there is a real interest in 

developing a simplified Darcy-scale model of transport, whenever this is possible 

 Under certain conditions, indeed, non equilibrium one-equation models can also be derived 

from the non-closed averaged equations. In the case where the reaction is limited by mass transfer 

or kinetics, the interfacial flux term which appears in the macroscopic equation of the  -phase 

may be obtained from a simplified formulation which is uncoupled from the equation of the  -

phase. Calculation of the interfacial flux is then directly obtained from the solution of a closure 

problem. In Figure 3, we have illustrated the concentration profiles in the neighbourhood of the 

fluid-biofilm interface which result of the physical constraints associated with each considered 

model. 

 If the chemical reaction is limited by mass transfer between the fluid and biofilm phases, a 

MTLC (Mass Transfer Limited Consumption) model can be developed. Under this assumption, 

the concentration of substrate at the interface A  is considered as identically zero and we have: 

 , 0, atA A eq Ac K c A     (17) 

 If the chemical reaction is limited by kinetics, which implies relatively low concentration 

gradients in the  -phase, a RRLC (Reaction Rate Limited Consumption) model can be derived. 

This one-equation non-equilibrium model that has been widely adopted in chemical engineering 

uses the idea of an effectiveness factor to relate the (generally difficult to measure) reaction rate 

within the biofilm to the concentration in the bulk fluid-phase. In other words, we seek to discover 

conditions where it is meaningful to define a relationship for the rate of reaction of the form: 
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A BA B

A A

A A B B A A B B

c cc c

c K c K c K c K

  
  

        

       

     
      


           

 (18) 

 For the RRLC model, it is assumed that the deviation concentration Ac   is negligible relative to 

the intrinsic averaged concentration in the  -phase, i.e.:  

 
A Ac c

    (19) 

Under these conditions, the boundary equation (5) can be simplified to:  

 
, , atA eq A A AK c c c A

       (20) 

Such approximations are usual in chemical engineering where they have been introduced 

heuristically (see for instance a general introduction about chemical reaction engineering in [11]).  

4. Development of the RRLC model  

 

 If one assumes that the reaction rate is limited by the kinetics, i.e., the characteristic time 

of the biological reaction is very large compared to the characteristic time of the mass-transfer 

kinetics between phases, the boundary condition (5) can be simplified and replaced by: 

 
, , atA eq A A AK c c c A

        (21) 

The assumption here is that the concentration field in the  -phase depends only on the value of 

the intrinsic average concentration in the  -phase through the boundary condition at the biofilm-

fluid interface. In the following we present the development of the averaged transport model based 

on this assumption. 

4.1. Closure 

To close the macroscopic transport equation, we must have a means of linking the 

deviation concentration Ac   to the intrinsic average concentration 
Ac 

  . One can rearrange the 

definition of the deviation concentrations given in Eq. (14) to the form: 
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A A Ac c c 

       (22) 

This suggests that we can develop the governing differential equation for the deviation 

concentrations by subtracting the averaged equations from the point equations. To determine the 

mass balance equations for the deviation quantities, one can subtract Eq. (16) from Eq. (2). It can 

be shown (Appendix A) that the set of equations that predicts the deviation quantities for the 

RRLC model is given by: 

 
   

( ) ( )

( )

1 1

A A A A

A A A A

A t A t

c c c

c dA c dA
V V

 



     

     

 

       

    

v v

n n- -
 (23) 

B.C.1 

source

, atA A A Ac c A

            n n  (24) 

B.C.2 0, AAc at   (25) 

Here, the non-homogeneous term 
Ac 

   acts as a „source‟ term for the Ac   field in that it drives 

the equation. This problem is in fact equivalent to the active dispersion problem described by 

Quintard and Whitaker [38] in the case of local equilibrium in the flowing phase. Given the 

structure of the above problem, we may express the solution of these equations under the form: 

 
A A Ac c 

    b  (26) 

where Ab  is a vector field defined in the  -phase. Ab  is called a closure vector field or mapping 

vector field. By introducing this relation into deviation equations, given by Eqs. (23)-(25), and 

assuming the macroscopic source term spatially constant over the scale associated to the averaging 

volume, the set of equations governing the Ab  field can be obtained. Note that in the averaged 

equations, Eqs. (15) and (16), the deviation concentration Ac   appears only in integral terms. De 

facto, the effective properties in these averaged equations are not particularly sensitive to the 

choice of boundary conditions provided that the averaging volume, V , is large enough so that it 
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contains a large number of characteristic length scales (   and  ) [33]. Therefore, any local 

solution for Ac   that produces acceptable values of the area integrals can be used to determine the 

effective properties of the considered porous medium.  

We will consider periodic conditions at the boundary of the unit cell because they usually 

impose less restrictive constraints on solutions than, for example, Dirichlet condition [18]. In 

addition, to solve the closure problem, it is necessary to introduce a condition that sets the level of 

'Ab , and this condition is specified by a constraint of zero average per phase. In terms of the 

single periodic unit cell, the local closure problem can then be specified in the following 

dimensionless form. 

Closure problem I (dimensionless form) 

   2

( ) ( )

1 1
Pe '  ' ' ' ' ' in the -phaseA A A A

A t A t

dA dA
V V

 

       

 

       v v b b n b n b

 (27) 

B.C.1 ' ,   at A A     n b n  (28) 

B.C.2  ' 0,   at A A t b  (29) 

B.C.3  ' ' , 1,2,3, atA A i ei A    b b r l  (30) 

B.C.4 ' 0A



 b  (31) 

where eA  represents the areas of the entrances and exits of the -phases at the boundaries of the 

unit cell. In these expressions, the following dimensionless variables and parameters have been 

defined by: 

 ' A

A








b

b  (32) 

 ' ; '
 

 

 

 
v v

v v
v v

 (33) 
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A

Pe
 




v

 (34) 

and we have used the notation:  

  
1

2 

   v v v  (35) 

Using this closure solution, it follows that the averaged equation of transport takes the form: 

Partially closed form of the averaged equation of transport  

 

 
   

   

,

( ) ( )

Convection Dispersion
Accumulation

Interfacial Flux

1 1

A

A A eff A

A A A A

A t A t

c
c c

t

c dA c dA
V V

 



    

   

     

 




 
          

      

v

n n

*D

 (36) 

where the effective dispersion tensor for the species A, 
,A eff

*D , is given by: 

 ,

( ) ( )

1 1
A eff A A A A

A t A t

dA dA
V V

 

       

 


 
      
 
 

 n b n b v b
*D I  (37) 

However, this problem is not yet fully closed because the microscale concentrations still appear in 

the interfacial flux terms. In order to obtain a fully closed averaged equation of transport, we just 

need to find an expression of the interfacial flux as a function of the macroscopic quantities. 

 

4.2. Derivation of the interfacial flux (Appendix B) 

Let us consider the diffusive fluxes of substrate through the boundary of the  -phase defined in 

Eq. (16). Given the boundary condition stated by Eq. (4), we can rewrite the interfacial flux in the 

following form:  

      
( ) ( ) ( )

1 1 1
A A A A A A

A t A t A t

c dA c dA c dA
V V V

  

                 n n n  (38) 

Then, on the basis of the boundary condition given by Eq. (6), this result can be expressed as: 
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    
( ) ( )

1 1
A A A A

A t A t

c dA c dA
V V

 

          n n D  (39) 

As the reaction kinetics is assumed to be slow enough relative to external mass transfer, it means 

that spatial concentration gradients are negligible in the fluid phase. Thus, pore-scale equations 

can be uncoupled and the initial boundary value problem for Ac   is put under the form: 

 -phase transport equation 

 in the -phaseA Ac c


    (40) 

 -phase transport equation 

  

   in the -phase,A A B
A A A

A A B B

c c c
c

t c K c K

  
   

   


  


   

 
D  (41) 

 

B.C.1  1

, , atA A eq Ac K c A t

  

    (42) 

 

B.C.2  0 at ,A Ac A t      n D  (43) 

 

At this point, we identify 
Ac 

   as the source term of the microscopic field  Ac  . In other words, 

we directly express the concentration Ac   as a function of the intrinsic averaged concentration in 

the  -phase and a scalar field S defined in the  -phase, i.e.: 

 1

,A A eq Ac K S c 

 

    (44) 

 

We can then rewrite the interfacial flux as follows: 

    
1

,

( ) ( )

1 A eq A

A A A

A t A t

K c
c dA S dA

V V
 





    

  
     n n D  (45) 

 

which finally leads to (see Appendix B): 

  
1

,

1
( ) ,

1 A eq A B

A A A

A t B BA eq A A

K c c
c dA

V c KK c K


 

 

       

  

  




  


 n  (46) 

with an effectiveness factor  defined as follows: 
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 

*

1eff

B eff A

K
S dA

c Da K




 





  n  (47) 

The effectiveness factor, classically used in chemical engineering [11], takes a value between 0 

and 1 and represents physically the observed reaction rate versus the maximal reaction rate, i.e., 

the reaction that would occur if the entire volume is exposed to the bulk concentration. In this 

expression, the following dimensionless variables and parameters have been defined by: 

 
2

A

A A

Da
K

  

 

 
  (48) 

 
1

,

A
eff

A A eq

K
K

c K








  (49) 

 
* B

B

B B

c
c

c K





 

 




 (50) 

Here, A  is the current component of the diffusion tensor in the  -phase, supposed to be 

spherical for simplicity. Da  is the Damköhler number associated with the reaction of 

biodegradation of substrate A. Classically, the effectiveness factor is expressed in the literature [6] 

as a function of the Damköhler number which is the ratio between a characteristic time scale of 

diffusion for the considered substrate and a characteristic time scale of reaction. Note that the 

reference length of these dimensionless numbers,  , is different from the one used in the 

expression of the Péclet number, equations (32) and (34), denoted  .   is the characteristic 

length of the  -phase (associated to the reactive region) at the microscopic scale, while   is the 

characteristic length of the  -phase (associated to the convective region) at the microscopic scale. 

Since the reaction has hyperbolic kinetics, an additional dimensionless number appears in Eq. (47)

. The second dimensionless characteristic number is effK , the effective half saturation constant of 

the reaction. If effK  tends towards infinity (for a very low macroscopic concentration for 
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example), the non-linear kinetics of reaction follows first order kinetics, and if effK  is close to 

zero (e.g., in the case of a very high macroscopic concentration), the reaction tends to zero order 

kinetics. One must note that effK  depends on the macroscopic variable Ac


 ; this introduces a 

coupling between the pore-scale calculation of   and the solution of the macroscopic transport 

equation. 

In order to calculate the scalar field S, we substitute Eq. (44) in Eq. (1). At this point, we 

use the classical quasi-steady assumption which means the characteristic relaxation time of the 

microscopic quantity Ac   is considered to be very small compared to the characteristic time of 

variation of its source term, the macroscopic quantity 
Ac 

  . This separation of time scales is 

directly related to the constraint of separation of space scales previously detailed - see [36] for 

more details. Under this assumption, we obtain the following dimensionless problem which 

determines the scalar field S: 

Closure problem II 

 
2 * in the -phase

1
B

eff

S
S c Da

S

K

  



 (51) 

B.C.1  0 at Aωκ S t n  (52) 

B.C.2  1 at AS t  (53) 

By solving this problem on the  -phase of the unit cell which defines the microscale structure of 

the medium (used also for the calculation of the closure vector field Ab , see part 4.1.), one can 

evaluate the effectiveness factor , and hence the interfacial flux. Note that in Eqs. (51) and (47) 

also appears the term 
*

Bc  . Consequently, in the case of a two-species transport problem, in 

addition to the coupling through effK  with the macroscopic concentration Ac


  mentioned 
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above, the calculation of the effectiveness factor for species A is also dependent on the solving of 

the macroscopic transport equation for species B.  

 From the mathematical formalism point of view, it is interesting to note that the approach 

followed here is in the spirit of the work of Rao et al [40] for solute transport in bimodal porous 

medium. They have developed a fully transient solution for the mass transfer coefficient between 

two regions (equivalent, in our reactive case, to the effectiveness factor) under the following 

simplified conditions: the transport within the inclusions is only driven by diffusion, spatial 

concentration gradients are negligible in the fluid phase and the inclusions are non-interacting 

uniform spheres (or cylinders). Under such assumptions, the resulting closure problem is similar 

in its formulation to the one obtained for the calculation of the effectiveness factor. 

In essence, these two approaches, Rao‟s one and ours, can be regarded as belonging to the so-

called class of mixed models ([5], [17]). Basically, for a two-phase system, this kind of description 

is based on a fully averaged equation associated to the connected medium, coupled to a lower-

scale model (associated to the biofilm phase or inclusion region). Note that the expression of the 

dispersion tensor, given by Eq. (37), is also typical of mixed models: see for instance Eqs. (57)-

(62) of the closure problem in [17]. A typical example of such a model is presented in this 

previous work, which should be consulted for more details. 

 

4.3. Closed form of the RRLC macroscopic model 

Finally, the resulting closed form of the RRLC macroscopic model can be written as follows:  

 

 
   ,

1
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1

,
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



  





 
           


 

v
*D

 (54) 

where the effective dispersion tensor for the species A, 
,A eff

*D , is given by: 
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,

( ) ( )

1 1
A eff A A A A A

A t A t

dA dA
V V

 

        
 
      
 
 

 n b n b v b
*D I  (55) 

and the reaction effectiveness factor  takes the form: 

 
 

*

1eff

B eff A

K
S dA

c K Da




 





  n  (56) 

 

5. Development of the MTLC model 

 

On the contrary, if one assumes that the reaction rate is limited by the external mass 

transfer, i.e., the mass-transfer kinetics through A  is very slow compared to the reaction kinetics, 

the solute is instantaneously consumed as soon as it penetrates inside the biofilm phase. As a 

consequence, the substrate concentration is identically zero within the  -phase, i.e.: 

 0 in Ac phase    (57) 

 

 

and the boundary condition at the fluid-biofilm interface, Eq. (5), becomes:  

  

 , 0, atA A eq Ac K c A     (58) 

 

It must be emphasized here that there is a parallel between the microscale problem developed 

above and the set of equations associated to any reaction systems exhibiting mass transfer 

limitations; we can cite for instance the problem of dissolution in porous media with a mass 

transfer limited kinetics studied by Quintard and Whitaker [38] and Golfier et al. [15]. In both 

cases, the assumption on limiting mechanisms leads to the same formalism at the pore-scale. 

Therefore, the development of the averaged transport equation is similar to the one presented in 

these papers. Nevertheless, as the derivation of such a model is not straightforward, we shall 

remind the different steps and assumptions made so that the limitations and problems associated to 
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this analysis appear clearly. Additional details can be found in these previous papers ([38], [15]). 

 

5.1. Derivation of the closure problem 

If the development of the deviation equations (23) and (24) of the RRLC model (Appendix A) is 

similar in the case of the MTLC model, the expression of the second boundary condition, given by 

equation (25), is quite different. At this point, the boundary value problem for the deviation 

concentration Ac   in the case of the MTLC model takes the form: 
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 

v v

n nD

 (59) 

B.C.1 

source

, atA A A Ac c A

            n n  (60) 

B.C.2 , at AA A

source

c c


     (61) 

One can identify 
Ac 

   and Ac


  as source terms of the Ac   field. This leads to express the 

solution to these equations in the form (see [14]): 

 
A A A A Ac c s c 

         b  (62) 

 

where Ab  is a vector closure field and As   is a scalar closure field. If we inject this expression in 

equations (59) to (61), we obtain the two following closure problems, both defined in the -phase: 

Closure problem I 

   2 1 1
in the -phaseA A A A

A A

Pe dA dA
V V

 

       

 

       
' ' ' ' '

v v b b n b n b  (63) 

B.C.1  at A A      '
n n b  (64) 

B.C.2 0 at A A '
b  (65) 
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B.C.3  ' ' , 1,2,3, atA A i ei A    b b r l  (66) 

B.C.4 ' 0A



 b  (67) 

Closure problem II 

 2 1
in the -phaseA A A

A

Pe s s s dA
V



    



   
'

v n  (68) 

B.C.1 0 at As A   n  (69) 

B.C.2 1 at As A   (70) 

B.C.3  , 1,2,3, atA A i es s i A    r l  (71) 

 

B.C.4 0As


   (72) 

In these expressions, dimensionless variables and parameters have been defined as previously in 

Eqs. (32)-(35). At first sight, the closure problem I of the MTLC and RRLC models are identical. 

Actually, it must be emphasized that such a similarity is not inherent to these models but due to 

certain upscaling assumptions. Indeed, it is classically assumed that the space variations of 

macroscale variables (
Ac 

   and 
Ac 

  ) at the pore scale are neglected in the development of 

closure problems [55]. However, for certain specific configurations such as the tube problem for 

instance, several studies ([25], [16]) have shown that keeping these terms could lead to an 

improvement of the solution. In this case, the closure problem I of the MTLC model would be 

different and coupled with Problem II. Given the kind of application under consideration and for 

the sake of simplicity, we will keep the classical approach. 

 

5.2. Closed form of the MTLC macroscopic model 

By injecting Eq. (62) into Eq. (16), we finally obtain the macroscopic equation of transport 

associated with the MTLC model: 
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 (73) 

 

where the different macroscopic parameters are defined by: 
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      n  (75) 
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s dA s dA s
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 
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1 1

A A A A

A A

dA dA
V V

 

           
*

γu n b n b  (77) 

 

Here, 
,A eff

*D  is the macroscopic dispersion tensor,   is the exchange coefficient between the -

phase and the -phase and *

γ
d  and *

γ
u  are non-classical convective vector parameters. As 

emphasized previously, the effective dispersion calculated with the MTLC model (closure 

problem I) is equivalent to the dispersion tensor predicted by the RRLC model. It is quite 

surprising that both of these opposing cases yield the same assumptions regarding the dispersion 

process (subject to the upscaling conditions stated above). One must also keep in mind that the 

mass exchange coefficient   introduced above corresponds to a first order approximation of the 

mass transfer processes within the system, which, by nature, are transient and require a spatial-

time convolution to be rigorously described. The limitations associated to this approximation and 

the conditions for which such a formulation may be not acceptable are discussed in Cherblanc et 

al. [8] and Golfier et al. [17]. Finally, it was shown that the additional terms  Ac


 *

γd  and 

( )A Ac


    *

γu  have a complex influence on the solution behavior. In general, for simple 

unit cells, these additional terms are necessary. On the contrary, for more complex microscale 
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geometries, results are contradictory and we currently lack information ([39], [15], [16]). The 

studies done during the development of the MTLC model have shown that they cannot be 

generally neglected. However, under certain particular circumstances (for instance, in a 

bidimensional configuration, with a low flow velocity and a small volume fraction of the fluid 

phase), these non-classical terms may be disregarded and thus, the macroscopic transport equation 

can be put in the simplified form:  

 
 

   ,

A

A A eff A A

c
c c c

t


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
 


   


v

*D  (78) 

 

We shall focus again on the importance of these non classical terms in a further study. 

 

6. Numerical implementation and validation of the non equilibrium models 

A key point in the derivation of upscaled models devised above is the calculation of the 

interfacial flux. Indeed, in both formulations, the solute transport equation is averaged over the 

phase   and the mass exchange flux with the biofilm is governed only by the value of the 

effectiveness factor or the mass transfer coefficient. In this section, we will study the behaviour 

and accuracy of these interfacial fluxes through two simple examples, by comparing numerical 

results with analytical or semi analytical solutions. In a first step, numerical methods used for 

solving closure problems will be briefly presented. Finally, the domains of validity of each model 

will be assessed by comparison between direct simulations at the pore scale over a stratified 

porous medium and results coming from 1D averaged models.  

 

6.1 Numerical methods 

 

The numerical procedure designed for solving the closure problems has been described in the 

literature (e.g., [38]). Effective coefficients in transport equations are computed for a given 
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geometry and a velocity field previously calculated. An example of the simple representation of 

the „solid/biofilm‟ microstructure that was adopted is represented by the two-dimensional 

periodic unit cell illustrated in Figure 4. The porous medium represented here is constituted by a 

cylindrical solid inclusion, with a biofilm layer, uniformly developed around the inclusion. 

On this figure,   and   represent the characteristic length scales associated to the fluid and 

biofilm phase, respectively. The equations are discretized on a two-dimensional uniform 

Cartesian grid. The geometry of the medium under consideration is described by assigning fluid, 

biofilm or solid properties to each block of the Cartesian grid. A grid of 250x250 nodes is used 

and provides sufficient resolution to obtain accurate results. 

These problems are numerically solved with a finite volume scheme. The velocity field is 

initially computed over the given unit cell. The discretization of the Stokes equations does not 

pose major problems and a classical Uzawa algorithm [13] is considered to update the pressure 

until convergence. The convective part of the closure equations, when it exists, has been 

discretized with a first order upstream scheme with anti-diffusion [41] and the dispersive part has 

been discretized with an implicit scheme [37]. The difficulties generated by the integro-

differential terms and the conditions of zero average in the different phases of the solution field 

have been overcome by a method of decomposition of variables (e.g. [38]). The resulting linear 

systems have been solved by a Bi-Conjugate Gradient Stabilized solver [49]. Unless otherwise 

indicated, the results for the different effective parameters are represented in terms of the cell 

Péclet number (see Eqs. (34) and (35). 

 

6.2. Interfacial flux predicted by the RRLC model: application to a one-dimensional stratified 

medium 

We present here a validation of the effectiveness factor calculation obtained from the upscaling 

theory; this is based on a comparison with an analytical solution in the case of a one-dimensional 
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stratified porous medium. Figure 5 illustrates such a conceptual model, commonly adopted in the 

Literature (e.g. [26]) if equilibrium behaviour is considered. The porous medium is divided into a 

bulk fluid phase, assumed to be perfectly mixed and a biofilm region where confined 

concentration gradients may exist due to the diffusion and reaction processes. No boundary layer, 

including a diffusion resistance, as in the film stagnant or boundary layer theory, is considered 

here (e.g. [4], [24]).  

In order to be able to reach an analytical solution, we will consider linear first order kinetics for 

the reaction of substrate consumption in the biofilm. Under the assumption of reaction rate 

limited kinetics, the set of microscopic equations describing the solute transport through the 

porous medium (Eqs. (1) to (6)) can thus be written as: 

 -phase 

 in the -phaseA Ac c


    (79) 

 -phase  

 
2

2
in the -phase,A A

A A A

c c
k c

t x

 
  







 


 (80) 

B.C.1  

 0 at ,A
A

c
X

x


 


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
 (81) 

B.C.2  

 , atA A Ac c c X


      (82) 

where Ak   is the first-order reaction rate of solute biodegradation. A straightforward calculation 

leads to the analytical expression of the effectiveness factor in this case: 
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 (83) 
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with a Damköhler number 1Da  defined by: 

 
2

1
A

A

k L
Da 



  (84) 

where the characteristic length L is here equal to 1. This analytical result, which is classical in 

chemical engineering, is compared to the effectiveness factor value given by the RRLC model 

(modified to consider a first order linear reaction kinetics). 

The variation of   as a function of the Damköhler number is illustrated in Figure 6. An excellent 

agreement between analytical and numerical results is obtained, with an averaged absolute 

relative error of less than 1%. 

. 

6.3. Interfacial flux predicted by the MTLC model:  application to a capillary tube model  

 At this time, it is well known that a constant mass transfer coefficient like the one 

calculated from the volume averaging method cannot recover all the complex physical processes 

involved, which are inherently both transient and spatially dependent ([17], [25]). For instance, 

the derivation of the closure problem that controls Ac   implies that macroscopic gradients are 

assumed to be small compared to microscopic values. Thus, the effects associated to the entrance 

region are not considered. For a better understanding of the influence of such effects on the 

MTLC model, let us consider a simplified porous medium such as the capillary tube model in 

which the pore space is represented as an array of parallel cylindrical tubes. The biofilm is 

assumed to be developed as a uniform layer on the walls of each tube. Considering the axi-

symmetry of the problem, the velocity field is such as ( ).v r  zv e , with r the radial coordinates 

and ze  the unit vector on the axial direction. The representative pore scale geometry of such a 

conceptual system is illustrated in Figure 7. The flow and boundary conditions used to calculate 
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the mass transfer coefficient  in the framework of the MTLC model are also indicated on this 

Figure. 

First, let us remind that the mass transfer coefficient   can be put in a dimensionless form, 

which leads to a Sherwood number Sh  defined as follows: 

 ,
v A

D
Sh

a 


  (85) 

where D  is the diameter of the tube and va  is the specific surface of the medium (i.e., the total 

exchange surface area per unit of volume). In this axi-symmetric configuration, this Sherwood 

number can be rewritten under the form: 

 
2

,
A

R
Sh




  (86) 

where R  is the internal tube radius. Actually, this conceptual model is analogous to the classical 

Graetz problem for heat (or mass by analogy) transport [23] driven by the following macroscopic 

balance equation,  
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

v
*

 (87) 

for which a semi-analytical transient solution is available. Here, 
Taylor

*  represents the axial 

dispersion coefficient characteristic of Taylor dispersion [48], Graetz  being the mass transfer 

coefficient predicted by the Graetz analysis. Initially, the fully transient expression obtained by 

Graetz was derived for the bulk average concentration but a similar calculation can be made as a 

function of 
Ac 

  .  

In order to compare both expressions of the mass transfer coefficient, the formulation of the 

MTLC model needs to be modified. Thus, the macroscale transport equation becomes:  
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  

        


v
*D  (88) 
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with: 

 ' 1

    (89) 

and: 

 1 * 1 *

eff



        v v d u  (90) 

where effv  is the effective velocity associated with the convection term. As we can notice from 

Eqs. (87) and (88), advected mass fluxes are not the same. However, by considering a steady-

state assumption and negligible axial dispersion, the coefficient 
'  can be redefined in a similar 

form to Graetz , as a function of the classical averaged fluid velocity 


v , such as: 

 

 

'

*

1 * 1 *







    




  



 

v

v d u

 (91) 

At this point, the expression of 
*  and Graetz  are analogous. In both cases, the flux of substrate 

towards the fluid-biofilm interface (which depends on the mass transfer coefficient) is based on a 

driving force given by the difference between the averaged concentration in the fluid phase 

Ac


  and the microscopic concentration at A  (or the concentration value at the tube walls), 

i.e., 0. 

Consequently, the Sherwood numbers *Sh  and GraetzSh , associated respectively to *  and Graetz , 

can be directly compared. Figure 8 represents the variation of these two numbers as a function of 

the dimensionless distance (normalized with RPe ) from the inlet. 

One can note that the solution of the closure problem is spatially constant while the Graetz 

solution tends toward an asymptotic value. The MTLC solution is space (and time) invariant due 

to the assumption of small variations at the microscale of the macroscopic gradient, i.e., non-

local effects are neglected (see Appendix A). The analytical solution reaches the asymptotic state 
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quickly, after a dimensionless distance of 0.11Pe  only. Consequently, as a function of the 

position relative to the inlet, one distinguishes two zones: 

 An establishment zone, in which the mass transfer coefficient is very sensitive to the 

Péclet number and to the position. No conventional upscaling is valid here. This 

behaviour, from an upscaling point of view, could be qualified as non-local, as mentioned 

above. 

 An asymptotic behaviour zone, where the mass transfer coefficient becomes constant 

(and does not depend on the Péclet number) and inferior to the values obtained in the 

establishment zone. 

The existence of this establishment zone must be kept in mind when using the MTLC model. 

This fact had raised problems during the validation of the upscaled models by comparison with 

the direct simulation at the microscale (see section 6.4). Even after the establishment of the 

asymptotic state, we notice a relative difference of about 15% between the theoretical Sherwood 

number (value: 4.75) and the analytical Sherwood number (value: 4.07; this is the value of 

reference). Two main reasons can explain this residual discrepancy: 

 In Graetz solution, it is assumed that the diffusion in the z-direction can normally be 

neglected relative to the diffusion in the radial direction (see [16] for an upscaling study 

of the Graetz problem where this assumption has been made). 

 The loss of information between the microscale and the macroscale induced by the 

volume averaging method, especially by the assumption of small variations of 

macroscopic variables at the microscale (see Kechagia et al. [25] for a discussion upon 

the limitations inherent to this assumption). However, this behaviour is in essence 

specific to the nature of the geometrical case under consideration, i.e., flow in a tube or a 

stratified system ([16], [35]). 
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In conclusion we can say that we have got a reasonably good agreement between the Graetz 

solution and the MTLC model solution when the asymptotic state is reached. This comparison 

also suggests that such a macroscopic model, based on the volume averaging method, is capable 

of predicting reliable mass transfer coefficients, this by using a single elementary unit cell 

(whatever its complexity), which is particularly effective. 

 

6.4 Validity domains of the one-equation non equilibrium macroscopic models 

 

In order to establish the validity domains associated to the two non-equilibrium one equation 

models, in terms of hydrodynamic and biochemical conditions of transport (i.e., in a Péclet 

number – Damköhler number diagram), we adopt the same approach that has been used in Golfier 

et al. [18] to determine the validity domain of the local mass equilibrium one-equation model 

(denoted further as the Local Equilibrium Assumption (LEA) model). Results of direct 

simulations performed at the microscale (computed with COMSOL Multiphysics 3.5) on a 

simplified porous medium for different values of Pe  and Da  are compared to the equivalent 

upscaled simulations computed with the macroscopic models under consideration. In our case, we 

will use a 2D stratified geometry to test the models: the microscale geometry adopted is illustrated 

in Figure 9. Note that in this paper, the Damköhler number is defined as relative to the thickness 

of the biofilm, while in Golfier et al. [18] the Damköhler number is defined as a function of the 

periodicity length of the medium.   has been arbitrarily fixed at 0.25 and 'AK   at 0.5. 

We faced a problem during this comparison. The MTLC model implies strong reaction kinetics (in 

order to have an instantaneous consumption of the substrate at the fluid-biofilm interface). For too 

high reaction rates (i.e., a high value of Da ), the solute is totally consumed during its transport 

through the considered porous medium, so that it is impossible to compare breakthrough curves. 

We managed this issue by comparing spatial profiles of concentration along the medium at the 

steady state. This solution leads to other difficulties in the sense that: 
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  Non-zero concentration profiles must be longer than the establishment length of the 

asymptotic state of transport in order to make a pertinent comparison of direct and 

averaged simulations. Otherwise, the problem is non homogenizable. This behaviour 

appears mainly at low Pe  and high Da . Similarly, this establishment length, which is an 

increasing function of the Péclet number, must be shorter than the length of the considered 

porous medium (which was initially fixed to 10, see Figure 9). Thus, for Péclet number 

values beyond 1000, a porous medium of 30L length should be used, in order to reach the 

asymptotic state before the outlet of the stratified medium. 

  Finally, a comparison study restricted to the steady-state regime leads to focus only on the 

asymptotic behaviour of the macroscopic models although the evaluation of such models 

in transient conditions may be quite different. The impact of the quasi-steady assumption 

made in the closure and microscale problems cannot be questioned through this kind of 

comparison. Such limitations must be kept in mind, especially under high velocity 

conditions, i.e., at high Péclet number (see [36] for more details). In spite of all these 

remarks, our validity study was based on the steady solution. 

Figure 10 shows three spatial profiles of concentration, which are characteristics of the transition 

between the validity domains of the MTLC model at low Péclet numbers to the validity domain of 

RRLC model at high Péclet numbers; all simulations have been performed for a constant high 

value of the Damköhler number ( 2500Da  ). 

The comparison of these simulations, collected in Figure 11, suggests that MTLC and RRLC 

models assumptions require a high enough value of Da  to be satisfied. Indeed, the assumption of 

zero concentration at the fluid-biofilm interface adopted in the MTLC model cannot be verified 

for a too low reaction. Similarly, the RRLC model is relevant only if concentration gradients do 

exist in the biofilm phase (a RRLC model with an effectiveness factor of 1 is equivalent to the 

LEA model with a forced dispersion in the fluid phase). 
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One can observe on Figure 11 that the MTLC model is valid at low Pe since in these conditions, 

with a high enough Da , the assumption of a zero concentration at the fluid-biofilm interface is 

correctly satisfied. On the contrary, the RRLC model is verified at high Pe  only. The assumption 

of equality at the interface between the microscale concentration within the biofilm and the fluid 

averaged concentration requires that the flow velocity is high enough, especially if the Damköhler 

number is high. Consequently, direct simulations have been performed over a large range of Péclet 

numbers to correctly determine the appropriate validity domains. Between them, a transition 

domain appears. The width of this transition domain is an increasing function of Pe  and Da  (at 

least in the considered configuration). Nevertheless, it must be emphasized that, for Péclet 

numbers higher than a value of about 10
3
, inertial effects should be considered in the calculation 

of the flow field (the value of the Reynolds number in this case may be equal or higher than 1). 

This simplification (we have considered only the Stokes equations) probably leads to an 

underestimation of the limit-value of the Péclet number for the RRLC validity domain, since 

inertial effects should enhance the mixing of the fluid phase. It should be reminded also that in 

certain instances (at high velocities mainly), the full transient behavior of the effective parameters 

can be of interest and consequently, the quasi-steady condition assumed at the microscale might 

be questionned. As a consequence, the RRLC model should be used in a careful way for highly 

transient phenomena at high Péclet number. 

Figure 11 collects the different simulations performed in a Damköhler number – Péclet number 

diagram and presents the domains of validity associated to the three one-equation transport models 

respectively, the LEA model (LEA model results are extracted from [18]), the MTLC model and 

the RRLC model. Comparisons between the different concentration profiles for each “numerical 

experiment” have been led by comparing the respective values of their zeroth, first and second 

order moments. 

On the basis of this diagram, several important remarks can be made: 
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 Both non-equilibrium models require high values of Da. The RRLC model is valid for 

high Péclet numbers whereas the MTLC model is suitable for low Péclet numbers, as 

explained above. 

 The validity domain of the RRLC model is particularly restricted and corresponds to very 

specific conditions (in terms of flow velocity). Given the constraints associated to the 

Péclet and Damköhler values involved, this formulation is more appropriate to 

bioengineering applications such as the wastewater biotreatment in packed bed reactors 

([50], [51]). An example of practical application will be detailed below. Such a 

formulation could be considered also for flows in fractured media in groundwater systems 

[7] where thick (1 to 2 centimeters) biofilms and high velocities are usual. Moreover, this 

is the more relevant macroscopic one-equation model (compared to the other approaches) 

for high Damköhler and Péclet numbers and an extended validity domain may be defined, 

as a function of the level of accuracy required by the user. 

 One observes on this figure the presence of a non-homogenisable zone for which the 

constraint of length scales is not respected anymore (the characteristic length scale 

associated to the macroscopic concentration gradient is of the same order of magnitude as 

the characteristic length scales   and  ). 

Note also that the thresholds and the slopes of the limits between domains are of course highly 

dependent on the porous medium considered. Results could be slightly different for another kind 

of pore-scale geometry even if we think that the validity domains would be roughly the same.  

In conclusion, we can note that with the RRLC and MTLC models, we have two simple models 

describing non-equilibrium reactive transport in porous media including a biofilm phase. They 

are well-suited for highly reactive transport conditions. Let us consider, for instance, the problem 

of nitratification in trickling filters for wastewater treatment studied by [51]. In the nitratification 

process, Nitrobacter bacteria  31000 mg/cm  ; 
-10.55 dA   and 3 31.2 10  mg/cmAK 

   
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converts nitrite (coming from the oxidation of ammonia by Nitrosomas) to nitrate 

 2 26 10  cm /dA

   in trickling filters  15 10  cm ;

  21.5 10  cm

   used as support 

medium for biofilm growth. Given the typical flow rates under consideration at the pilot-scale 

(from 1 to 3 l/min for a trickling filter of 9cm diameter and a porosity of 0.35), calculations lead 

to Péclet and Damköhler values of 5 610 10  and 1720, respectively, for which the assumptions 

of the RRLC model are verified. This practical example illustrates the capacity of such a non-

equilibrium model for modeling a real system and addressing the needs of industrial processes in 

bio-engineering. On the contrary, the MTLC model is well-suited for applications either to very 

thin biofilms that do not offer significant internal mass transfer barriers and for which the 

reaction can be assumed to occur at the surface or to multi-population heterogeneous biofilms for 

which the heterotrophic activity is limited to the biofilm surface ([9], [20]). Another potential 

application would be for the modeling of transport of antimicrobial agents such as oxidizing 

biocides chlorine or hydrogen peroxide which are known to be neutralized in the surface layers 

of the biofilm faster than they diffuse into the biofilm ([44], [46]) 

Finally, a zone subsists where all one equation models fail and for which a two-equation 

description is required in order to have an accurate simulation of transport phenomena. The 

development of such a model will be the focus of a further study.  

 

7. Summary and conclusion 

 

In this study we have presented the equations describing bioreactive transport in a porous 

medium at the Darcy-scale for two non equilibrium one-equation models. The macroscopic form 

of these two models, the Reaction Rate Limited Consumption model and the Mass Transport 

Limited Consumption model, is reminded below: 

RRLC model 
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MTLC model 

 

 
   

 

,

( )

A

A A eff A

A A A A

c
c c

t

c c c



    

   

  

    




 


   



     * *

γ γ

v

d u

*D
 (93) 

 

If such formulations have already been introduced heuristically in the past, the originality of this 

approach lies in the fact that it keeps a quantitative description of the coupled nature of transport 

and reaction and therefore provides a rigorous formalism for the expression of interfacial fluxes. 

Under the condition that the assumptions of the considered models are verified, we can evaluate 

the effective parameters (dispersion, interfacial fluxes …) from solving pore-scale closure 

problems. These problems require the knowledge of some pore-scale characteristics, and this 

would probably call for some specific laboratory measurements. In practice, these transport 

models, which require to be coupled with a biofilm growth model if we are interested in studying 

the complete process of biodegradation, will possibly be applied to many systems of interest by 

extending the classical domain of application of one-equation models to non-equilibrium 

conditions.  

The validity domain of each non-equilibrium transport model has been assessed in terms of 

hydrodynamic and biochemical conditions of transport (i.e., in terms of Pe  and Da  numbers). 

The RRLC model is suitable for high Péclet and high Damköhler numbers (because these 

conditions enhance the homogeneity of the concentration within the fluid phase and the 

formation of concentration gradients in the biofilm), while the MTLC model assumptions are 

verified for low Péclet numbers and high Damköhler numbers (conditions for which the 
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concentration field in the fluid phase tends to satisfy the assumption of zero concentration at the 

biofilm-fluid interface).  

Further numerical experiments would be required in order to investigate the impact of the 

microscopic features of the problem on the macroscopic models behaviour; in particular it would 

be interesting to make computations on a realistic pore-scale geometry (see [18]). A later paper 

will develop these points. For transport conditions located out of the validity domains of LEA, 

RRLC and MTLC models, a general two equation model should be established. The development 

of such a model will be the goal of further studies. 
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Appendixes  

Appendix A. Development of closure problems for the RRLC model 

If we consider the equality:  

 
A A Ac c c 

        (A.1) 

and by using the following rearranged form of the non-closed equation of transport in the fluid 

phase, Eq. (16), 
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we can obtain the following relation by subtracting Eq. (A.2) to the point equation of transport, 
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Eq. (2): 
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At this point, the use of the following geometric lemma [38]: 
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leads to the following expression of the deviation equation: 
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Now, let us simplify Eq. (A.3) by making an order-of-magnitude analysis of the different terms 

and by using the hypothesis of separation of scales [38]. Theses estimates lead to:  

 A Ac c      v v  (A.6.a) 
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Some of the terms neglected in the above estimates (Eq. (A.6.a) and Eq. (A.6.b)) are identified as 

non-local terms, i.e., for which the spatial deviation concentration is evaluated at points other than 

the centroid of the averaging volume. These terms are averaged quantities, of which the order of 

magnitude is 
1

L

 
 
 

 whereas the other terms are the order of 
1

l

 
  
 

 which leads to neglect them. 

At last, the time derivatives are neglected and the problem is treated as quasi-steady since a 

separation of time scales can be reasonably assumed (see [36] for more details). When the 

simplifications stated above are adopted, the deviation equation becomes 
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B.C.1 , atA A A Ac c A


           n n  (A.7.b) 

B.C.2 0, atAc A   (A.7.c) 

The last boundary condition is imposed by the assumption 
, , atA A eq Ac K c A

      of the RRLC 

model. In order to close the problem, we must find a means of relating the perturbation 

concentration Ac   in terms of the macroscopic source term 
Ac 

  . We inject the closure 

assumption,  

 
A A Ac c 

    b  (A.8) 

 

in the former equation. An important assumption is made at this point: it is the assumption of 

small variations at the microscale of macroscopic concentration gradients (see Kechagia et al. [25] 

for an analysis of limitations of such an assumption), which allows writing:  

 
A A Ac c 
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And if we consider now   as a spatially constant quantity, we can finally obtain the closure 

problem: 
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where periodicity conditions and constraints of zero averages by phase have been added to close 

the problem. 

 

Appendix B. Calculation of the effectiveness factor.  

 

First, we start from the following expression of the interfacial flux between the -phase and the -

phase: 
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 (B.1) 

Under the quasi-steady state assumption for mass exchange between phases at the microscale, one 

can consider that the interfacial flux and the value of the biodegradation rate integrated on the 

biofilm phase are equal. Then, we define the effectiveness factor as the ratio of the real 

biodegradation rate and the maximum biodegradation rate, which should be observed if the whole 

biofilm phase was exposed to the concentration available at the fluid-biofilm interface. 
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Thus, the effectiveness factor  can be expressed as: 
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Note that this effectiveness factor is related to the consumption of the substrate A; a similar 

effectiveness factor can be defined for the electron acceptor B. 

From this definition, we can rewrite the interfacial flux as follows: 
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If we transform the expression of effectiveness factor into a dimensionless expression, we obtain: 
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where the following dimensionless variables and parameters have been defined by: 
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Here, A  is the current component of the diffusion tensor in the  -phase, supposed to be 

spherical. 
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Figure 1: Characteristic length scales and levels associated with porous-medium-supported 

biofilms. 

 

Figure 2: Characteristic length scales associated with the averaging volume, , defined at the 

pore scale. 

 

Figure 3: Conceptual representation of the concentration evolution at the fluid/biofilm interface 

 

Figure 4: Example of a 2D unit cell  

 

Figure 5: Pore-scale conceptual model of a porous medium with biofilm 

 

Figure 6: Comparison between the theoretical calculation and the analytical solution of the 

effectiveness factor in the case of first order kinetics of reaction. 

 

Figure 7: Illustration of the geometry and boundary conditions associated to the Graetz problem. 

 

Figure 8: Comparison between the Graetz semi-analytical solution and the upscaled solution of 

the evolution of the Sherwood number along an axi-symmetric tube 

 

Figure 9: Illustration of the geometry and boundary conditions of the stratified system adopted 

for direct numerical simulations. 

 

Figure 10: Spatial profiles of concentration at steady-state along a stratified porous medium 

including a biofilm phase. The different concentration profiles are calculated by direct 
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simulations at the pore scale, LEA model, MTLC model and RRLC model, with 2500Da   and 

2 310 10,10,Pe  . 

 

Figure 11: The domains of validity of the one-equation models of bio-reactive solute transport in 

porous media with biofilm, in a Damköhler number - Péclet number diagram. 
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