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Interaction Energy of a Charged Medium and
its EM Field in a Curved Spacetime

Mayeul Arminjon
Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR lab., F-38000 Grenoble, France

Abstract

In the electrodynamics of special relativity (SR) or general relativ-
ity (GR), the energy tensors of the charged medium and its EM field
add to give the total energy tensor that obeys the dynamical equation
without external force. In the investigated scalar theory of gravitation
(“SET”), this assumption leads to charge non-conservation, hence an
additional, “interaction” energy tensor T inter has to be postulated.
The present work aims at constraining this tensor. First we study the
independent equations of electrodynamics and their number, begin-
ning with SR and GR. As in SR and GR, the system of electrody-
namics of SET is closed in the absence of T inter. Hence, with T inter,
at least one additional equation must be provided. This is done by
assuming that T inter is Lorentz-invariant in the situation of SR. We
derive equations allowing one in principle to compute T inter in a given
gravitational plus EM field. T inter may contribute to the dark matter.

MSC : 78A25, 83A05, 83C50, 83D05
Keywords: Maxwell equations, special relativity, general relativity,
alternative theory of gravitation, preferred reference frame.

1 Introduction

The main motivation for the work summarized in this paper is to develop
a consistent electrodynamics in an alternative theory of gravity with a pre-
ferred reference frame: “the scalar ether theory”, or in short SET [4, 5]. In
turn the motivations for SET, which have been exposed in detail elsewhere
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[7], are essentially as follows. (i) Special relativity (SR) can be interpreted
within classical concepts of space and time, thus keeping a “preferred” simul-
taneity. This is the Lorentz-Poincaré version of SR, otherwise named “the
Lorentz ether theory”. SET, which is a relativistic theory of gravitation with
a curved Lorentzian metric, extends that alternative version or interpretation
of SR to the general situation with gravitation. (ii) SET has a physical inter-
pretation for gravity: a pressure force (Archimedes’ thrust in a fluid “ether”)
[4]. (iii) Some problems of general relativity (GR) are avoided in SET: the
singularities (in the gravitational collapse [1] and in cosmology as well [3]);
the dark energy problem (at least in the sense that SET necessarily predicts
an acceleration of the cosmic expansion [3]); the interpretation of the gauge
condition (because there is no gauge condition in SET); the non-uniqueness
problem of the covariant Dirac theory (because in SET’s preferred reference
frame, the metric does have the diagonal spatially-isotropic form necessary
to implement the “radical” and simple solution proposed in Ref. [6]).

In GR, the equations of electrodynamics rewrite those of SR by using
the “comma goes to semicolon” rule: the partial derivatives are replaced by
covariant derivatives [16]. To use this rule is not possible in SET, essentially
because its dynamical equation does not generally coincide with that of GR
and other metric theories of gravity, namely T λν;ν = 0 — whereas, precisely,
that equation rewrites the equation T λν,ν = 0, that is valid in SR, by using
the rule just mentioned. In SET, the first Maxwell group (of equations) stays
unchanged. As to the second group, it was got by applying the dynamical
equation of SET to a charged medium in the presence of the Lorentz force,
assuming that — as is the case in GR:

(i) The total energy(-momentum-stress) tensor T is the sum of the energy
tensors of the charged medium and the electromagnetic (EM) field:

T = T charged medium + T field. (1)

(ii) The total energy tensor T obeys the dynamical equation of the the-
ory, without any non-gravitational force.

Assumptions (i) and (ii) lead uniquely to a form of Maxwell’s second
group in SET, and this form turns out to predict production/destruction
of electric charge [7]. Moreover, it also turns out that this is at unrealistic
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rates [8]. For this reason, and also for more theoretical reasons, that form of
Maxwell’s second group in SET has to be discarded [8]. Whereas Assumption
(ii) is quite essential to the theory [5], Assumption (i) is not necessary and
may be abandoned. This amounts to introducing an “interaction” energy
tensor T inter such that

T = T charged medium + T field +T inter . (2)

The aim of this work, therefore, was to constrain the form of T inter and
to derive equations that should enable one later to calculate it in a realistic
gravitational plus EM field. (A more detailed account of this same work
has been given in Ref. [9]. So here many derivations shall be skipped but,
hopefully, clear explanations will be provided for the basic facts.) This needs
paying due attention to the independent equations in electrodynamics and
to their number. Let us begin with standard theory: SR and GR.

2 Maxwell Equations in Standard Theory

Maxwell’s first group of equations for the EM antisymmetric field tensor Fλν
is:

Fλν , ρ + Fνρ , λ + Fρλ , ν ≡ Fλν ; ρ + Fνρ ;λ + Fρλ ; ν = 0. (3)

(The first equality is indeed an identity.) It can be rewritten as

Mλνρ := Fλν , ρ + Fνρ , λ + Fρλ , ν = 0. (4)

This is fully antisymmetric, hence four equations are linearly independent,
e.g.

M012 = 0, M013 = 0, M023 = 0, M123 = 0. (5)

Maxwell’s second group in SR and in GR has also four equations:

F λν
;ν = −µ0J

λ (λ = 0, ..., 3). (6)

(Here, Jλ is the 4-current. We are using the SI units, as opposed to Gauss
units.)
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2.1 Independent Equations in Standard Theory (Given
Source)

Assuming that the source Jλ is given, we thus have 4+4 = 8 equations for 6
unknowns Fλν (0 ≤ λ < ν ≤ 3) (or equivalently for the six components of the
electric and magnetic spatial vector fields E and B). As is well known, those
eight equations are nevertheless needed, e.g. one cannot remove the Gauss
equation for magnetism, divB = 0 [13, 15, 18]. This can be explained simply
[9] by noting two differential identities of Maxwell’s system of equations. The
first one is [12, 9]:

eλνρσMλνρ;σ ≡ 0 (7)

and is a differential identity of the first Maxwell group (4). (Here eλνρσ is the
standard fully antisymmetric tensor.) Using the total antisymmetry of the
Mλνρ tensor, it can be rewritten in terms of M012, M013, M023, M123 only.
It is hence a differential identity of (5) as well. For the second group (6),
using the identity F λν

;ν;λ ≡ 0, we obtain first the charge conservation as a
compatibility condition of Eq. (6):

Jλ;λ = 0. (8)

If the condition (8) is satisfied, then, using again the identity F λν
;ν;λ ≡ 0, we

get a differential identity for the second group (6):(
F λν

;ν + µ0J
λ
)

;λ
≡ 0. (9)

Note that, by definition of a differential identity, Eqs. (7) and (9) are valid
whether or not any of the two groups of equations (5) and (6) is satisfied.
So the differential identity (7) reduces the number of independent equations
in Eq. (5) from 4 to 3, and (9) does the same for (6) — thus reducing
the number of independent equations in the Maxwell system, Eqs. (5) and
(6), from 8 to 6 — that is the number of the unknowns. But on the other
hand, because (7) and (9) are differential identities and not linear dependence
relations between the equations themselves of the systems (5) and (6), they
do not allow one to remove any among these equations. Thus (7) does not
allow one to remove any among the four equations in the system (5), and (9)
does not allow one to remove any among the four equations in the system
(6).
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2.2 Independent Equations in Standard Theory (Gen-
eral Case)

If the 4-current J is not given, we have at least 5 unknowns more: the charge
density of the charged continuum ρel, its 3-velocity field v, plus the other
state parameters of the continuum, say only its proper rest-mass density
ρ∗. (The data of J is equivalent to that of ρel and v, provided one sets
the assumption that the charges are bound to the charged continuum.) As
additional equation with respect to the Maxwell equations (5) and (6), we
have only the dynamical equation for the charged continuum:

T µνchg ;ν = F µ
λ J

λ. (10)

(This implies the mass conservation at least for an isentropic fluid.) Thus we
have only 4 scalar equations more. However, now Eq. (9) applies provided
that Maxwell’s second group (6) is satisfied by the two unknown fields F and
J. Therefore, Eq. (9) is not a differential identity of the new system [(5),
(6), and (10)]: it applies only on its solution space. Thus only the differential
identity (7) counts as a dependence relation, so we have 4 + 4 + 4 − 1 = 11
independent equations for 6 + 5 = 11 unknowns.

3 Interaction Energy Tensor in SET

As was recalled in the Introduction, previous work [8] showed that in SET
we must consider

T = T chg + T field +T inter 6= T chg + T field (11)

in the dynamical equation. (Here chg = charged medium.)

3.1 Dynamical Equations in SET

The dynamical equation for the total energy tensor in SET is [2]:

T µν;ν = bµ(T ), (12)

where

b0(T ) :=
γ00

2
gij,0 T

ij, bi(T ) :=
1

2
gijgjk,0 T

0k, (13)
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with γ the spacetime metric, and where g is the spatial metric [11, 14, 17]
in the preferred reference frame E assumed by SET. Note: Consistently with
the preferred-frame character of the theory, the equations of SET usually are
spatially-covariant only, the coordinate time T := x0/c being thus a preferred
time [5]. However, Eq. (12) and the definition (13) are covariant also under
changes of the time coordinate having the form x′0 = φ(x0) [5].

For a continuous medium in the presence of a field of external non-
gravitational 3-force f = (f i) (i = 1, 2, 3), the dynamical equation is [7]

T µνmedium ;ν = bµ(Tmedium) + fµ, f 0 :=
f .v

cβ
, (14)

where β :=
√
γ00 and v is the 3-velocity field defined with the local time.

For a charged medium (Tmedium = T chg) subjected to an EM field, we get
fµ = F µ

ν J
ν [7], so (14) is

T µνchg ;ν = bµ(T chg) + F µ
ν J

ν . (15)

3.2 Independent Equations and Unknowns for SET

The independent equations have the same structure as in GR: 2

• Maxwell’s first group (5): 4 equations

• Dynamical equation for the total energy tensor (12): 4 equations

• Dynamical equation for the charged medium (15): 4 equations

• Minus one differential identity eλνρσMλνρ;σ ≡ 0: -1 equation,

thus 11 independent equations. (For GR, Eqs. (12) and (15) are replaced
by equations in which the bµ term is replaced by zero.)

The list of the independent unknowns is also close to that in GR:

• EM field Fµν (0 ≤ µ < ν ≤ 3): 6 unknowns

2 Indeed, in GR, Maxwell’s second group (6) can be exchanged with the dynamical
equation for the charged medium in the list below, by using the additivity (1). See Ref.
[9].
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• 4-current J: 4 unknowns

• proper rest-mass density ρ∗: 1 unknown

• plus at least one new field to define T inter ≥ 1 unknown

Hence we have at least 12 independent unknowns, so that at least one
equation more is needed.

3.3 Dynamical Equation with Energy Interaction Ten-
sor

Using the general decomposition of the total energy tensor T (11) and the
linearity of bµ (Eq. (13)) with respect to the energy tensor in the dynamical
equation (12) for T in SET, one sees that this latter equation is equivalent
to:

T µνfield ;ν = bµ(T field) + bµ(T chg)− T µνchg ;ν + bµ(T inter)− T µνinter ;ν . (16)

Maxwell’s first group implies an identity for the energy tensor of the EM field
[7]:

µ0T
µν
field ;ν ≡ F µ

λ F
λν

;ν . (17)

By using this and the dynamical equation (15) for the charged medium, (16)
rewrites as

F µ
λ F

λν
;ν = µ0 [bµ(T field)− F µ

ν J
ν − δµ], (18)

where
δµ := T ν

inter µ ;ν − bµ(T inter). (19)

If the matrix (F µ
λ) is invertible, 3 Eq. (18) becomes

F µν
;ν = µ0 [Gµ

ν (bν(T field)− δν)− Jµ], (21)

3 This is equivalent to E.B 6= 0 [7]. It is not valid for the simple and most known
solutions of the Maxwell equations: purely electric or purely magnetic fields, usual plane
waves, dipole field [8]. However, it is generally true, because a real EM field is a combina-
tion of simple solutions and, if one adds two solutions (E1,B1), (E2,B2) of the standard
Maxwell equations such that E1.B1 = 0 and E2.B2 = 0, then (E1 + E2,B1 + B2) is also
a solution, but then

(E1 + E2).(B1 + B2) = E1.B2 + E2.B1, (20)

which generally is not zero. In short, E.B depends non-linearly on the field (E,B).
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with (Gµ
ν) := (F µ

ν)
−1. Using once again the identity F λν

;ν;λ ≡ 0, we deduce
from (21) that

Jµ;µ = [Gµ
ν (bν(T field)− δν)];µ. (22)

3.4 Form of the Interaction Energy Tensor

In SR, the interaction energy tensor T inter is zero. Since SET should coin-
cide with SR in the situation without gravitational field, one wishes that in
this situation one should have T inter = 0 in SET. Of course we cannot di-
rectly impose that T inter = 0 in the system of equations, because this would
lead us again to the first version [7] of the electrodynamics of SET. In par-
ticular, it would lead us to Eq. (22) with δν ≡ 0, which is the equation
for charge production/destruction in that former version, that has been dis-
carded [8]. However, we may impose that T inter should be Lorentz-invariant
in a Minkowski spacetime. This is true if and only if [10] we have when the
metric γ is Minkowski’s (γµν = ηµν in Cartesian coordinates):

Tinter µν = p ηµν (situation of SR), (23)

with some scalar field p. This is equivalent to:

T µinter ν := ηµρ p ηρν = p δµν (situation of SR). (24)

The definition

T µinter ν := p δµν , or (Tinter)µν := p γµν , (25)

thus got in Cartesian coordinates in a Minkowski spacetime, is actually
generally-covariant. Therefore, we adopt (25) for the general case.

3.5 Closing the Electrodynamics of SET with Charge
Conservation

With the “scalar” interaction energy tensor (25), we have just one unknown
more: the field p. Thus we may add the charge conservation as a unique new
scalar equation to close the system of equations of electrodynamics of SET,
Eqs. (5), (12), (15) (see the first list in Subsect. 3.2). In view of Eq. (22),
this consists in adding the scalar equation

[Gµν (bν(T field)− δν)];µ = 0. (26)
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In contrast, when in the previous work [7] we assumed the additivity of en-
ergy tensors (as in GR), i.e., T inter = 0, then the system [(5), (12), (15)]
alone was closed. Thus in the latter case, charge conservation could not be
imposed. In fact a significant charge production/destruction was then pre-
dicted by Eq. (22) with δν ≡ 0 [8], which is not observed.

The dynamical equations of SET: Eq. (12) for the total energy tensor and
Eq. (15) for the energy tensor of the charged medium, coincide for a constant
gravitational field with the corresponding equations of GR. Moreover, the
first Maxwell group (5) is the same in SET and in GR, in the most general
situation and hence in particular for a constant gravitational field. Finally,
the definition (25) of the interaction energy tensor gives in general [9] for δµ
defined in Eq. (19):

δ0 = p,0 − 3 p β,0 β
−1 (27)

δi = p,i, (28)

and this is zero in a constant gravitational field (β,0 = 0), provided that
p,µ = 0 in that case. Thus, in a constant gravitational field, all equations of
the system [(5), (12), (15), (26)] are solved by p ≡ Constant and with the
set of the other fields (see the second list of Subsect. 3.2) being the solution
of the system of electrodynamics of GR for the given boundary conditions.
Therefore, assuming uniqueness of the solution (as is the case for standard
electrodynamics), this is the solution. We thus find that the field p is con-
stant in a constant gravitational field, and hence in particular in the situation
of SR. Moreover, that constant must be zero in fact, because, at a very large
distance from any material body, also the total energy tensor T given by Eq.
(11) must be zero, as are T chg and (asymptotically) T field. It follows that the
additivity (1) of the energy tensors is recovered for a constant gravitational
field, and hence in particular in the situation of SR.

As shown by Eqs. (27)–(28), δµ depends only on p (and on the gravita-
tional field β). Thus, in general, Eq. (26) should determine the field p in a
given gravitational plus EM field. We now show how to do that in a weak
gravitational field.
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4 Determining the Interaction Energy in a

Weak Gravitational Field

4.1 Weak Gravitational Field

An asymptotic framework was developed for an EM field in a weak and
slowly varying gravitational field [8]. Essentially: we conceptually associate
with the given system S a family (Sλ) of systems, depending on the weak-
gravitational-field parameter λ → 0, with λ = 1/c2 in specific λ-dependent
units of mass and time. Of course the EM field is not assumed weak nor
slowly varying. Then we write Taylor expansions w.r.t. λ; e.g., for the EM
field tensor:

F = cn
(

0

F + c−2
1

F +O(c−4)

)
, (29)

where n could be any integer. And

p = c2n−5
(

0
p+ c−2 1

p+O(c−4)
)
, (30)

for the “interaction scalar” field p with T inter = pγ, Eq. (25). (The order
2n− 5 follows from the equation for charge conservation, Eq. (26) [9].)

4.2 Interaction Scalar in a Weak Gravitational Field

Using such asymptotic expansions in the equation of charge conservation in
the form of Eq. (26), we obtained an advection equation with a given source,

for the first-approximation field p1 := c2n−5 0
p [9]:

∂T p1 + uj∂j p1 = S, (31)

where

S :=
c−2 (ei∂TU),i

k0
(32)

and

uj :=
c kj

k0
. (33)

Here U is the Newtonian gravitational potential. On the other hand, ei and
kµ depend only on the first-approximation EM field (E,B), that obeys the
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standard flat-spacetime Maxwell equations [8, 9]. In particular,

k0 =
−c

(E.B)2 B.(∇(E.B)), (34)

which must be well defined and non-zero. (Cf. Footnote 3.)

We then derive easily the explicit solution of Eq. (31) by integration
along characteristics [9]. Given an arbitrary event (T0,x0), let T 7→ x(T ) =
CT0 x0(T ) be the (unique) solution of the ODE

dx

dT
= u(T,x), x(T0) = x0. (35)

Thus CT0 x0 is the characteristic curve passing at (T0,x0). The solution p1 of
(31) on that curve is given uniquely by:

p1(T, CT0 x0(T ))− p1(T0,x0) =

∫ T

T0

S(t, CT0 x0(t)) d t. (36)

If at time T0 the position x0 in the frame E is enough distant from material
bodies, one may assume that p1(T0,x0) = 0.

5 Conclusion

1) Differential identities show that, in standard electrodynamics, the num-
ber of the independent scalar PDE’s is equal to the number of the unknown
fields. This is true in the case that the 4-current J is assumed given. It is
true also in the general case for which, instead, J belongs to the unknowns,
i.e., when the motion of the charged continuum is not known a priori.

2) The same is true in the investigated theory of gravity (“SET”), if one sets
the additivity assumption (1), i.e. T inter = 0 in Eq. (2). That assumption,
however, leads to an untenable production or destruction of electric charge.
Thus one must have in general T inter 6= 0, so the form of T inter has to be pre-
cised, necessarily involving additional field(s). As a consequence, the former
equations of electrodynamics of SET are not a closed system any more and
must be supplemented by some new equation(s).
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3) In order for T inter to be Lorentz-invariant in SR, it must involve just a
scalar field p and have the form (25). Thus, just one more equation is needed,
and it can consistently be imposed to be the charge conservation, Eq. (26).
The additivity (1) of the energy tensors is then recovered for a constant grav-
itational field, and hence in particular in the situation of SR.

4) In a weak and slowly varying gravitational field, and with a given EM
field, the charge conservation (26) rewrites as an advection equation with
given source for the scalar field p, Eq. (31). Hence p may be calculated by
integration along characteristics, Eq. (36). The corresponding interaction
energy T 00

inter could be counted as “dark matter”, since: (i) it is necessarily
present as soon as there is matter that emits an EM field; (ii) it is not espe-
cially localized inside that matter; (iii) it is gravitationally active in SET, as
is any form of material energy.

Acknowledgement: I am grateful to Jerzy Kijowski for a discussion on the
motion of the sources.
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