Improved Routing on the Delaunay Triangulation

Abstract : A geometric graph G = (P,E) is a set of points in the plane and edges between pairs of points, where the weight of the edge is equal to the Euclidean distance between the points. In k-local routing we find a path through G from a source vertex s to a destination vertex t, using only knowledge of the present location, the locations of s and t, and the k-neighbourhood of the current vertex. We present an algorithm for 1-local routing on the Delaunay triangulation, and show that it finds a path between a source vertex s and a target vertex t that is not longer than 3.56|st|, improving the previous bound of 5.9.
Type de document :
Communication dans un congrès
ESA 2018 - 26th Annual European Symposium on Algorithms, Aug 2018, Helsinki, Finland. 2018, 〈10.4230/LIPIcs.ESA.2018.22〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01881280
Contributeur : Nicolas Bonichon <>
Soumis le : vendredi 12 octobre 2018 - 10:53:48
Dernière modification le : vendredi 12 octobre 2018 - 11:42:36

Fichier

bestchord.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Bonichon, Prosenjit Bose, Jean-Lou De Carufel, Vincent Despré, Michiel Smid, et al.. Improved Routing on the Delaunay Triangulation. ESA 2018 - 26th Annual European Symposium on Algorithms, Aug 2018, Helsinki, Finland. 2018, 〈10.4230/LIPIcs.ESA.2018.22〉. 〈hal-01881280〉

Partager

Métriques

Consultations de la notice

109

Téléchargements de fichiers

26