The Weyl Symbol of Schrödinger Semigroups

Abstract : In this paper, we study the Weyl symbol of the Schrödinger semigroup e −tH , H = −∆ + V , t > 0, on L 2 (R n), with nonnegative potentials V in L 1 loc. Some general estimates like the L ∞ norm concerning the symbol u are derived. In the case of large dimension, typically for nearest neighbor or mean field interaction potentials, we prove estimates with parameters independent of the dimension for the derivatives ∂ α x ∂ β ξ u. In particular, this implies that the symbol of the Schrödinger semigroups belongs to the class of symbols introduced in [2] in a high-dimensional setting. In addition, a commutator estimate concerning the semigroup is proved.
Type de document :
Article dans une revue
Annales Henri Poincaré, Springer Verlag, 2015, 16 (6), pp.1479 - 1488. 〈10.1007/s00023-014-0344-2〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01881696
Contributeur : Lisette Jager <>
Soumis le : mercredi 26 septembre 2018 - 11:13:13
Dernière modification le : mercredi 3 octobre 2018 - 01:15:30

Fichier

AJN_AHP_revision.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Laurent Amour, Lisette Jager, Jean Nourrigat. The Weyl Symbol of Schrödinger Semigroups. Annales Henri Poincaré, Springer Verlag, 2015, 16 (6), pp.1479 - 1488. 〈10.1007/s00023-014-0344-2〉. 〈hal-01881696〉

Partager

Métriques

Consultations de la notice

3

Téléchargements de fichiers

4