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The Weyl symbol of Schrödinger semigroups

L. Amour, L. Jager and J. Nourrigat

Université de Reims

Abstract

In this paper, we study the Weyl symbol of the Schrödinger semigroup e−tH , H = −∆+V , t > 0, on
L2(Rn), with nonnegative potentials V in L1

loc. Some general estimates like the L∞ norm concerning
the symbol u are derived. In the case of large dimension, typically for nearest neighbor or mean
field interaction potentials, we prove estimates with parameters independent of the dimension for the
derivatives ∂α

x ∂β
ξ u. In particular, this implies that the symbol of the Schrödinger semigroups belongs

to the class of symbols introduced in [2] in a high-dimensional setting. In addition, a commutator
estimate concerning the semigroup is proved.

2010 Mathematical Subject Classification: 35S05, 47D08, 35Q82.
Keywords and phrases: Weyl pseudodifferential operators, Schrödinger semigroups, large dimension, mean
field potential, nearest neighbor potential.

1 Introduction.

Let V be a nonnegative function in L2
loc(Rn). It is known that H = −∆ + V (x) is essentially selfadjoint

on C∞0 (Rn) and we also denote by H its unique selfadjoint extension. We may also suppose that V is only
in L1

loc(Rn) and use Theorem X.32 in [22] to define H as a selfadjoint operator with a suitable domain.
In this paper, we are interested in the Weyl symbol u(·, t) of e−tH , for each t > 0. Since this operator is
bounded in L2(Rn), its Weyl symbol is a priori a tempered distribution U(t) on R2n which satisfies,

< e−tHf, g >=< U(t),H(f, g, ·) >, (1)

for all f and g in S(Rn), where H(f, g, x, ξ) is the Wigner function (c.f. [6] or [20]),

H(f, g, x, ξ) = (2π)−n

∫

Rn

eiv·ξf
(
x− v

2

)
g

(
x +

v

2

)
dv. (2)

The aim of this work is to study this Weyl symbol when V is a C∞ potential describing a large number
of particles in interaction, either for a nearest neighbor interaction model in a lattice, or for a mean field
approximation model.
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Our hypotheses on the interaction potentials will in particular imply that u(·, t), the symbol of e−tH , is
a C∞ function on R2n, belonging for each fixed n, to the usual class of Hörmander with the constant
metric [15]. This follows from the general results about the pseudodifferential calculus: see [13] or earlier
results of [14]. However, these classical results depend on the dimension n, and cannot be applied when
the number of particles in interaction tends to infinity.

Under appropriate hypotheses covering both nearest neighbor interaction and mean field approximation,
we shall prove that, for each t > 0, the Weyl symbol u(·, t) of e−tH belongs to some set of symbols, of
a form already studied in [4] for the composition of symbols and in [2] for norm estimates. The sets
of symbols defined in [4] and [2] are characterized by estimates in the L∞ norm, for the derivatives
∂α

x ∂β
ξ F , only involving multi-indices (α, β) such that all the αj and βj are bounded by the same integer

m, independently of the dimension. The idea that estimates for such multi-indices (with m = 2) are
sufficient to ensure L2 bounds, goes back to Coifman-Meyer [5] (for a quantization different from the
Weyl quantization).

Let us specify this class of symbols. In [4] and [2], we say that a continuous function F on R2n is in
Sm(M,ρ, δ) (where m is a nonnegative integer, M ≥ 0, and ρ and δ are two sequences (ρj)(j≤n) and
(δj)(j≤n) of nonnegative real numbers) if, for all multi-indices α and β in Nn satisfying 0 ≤ αj , βj ≤ m,
the derivative ∂α

x ∂β
ξ F is a continuous and bounded function verifying,

‖∂α
x ∂β

ξ F‖L∞(R2n) ≤ M
∏

j≤n

ρ
αj

j δ
βj

j . (3)

In [2], we proved that, if a function F is in S2(M, ρ, δ) and if moreover 0 < hρjδj ≤ 1 for all j ≤ n, then
the operator OpWeyl

h (F ) of Weyl symbol F is bounded in L2(Rn) and

‖OpWeyl
h (F )‖L(L2(Rn)) ≤ M

n∏

j=1

(1 + 81πhρjδj). (4)

In [4] it is proved that, if F is in Sm(M, ρ, δ) and G in Sm(M ′, ρ, δ), (m ≥ 6), and if 0 < hρjδj ≤ 1
for all j ≤ n, then the Weyl symbol Ch(F, G) of the composed operator OpWeyl

h (F ) ◦ OpWeyl
h (G) is in

Sm−6(M ′′, ρ, δ), with

M ′′ = MM ′
n∏

j=1

(1 + Khρjδj),

where K is a universal constant.

By these results, the sets Sm(M, ρ, δ) can be applied in situations where the dimension n tends to
infinity. Then, an element of Sm(M,ρ, δ) is rather a family F = (Fn)(n≥1), where Fn is a function on
R2n satisfying (3), where M is independent of n, and ρ = (ρj)(j≥1) and δ = (δj)(j≥1) are now infinite
sequences, satisfying 0 < hρjδj ≤ 1 for all j ≥ 1. However, without suitable assumptions on these two
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sequences, the constants in (4) will not be bounded. But even in this case, we may think for instance
of possible applications to thermodynamic limits (see [12]). Under suitable hypotheses on the sequences
ρ = (ρj)(j≥1) and δ = (δj)(j≥1), the products in (3) and (4) remain bounded as the dimension n tends to
infinity, and a Weyl calculus in infinite dimension can be considered, in the spirit of B. Lascar [17][18][19]:
see [3] for norms estimates.

In the first section, the symbol u(·, t) of the semigroup is proved to be in L∞(R2n) with |u(·, t)| ≤ 1
almost everywhere and additionally,

∫
Rn u(x, ξ, t)dx and ∂β

ξ u(·, t) are estimated, without further regularity
hypothesis on the interaction potential V . These results are obtained by applying the Feynman Kac
formula to the study of the Weyl symbol of Schrödinger semigroups. The usual applications of this formula
(c.f. [1][21][26][27]. . . ) rather concern the distributional kernel of this operator. In the second section,
we consider the semigroup in a large dimension setting with regular potentials and obtain estimates on
all the derivatives of the Weyl symbol proving in particular that, for each m ≥ 1, it lies in some set
Sm(1, ρ, δ) defined above, with suitable sequences ρ = (ρj) and δ = (δj), where ρj and δj are independent
of j. Supplementary assumptions on potentials regarding the large dimension are naturally necessary
at this step. Then, in the third section, two examples of Schrödinger semigroups in large dimension,
satisfying the assumptions of section 2, are considered, namely, the nearest neighbor and the mean field
approximation potentials. Moreover, a commutator property is also proved.

2 First properties of the symbol of the semigroup.

The first step consists in writing the Weyl symbol of e−tH with the Feynman Kac formula, under rather
general hypotheses on the potential V . We make the choice to not first express the symbol with the
distribution kernel, in order to avoid the use of Brownian bridges. Let T > 0 and n be an integer ≥ 1.
We denote by B the Banach space of continuous functions ω on [0, T ] taking values into Rn and vanishing
at t = 0. This space is endowed with the supremum norm, with the Borel σ−algebra B and with the
Wiener measure µ of variance 1 (c.f. [16][9][10][11]).

Proposition 2.1. Let V ≥ 0 be a function in L1
loc(Rn). Let U(t) be the Weyl symbol of the operator

e−tH , first considered as a tempered distribution on R2n. Then, U(t) is identified with a function u(·, t)
in L∞(R2n). We have, for each t in (0, T ] and for almost every (x, ξ) in R2n,

u(x, ξ, t) =
∫

B

e−iω(t)ξe−
∫ t
0 V (x−ω(t)

2 +ω(s))dsdµ(ω). (5)

Moreover, the following inequality holds,
|u(·, t)| ≤ 1, (6)

almost everywhere on R2n, for each t ∈ [0, T ].
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One notices that the above integral involves all of the trajectories of the Brownian motion with a starting
and a finishing point that are symmetric with respect to x.

Proof. Let f and g in S(Rn). When V ≥ 0 belongs to L1
loc(Rn), one may apply Feynman Kac formula

(c.f. B. Simon [24] or [25]) written as,

< e−tHf, g >=
∫

Rn×B

f(x + ω(t))g(x)e−
∫ t
0 V (x+ω(s))dsdxdµ(ω). (7)

Notice that we use here a scalar product antilinear w.r.t. the second variable.

According to the Wigner function definition, we have for all x and y in Rn,

f(x)g(y) =
∫

Rn

H

(
f, g,

x + y

2
, ξ

)
e−i(x−y)·ξdξ.

Consequently, for all ω in B,

f(x + ω(t))g(x) =
∫

Rn

H

(
f, g, x +

ω(t)
2

, ξ

)
e−iω(t)·ξdξ.

The Weyl symbol U(t) of e−tH being a priori defined as a tempered distribution on R2n, thus satisfies,
for all F in S(R2n),

< U(t), F >=
∫

R2n×B

F

(
x +

ω(t)
2

, ξ

)
e−iω(t)·ξe−

∫ t
0 V (x+ω(s))dsdxdξdµ(ω).

The above identity shows that, for all F in S(R2n),

| < U(t), F > | ≤ ‖F‖L1(R2n).

As a consequence, U(t) is identified with a function u(·, t) in L∞(R2n), with a L∞(R2n) norm smaller or
equal than 1, and satisfying (5) and (6). The proposition is then proved. ¤

As a first consequence of Proposition 2.1, we give below two corollaries which do not assume that the
potential V is differentiable.

Corollary 2.2. For every multi-index β, for each t ≥ 0, the derivative ∂β
ξ u(x, ξ, t) understood in the

sense of distributions, is a function in L∞(R2n), which satisfies,

‖∂β
ξ u(·, t)‖L∞(R2n) ≤ t|β|/2

∏

j≤n

Aβj , Ak =
2k/2

√
π

Γ((k + 1)/2). (8)

Let m be a nonnegative integer. If the multi-index β verifies βj ≤ m for all j ≤ n, then we have,

‖∂β
ξ u(·, t)‖L∞(R2n) ≤ B|β|

m t|β|/2, Bm = max
k≤m

Ak. (9)

When m ≥ 2, we have Bm = Am.
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Proof. We use the notation ω(t) = (ω1(t), ..., ωn(t)). In view of Proposition 2.1,

‖∂β
ξ u(·, t)‖L∞(R2n) ≤

∫

B

∏

j≤n

|ωj(t)|βj dµ(ω).

According to Kuo [16] (Chap.1, sect.4 and 5), we know that,
∫

B

∏

j≤n

|ωj(t)|βj dµ(ω) = t|β|/2
∏

j≤n

Aβj
, (10)

where the Ak are given in (8). Since the Gamma function is increasing on [ 32 ,+∞) (at least) and since
by inspection A1 ≤ A2 = A0, we see that Bm = Am for m ≥ 2. This proves the corollary. ¤

Corollary 2.3. If V ≥ 0 and if the right hand side below defines a convergent integral, then for almost
every ξ in Rn, the function u(·, ξ, t) belongs to L1(Rn), and we have,

∫

Rn

|u(x, ξ, t)|dx ≤
∫

Rn

e−tV (x)dx. (11)

Proof. From (5), we see that

|u(x, ξ, t)| ≤
∫

B

e−
∫ t
0 V (x−ω(t)

2 +ω(s))dsdµ(ω).

Since the function x 7→ e−tx is convex, using Jensen inequality

e−
∫ t
0 V (x−ω(t)

2 +ω(s))ds ≤ 1
t

∫ t

0

e−tV (x−ω(t)
2 +ω(s))ds

and integrating over x ∈ Rn and ω ∈ B, for almost every ξ ∈ Rn, lead to inequality (11). The corollary
is thus proved. ¤

3 The large dimension setting.

We shall here give Hamiltonians HΛ for systems with a large number of particles indexed by Λ, for which
we shall obtain estimates on the derivatives of the Weyl symbol uΛ(·, t) of e−tHΛ . These estimates prove
in particular that uΛ(·, t) belongs to the class of symbols studied in [4] and [2], allowing a Weyl calculus
where all the constants in the inequalities are independent of Λ. The assumptions on the interaction
potentials VΛ are stated below. In the next section, we shall give two examples of Hamiltonians satisfying
these hypotheses.

We suppose that the functions VΛ are given, nonnegative, C∞ on RΛ, the set of mappings from Λ into
R, for each finite subset Λ in Γ, for a given infinite countable set Γ. For all integers m ≥ 0, we denote
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by Mm(Λ) the set of multi-indices α in NΛ such that 0 ≤ αj ≤ m, for all j ∈ Λ. For each multi-index α,
S(α) denotes the set of sites j ∈ Λ such that αj 6= 0.

Set m ≥ 1. We also assume that there exists Cm > 0 such that, for all finite subsets Λ in Γ, for all α in
Mm(Λ), we have for all x ∈ RΛ

∑

0 6=β≤α

|∂βVΛ(x)| ≤ Cm|S(α)|. (12)

We set,
HΛ = −∆Λ + VΛ(x) (13)

and UΛ(t) denotes the Weyl symbol of e−tHΛ which, according to Proposition 2.1, is a tempered distri-
bution on RΛ × RΛ identified with a function uΛ(·, t) in L∞(RΛ × RΛ).

Theorem 3.1. With these notations, let the functions VΛ ≥ 0 in C∞(RΛ) be given for all finite subsets
Λ of Γ. Let m ≥ 1. We suppose that there exists Cm > 0 independent of Λ, such that (12) is satisfied.
For each t > 0, and for every finite subset Λ of Γ, let uΛ(·, t) be the Weyl symbol of e−tHΛ , which is
identified with a function in L∞(RΛ×RΛ) in view of Proposition 2.1. Then, for each α and β in Mm(Λ),
the derivative ∂α

x ∂β
ξ u(·, t), understood in the sense of distributions, is a function in L∞(RΛ × RΛ) which

satisfies,
‖∂α

x ∂β
ξ u(·, t)‖L∞(RΛ×RΛ) ≤ (m!)|S(α)|etCm|S(α)|B|S(β)|

m t|β|/2, (14)

where Bm is defined in (8) and (9), and Cm in (12) (these constants are independent of Λ).

Proof. According to Proposition 2.1, we have for all F in S(RΛ × RΛ),

| < ∂α
x ∂β

ξ UΛ(t), F > | ≤ ‖F‖L1(RΛ×RΛ) sup
(x,ω)∈RΛ×B

∣∣∣∂α
x e−

∫ t
0 VΛ(x+ω(s))ds

∣∣∣
∫

B

∏

j∈Λ

|ωj(t)|βj dµ(ω). (15)

We shall use a multi-dimensional variant of Faà di Bruno formula due to Constantine Savits [7]. For each
multi-index α, denote by F (α) the set of mappings ϕ from the set of multi-indices 0 6= β ≤ α into the
set of integers ≥ 0, such that ∑

0 6=β≤α

ϕ(β)β = α.

Constantine Savits formula is rewritten as,

∂αeW (x) = α!eW (x)
∑

ϕ∈F (α)

∏

0 6=β≤α

1
ϕ(β)!

[
∂βW (x)

β!

]ϕ(β)

. (16)

For each t > 0 and for almost all ω in B, we apply this formula with

W (x) = −
∫ t

0

VΛ(x + ω(s))ds.
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Since VΛ ≥ 0, we obtain

sup
(x,ω)∈RΛ×B

∣∣∣∂α
x e−

∫ t
0 VΛ(x+ω(s))ds

∣∣∣ ≤ α!
∑

ϕ∈F (α)

∏

0 6=β≤α

1
ϕ(β)!

[
t‖∂βVΛ‖L∞

β!

]ϕ(β)

.

Besides,
∑

ϕ∈F (α)

∏

0 6=β≤α

1
ϕ(β)!

[
t‖∂βVΛ‖L∞

β!

]ϕ(β)

≤ exp


 ∑

0 6=β≤α

t‖∂βVΛ‖L∞

β!


 .

The last factor in (15) is bounded using (10)(9) and the above right hand side is bounded using the
hypothesis (12). We then deduce that,

| < ∂α
x ∂β

ξ UΛ(t), F > | ≤ α!‖F‖L1(R2n)e
tCm|S(α)|B|S(β)|

m t|β|/2.

Since α is in Mm(Λ) , we have α! ≤ (m!)|S(α)|. The proof of Theorem 3.1 is then completed. ¤

Remark 3.2. Theorem 3.1 shows that, if the family of functions (VΛ) verifies (12) with Cm > 0, then,
for all t > 0, and for each m ≥ 0, the family of functions uΛ(·, t) belongs to the class Sm(1, ρ, δ) defined
in (3), where ρj = m!etCm and δj = Bm

√
t for all j ∈ Γ. We remark that ρj and δj depend on m but not

on Λ, and thus, not on the dimension.

4 Examples and application.

4.1 Two examples.

We shall in this section give two examples of families of potentials (VΛ) satisfying (12) for all integers
m ≥ 1. The first one corresponds to the nearest neighbor interaction in a lattice and the second one
corresponds to the mean field approximation model.

Example 4.1. Set Γ = Zd (d ≥ 1). Let F and G be two nonnegative functions in C∞(R), bounded
together with all their derivatives. For each finite subset Λ of Γ, we set,

VΛ(x) =
∑

j∈Λ

F (xj) +
∑

(j,k)∈Λ2
|j−k|∞=1

G(xj − xk). (17)

Then, for all integers m ≥ 1, there exists Cm > 0 such that the family of functions (VΛ) satisfies (12).

Example 4.2. Let Γ be an infinite countable set. Fix a function G ≥ 0 in C∞(R), bounded together with
all its derivatives. Let, for each finite subset Λ of Γ,

VΛ(x) =
1
|Λ|

∑

(j,k)∈Λ2

G(xj − xk). (18)

Then, for any integer m ≥ 1, there is Cm > 0 such that the family of potentials (VΛ) is verifying (12).
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Let us verify that these two examples satisfy (12). For the first term
∑

j∈Λ F (xj) of the Example 4.1,
the only derivation multi-indices yielding a non zero result are the indices with exactly one non zero
component. Let β = (βj)j∈Λ be such an index, i.e., βj = 0 for j 6= s, with s ∈ S(α). Then

∣∣∣∂β
∑

j∈Λ

F (xj)
∣∣∣ =

∣∣∣F (βs)(xs)
∣∣∣ ≤ max

k≤m
||F (k)||L∞(RΛ),

and there are at most m|S(α)| such indices.

For the second term, the β’s yielding a non zero result have, either exactly one non zero component, or
exactly two, which moreover, correspond to neighbor points of Λ. The first case, β = (βj)j∈Λ with βj = 0
for j 6= s with s ∈ S(α) is rather similar to the case of F , in that the maximal order of derivation of G

is m. But there are at most m|S(α)| such indices, which give 2 × 3dm|S(α)| terms, since we must take
into account the maximal number of neighbors of s in Λ (3d) and the fact that we derive the first or the
second x. The second case is for β = (βj)j∈Λ with βj = 0 for j 6= s, s′ where s, s′ ∈ S(α) with |s− s′| = 1
and concerns at most 2|S(α)|3dm2 terms, the maximal order of derivation being 2m.

For the second example, the computations are similar but there are more terms, since the indices s, s′ are
not supposed to be neighbors. One roughly needs to replace 3d by |S(α)| in the preceding computations,
but dividing by |Λ| allows to keep the same estimates.

4.2 Application.

For all finite subsets Λ in Γ, choose a function pΛ ≥ 0 in the Schwarz space S(RΛ × RΛ). It is known
that the Weyl operator OpWeyl(pΛ) is trace class. We suppose that its trace equals 1.

For all finite subsets Λ in Γ, suppose that the functions VΛ ≥ 0 in RΛ are given satisfying the conditions
of Example 4.1 or Example 4.2, and denote by HΛ the Hamiltonian defined in (13). Let A be a function
on R and denote by Aj the multiplication operator by the function A(xj) (j ∈ Λ). The function A is
chosen to be polynomial to avoid a long development on pseudodifferential operators.

Proposition 4.3. With these notations, there exists a constant C > 0 such that, for all finite subsets Λ
of Γ, for each t in (0, 1], for every j in Λ, we have,

∣∣∣Tr([Aj , e
−tHΛ ] ◦OpWeyl(pΛ))

∣∣∣ ≤ C
√

t.

Proof. Let FΛ,t be the Weyl symbol of the commutator [Aj , e
−tHΛ ]. According to Theorem 3.1 and to

the Weyl calculus in one dimension, there exists C > 0 such that, for all finite Λ in Γ, and for any t in
(0, 1],

‖FΛ,t‖L∞(RΛ×RΛ) ≤ C
√

t.
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It is known that,

Tr([Aj , e
−tHΛ ] ◦OpWeyl(pΛ)) = (2π)−|Λ|

∫

RΛ×RΛ
FΛ,t(x, ξ)pΛ(x, ξ)dxdξ,

Tr(OpWeyl(pΛ)) = (2π)−|Λ|
∫

RΛ×RΛ
pΛ(x, ξ)dxdξ = 1.

The proposition then follows. ¤
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J. Funct. Anal. 53 (1983), no. 3, 246-268.
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