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Abstract

We propose a peaking-free low-power high-gain observer that preserves the main feature of standard high-gain observers in
terms of arbitrarily fast converge to zero of the estimation error, while overtaking their main drawbacks, namely the ”peaking
phenomenon” during the transient and the numerical implementation issue deriving from the high-gain parameter that is
powered up to the order of the system. Moreover, the new observer is proved to have superior features in terms of sensitivity
of the estimation error to high-frequency measurement noise when compared with standard high-gain observers. The proposed
observer structure has an high-gain parameter that is powered just up to two regardless the dimension of the observed system
and adopts saturations to prevent the peaking of the estimates during the transient. As for the classical solution, the new
observer is robust with respect to uncertainties in the observed system dynamics in the sense that practical estimation in the
high-gain parameter can be proved.
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1 Introduction

High-gain observers appeared in the literature at the end
of the 1980’s and since then they have attracted a lot of
research attention due to their simplicity and good per-
formance in noise-free settings (see the survey Khalil and
Praly (2014) and references therein). See also their use in
the separation principles Atassi and Khalil (2000), out-
put feedback stabilization Teel and Praly (1994), output
regulation Byrnes and Isidori (2004) or fault detection
Martinez-Guerra and Mata-Machuca (2013).

In the design of a “standard” high-gain observer, the
high-gain parameter, denoted as ` throughout this pa-
per, is usually powered up to n, with n denoting the
dimension of the observed state. This fact raises nu-
merical issues in the implementation when the state
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dimension is high or when the high-gain parameter has
to be chosen large to achieve fast estimation. Further-
more, high-gain observers exhibit, during the transient,
the so-called peaking phenomenon, namely the state
of the observer shows large peaks of a magnitude that
are proportional to `n−1. Last but not least, high-
gain observers are known for having high-sensitivity to
high-frequency measurement noise, which makes state
estimates practically unusable especially when the di-
mension n is very large. In order to address the peaking
phenomenon, different schemes have been proposed in
Astolfi and Praly (2017) and Maggiore and Passino
(2003). In Astolfi and Praly (2017), the authors modify
the observer dynamics under a convexity assumption
in order to constrain the state of the observer in some
prescribed convex closed set. This technique can be
applied to multi-input multi-output nonlinear systems.
In Maggiore and Passino (2003), the authors deal with
peaking by means of a projection approach. In order
to improve the sensitivity to measurement noise, the
majority of researchers focused on schemes with time-
varying gains, either with switched approaches, Ahrens
and Khalil (2009), or with adaptive design, Boizot et al.
(2010), Sanfelice and Praly (2011). Recently, in Khalil
and Priess (2016), a low-pass filter has been proposed
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in order to reduced the effect of measurement noise in
output feedback stabilization problems.

A new high-gain observer able to overtake some of the
drawbacks of classical structures has been recently pro-
posed in Astolfi and Marconi (2015). In that paper, it is
shown how to design a high-gain observer of dimension
2n− 2 for observable nonlinear systems with dimension
n, which implements only gains proportional to ` and
`2 while preserving the same behaviours of a standard
high-gain observer. The new construction relies on an
interconnected cascade of n−1 high-gain observers of di-
mension two. This observer practically solves the afore-
mentioned challenging problem of numerical implemen-
tation present in standard high-gain observers. More-
over, it has been shown that the new observer structure
substantially improves the sensitivity to high-frequency
measurement noise. The proof of this fact has been pre-
sented in Astolfi and Marconi (2015) only for linear sys-
tems, and shown by numerical simulation in the nonlin-
ear case. The new low-power high-gain observer has been
also shown to be effective for a much wider class of non-
linear systems, such as system possessing a non-strict
feedback form, see Wang et al. (2017). It turns out that
the new observer structure is effective in all those frame-
works where standard high-gain observers are typically
used, such as output feedback stabilization by nonlinear
separation principle and output regulation, Astolfi et al.
(2017). Although the new observer structure solves the
problem of numerical implementation, the peaking phe-
nomenon is still present. This has been partially solved
in Astolfi, Marconi and Teel (2016), by adding satura-
tions at various levels in the observer structure. With the
proposed technique, it is possible to remove the peaking
from the first n−1 state estimates. Along this route, two
similar schemes, which follow the seminal idea presented
in Astolfi and Marconi (2015), have been recently pro-
posed, in Teel (2016) and Khalil (2017), to address the
implementation issues and the peaking phenomenon. In
Teel (2016), the author shows how to build a high-gain
observer by interconnecting a cascade of reduced order
high-gain observer of dimension 1. A simpler scheme,
without feedback interconnection terms, that can not en-
sure asymptotic estimate, is presented in Khalil (2017).
It is worth stressing, however, that even if the dimen-
sion of the observers is n, neither scheme improves the
sensitivity properties with respect to standard high-gain
observers.

The objective of this work is twofold. On the one hand,
we combine the recent ideas of Astolfi and Marconi
(2015) and Astolfi, Marconi and Teel (2016) to propose
an observer of dimension 2n − 1 which is still “low
power” (namely it uses only gains proportional to ` and
`2) and yet eliminates the peaking phenomenon. This is
achieved by appropriately adding saturation functions
in the observer dynamics. In particular, the n estimates
provided by the proposed observer are peaking-free
while the additional n− 1 auxiliary variables may reach

values proportional to ` (and not to `n−1 as in standard
high-gain observers) during the transient. The result-
ing gain choices and transient behaviours address the
numerical challenge. On the other hand, we fully char-
acterise the sensitivity to high-frequency measurement
noise for nonlinear systems by showing the improvement
with respect to standard high-gain observers. This is
done by extending the analysis tool recently introduced
in Astolfi, Marconi, Praly and Teel (2016) in which the
sensitivity to measurement noise has been characterised
for standard high-gain observers. In this work, for the
sake of simplicity, we focus on the same class of nonlin-
ear systems in canonical observability form considered
in Astolfi and Marconi (2015), but similar results hold
for the wider class of systems in feedback form Wang
et al. (2017).

The paper is organized as follows. We present the frame-
work and we recall the high-gain observer technique in
Section 2. Then, we provide the main results in Section 3.
A simulation example is given in Section 4. The proofs
of the main results are detailed in Section 5. Conclusions
are discussed in Section 6. Some technical lemmas are
given in Appendix A.

Notation. R denotes the field of real numbers and,
for x ∈ Rn, |x| denotes the Euclidean norm of x.
With s : R≥0 → Rm a bounded signal, we define
‖s‖ba := supt∈[a,b) |s| and ‖s‖∞ := ‖s‖∞0 . For i > 0 we

denote by Ai ∈ Ri×i, Bi ∈ Ri×1, Ci ∈ R1×i a triplet in
prime form, namely

Ai =

(
0i−1,1 Ii−1

0 01,i−1

)
, Bi =

(
0i−1,1

1

)
, CTi =

(
1

0i−1,1

)
,

where 0i,j denotes a matrix of dimension i×j containing
zeros everywhere, and Ii denotes the identity matrix of
dimension i. For r > 0, a saturation function satr : R→
R is any strictly increasing C1 function satisfying

satr(s) := s ∀ |s| ≤ r , |satr(s)| ≤ r + 1 ∀ s ∈ R .

With C[0,1] we denote the set of continuous functions
from R to [0, 1].

2 The Framework and Highlights on High-Gain
Observers

In this paper we deal with nonlinear single-input single-
output systems that can be written, maybe after a
change of coordinates, in the so-called phase-variable
form (see Gauthier and Kupka (2001))

ẋi = xi+1, i = 1, . . . , n− 1,

ẋn = ϕ(x, d(t))

y = x1 + ν(t)

(1)
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where x = (x1, . . . , xn)T ∈ Rn is the state, y is the mea-
sured output with ν an additive unknown measurement
noise, and t 7→ d(t) ∈ Rnd , nd > 0, is any (unknown)
bounded signal that may represent parametric uncer-
tainties in the function ϕ(·, ·) or unknown disturbances.
The following assumption is made throughout the paper.

Assumption 1 The compact sets D ⊂ Rnd and
X ⊂ Rn and the positive ϕ̄x > 0 are such that

• d(t) ∈ D and x(t) ∈ X for all t ≥ 0;
• |ϕ(x1, d) − ϕ(x2, d)| ≤ ϕ̄x|x1 − x2| for all x1, x2 ∈ X

and for all d ∈ D.

We observe that all the forthcoming analysis could be ex-
tended, with the appropriate modifications, to the case
in which the function ϕ(·, ·) takes the form ϕ(x, d, t)
where the dependence on t takes into account the effect
of possible known inputs. For sake of simplicity, however,
we do not consider this case.

In the previous framework, we are interested in the semi-
global high-gain observation problem, namely in the de-
sign of an asymptotic observer with a rate of conver-
gence that can be made arbitrarily fast by tuning a single
parameter (see Khalil and Praly (2014) and references
therein).

The standard high-gain observer for the class of systems
(1) is given by

˙̂xi = x̂i+1 + ki`
ie1 , i = 1, . . . , n− 1,

˙̂xn = ϕs(x̂) + kn`
n e1 ,

(2a)

in which x̂ = (x̂1, . . . , x̂n)T is the state, ` is the high-gain
parameter, e1 is the output injection term defined as

e1 := y − x̂1 , (2b)

k1, . . . , kn are design coefficients and ϕs(·) is any locally
Lipschitz bounded function that agrees with ϕ(·, 0) on
a compact set X ′ ⊃ X, namely ϕs(x) = ϕ(x, 0) for all
x ∈ X ′ and for all t ≥ 0. The tuning of the observer in-
volves choosing the design parameters ki’s so that, hav-
ing defined the vector K := col(k1, . . . , kn), the matrix
An −KCn is Hurwitz, and taking the high-gain param-
eter ` large enough in relation to the Lipschitz constant
of ϕ(·, ·) on X ×D. In particular, under Assumption 1,
it is possible to prove that, by letting `? := 2 ϕ̄x |P |, in
which P is the symmetric positive definite matrix solu-
tion of the Lyapunov equation

P (An −KCn) + (An −KCn)TP = −I ,

then for all ` ≥ `? the estimation errors provided by the
observer (2) satisfy the following bounds for all t ≥ 0

|x̂i(t)− xi(t)| ≤ c1 `
i−1 exp(−c2 ` t)|x̂(0)− x(0)|

+
c3

`n+1−i ‖d‖∞ + c4`
i−1 ‖ν‖∞

(3)
for i = 1, . . . , n, and for some positive constants ci, i =
1, . . . , 4, independent of `. This, in particular, can be
easily established by making the change of coordinates

x̂ = col(x̂1, . . . , x̂n)→ χ = col(χ1, . . . , χn),

χi := (x̂i − xi)/`i−1,

and by using the Lyapunov function V = χTPχ (see
also Lemma 4 in Appendix A or Khalil and Praly (2014)
for a detailed proof). One of the features of (2) is that
the rate of convergence of the state estimate can be ar-
bitrarily increased by augmenting the high-gain param-
eter ` showing up in the exponential function. This, in
turn, implies that in nominal conditions (namely when
there is no measurement noise and the disturbance d is
constantly zero), the true value of the state variable can
be practically recovered in an arbitrarily small amount
of time and exponentially convergence of the estimate is
guaranteed. The term proportional to `i−1 multiplying
the exponential, on the other hand, models the so-called
peaking phenomenon governing the state estimate in the
initial time instants. By this phenomenon, the value of
the estimation errors assume large values in the initial
observation time if ` is taken large. Hence, the smaller
is the desired exponential decay, the larger is the peak-
ing exhibited in the initial part of the transient. A fur-
ther important feature is that the observer (2) is input-
to-state stable (ISS) with respect to the disturbance in-
puts d and ν. As for the disturbance d, in particular,
the asymptotic gain on the i-th error variable is propor-
tional to 1/`n+1−i and can be thus arbitrarily decreased
by increasing the high-gain parameter `. As for the mea-
surement noise ν, on the other hand, the asymptotic
gain increases proportionally to `i−1. The sensitivity to
the class of bounded measurement noise signals, hence,
tends to worsen with large values of the high-gain pa-
rameter with a polynomial term whose power increases
with i. On top of everything, another limit of the high-
gain structure (2) is the presence of ` powered up to the
order n, which makes the numerical implementation of
the observer a hard task for high-dimensional systems.

With reference to the sensitivity to measurement noise,
it is worth noting that the bound (3) refers to the so-
called L∞ gain, namely characterises the sensitivity to
the class of bounded disturbances. When considering the
restricted class of high-frequency measurement noise the
previous bound can be further refined by highlighting
the low-pass filtering properties of the observer (2). This
high-frequency characterisation of the asymptotic gain
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has been fully characterised in Astolfi, Marconi, Praly
and Teel (2016) whose main result is briefly recalled here-
after. We consider, in particular, the measurement noise
as a quasi-periodic signal of the form

ν(t) =

nν∑
i=1

νci cos
(ωi
ε
t
)

+ νsi sin
(ωi
ε
t
)

(4)

where nν , νci , ν
s
i , ωi are positive numbers and where ε ∈

(0, 1) is a small number parametrising the frequencies
of the signal ν(t). The main result proved in Astolfi,
Marconi, Praly and Teel (2016) is the following.

Proposition 1 Consider system (1), (2) and suppose
that Assumption 1 holds, d(t) ≡ 0 for all t ≥ 0, and ν
is generated by (4). Let ` > 1 be fixed so the bound (3)
holds. Then, there exist ε?(`) > 0 and ĉ > 0 such that,
for all positive ε ≤ ε?(`), the following holds

lim sup
t→∞

|x̂i(t)− xi(t)| ≤ ε ĉ `i ‖ν‖∞ i = 1, . . . , n.

Proposition 1 shows that, once ` is fixed, the sensitivity
of the estimation error to measurement noise decreases
as ε takes smaller values, namely as higher frequency
noise signals are considered, with an asymptotic gain
proportional to ε. For linear systems, this property im-
mediately comes by frequency response arguments us-
ing the fact that the relative degree between the mea-
surement noise ν and the estimation error xi − xi for
(1)-(2) is unitary for all i = 1, . . . , n. The extension to
nonlinear systems of the form (1) is more involved and
can be found in Astolfi, Marconi, Praly and Teel (2016).
It is worth noting that the analysis in Astolfi, Marconi,
Praly and Teel (2016) is based on the assumption that
the measurement noise is generated as in (4), while, in
practice, measurement noise is usually white or coloured
random noise. However, simulations confirm that the re-
sult of Proposition 1 provides a good indication of the
true performance of the observer in presence of coloured
noise. This will be discussed further in Section 4.

3 Main Results

3.1 Low-power high-gain observer

We start by presenting a high-gain observer of dimension
2n − 1 whose main feature is to have the high-gain pa-
rameter ` that is powered just up to the order 2 regard-
less the value of n, thus overtaking one of the problems
of the structure of (2). The observer structure strongly
relies on the one presented in Astolfi and Marconi (2015)
that has dimension 2n − 2. The motivation for extend-
ing the state of the observer by one with respect to the
solution provided in Astolfi and Marconi (2015) is to

pave the way for the “peaking-free” solution presented
in Section 3.3.

The structure of the proposed observer is composed of
n blocks, where each of the first n− 1 blocks has dimen-
sion 2 and the last one has dimension 1. The two state
components of the i-th block for i = 1, . . . , n − 1 are
supposed to provide an estimate of (xi, xi+1), namely of
the (i−1)-th and i-th time derivative of y, while the last
block is meant to estimate the (n−1)-th time derivative
of the output. The structure of the observer (see the next
(5)) can be motivated as follows. If the i-th and (i+2)-th
time derivative of y, i.e. xi and xi+2, were known, then
the i-th block (i = 1, . . . n− 1) could be implemented as
a “nominal” high-gain observer for xi and xi+1, namely

˙̂xi = ηi + `αi(xi − x̂i)
η̇i = xi+2 + `2βi(xi − x̂i)

where (x̂i, ηi) are estimates of (xi, xi+1), ` is the high
gain parameter and (αi, βi) are the observer parameters,
with the entry xi+2 in the (n − 1)-th block replaced by
ϕs(x). Similarly, the last 1-dimensional block could be
implemented as

˙̂xn = ϕs(x) + `αn(xn − x̂n)

in which αn is a further design parameter and x̂n is
meant to estimate xn. Since xi and xi+2 are not known,
in fact, in the proposed observer their value is respec-
tively replaced by ηi−1 and x̂i+1, namely by the second
and first component of the (i−1)-th and (i+1)-th block.
By interconnecting the block observers in this way (see
Figure 1), we obtain the proposed observer

˙̂xi = ηi + αi ` ei , i = 1, . . . , n− 1,

˙̂xn = ϕs(x̂) + αn ` en

η̇i = ηi+1 + βi `
2 ei , i = 1, . . . , n− 2,

η̇n−1 = ϕs(x̂) + βn−1 `
2 en−1

(5a)

where x̂ = col(x̂1, . . . , x̂n) ∈ Rn, η = col(η1, . . . , ηn−1) ∈
Rn−1 is the state, α := col (α1 , . . . , αn) ∈ Rn and
β := col (β1 , . . . , βn−1) ∈ Rn−1 are design parame-
ters and ` the high-gain parameter, and the variables ei,
i = 1, . . . , n are defined as

e1 := y − x̂1
ei := ηi−1 − x̂i, i = 2, . . . , n .

(5b)

The tuning of the design parameters α and β, relies on
a procedure that is different with respect to the one fol-
lowed for the standard high-gain observers. In particular,
having defined Ki := col(αi, βi) and Ei := A2 −KiC2,
i = 1, . . . , n − 1, let the matrices Mi ∈ R2i×2i, i =
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˙̂x1 = η1 + α1` e1

η̇1 = η2 + β1`
2 e1

y e1

x̂1

− ˙̂x2 = η2 + α2` e2

η̇2 = η3 + β2`
2 e2

η1 e2

x̂2

−

η2

η2

η3

Fig. 1. Block diagram representation of the low-power high-gain observer (5).

1, . . . , n − 1, and Mn ∈ R(2n−1)×(2n−1) be recursively
defined as M1 := E1,

Mi :=

(
Mi−1 B2(i−1)B

T
2

KiB
T
2(i−1) Ei

)
, i = 2, . . . , n− 1,

Mn :=

(
Mn−1 0

αnB
T
2(n−1) −αn

)
.

With this notation in hand, the design parameters α and
β must be tuned in order to fulfil a “low-power stability
requirement” that is formally defined in the following.

Definition 1 (Low-power stability requirement). We
say that α and β fulfil the “low-power stability require-
ment” if the resulting matrix Mn is Hurwitz, namely if
there exists a P = PT > 0 such that

PMn +MT
n P = −I . (6)

It turns out that the eigenvalues of the matrixMn can be
arbitrary assigned by an appropriate choice of the design
parameters; namely, the previous requirement can be
always fulfilled (see Section 3.4). With the matrix Mn

Hurwitz and the high-gain parameter ` taken sufficiently
large, the estimation error x̂−x provided by the observer
(5) can be shown to fulfil the same bound (3) yielded
by the standard high-gain observer (2). This is detailed
in the next theorem in which we define xxx ∈ R2n−1 and
x̂xx ∈ R2n−1 as

xxx := col((x1, . . . , xn), (x2, . . . , xn)) , x̂xx := col(x̂, η) .

Theorem 1 Consider system (1) under the Assump-
tion 1. Consider the observer (5) and let the coefficients
α ∈ Rn and β ∈ Rn−1 be chosen in order to fulfil the
“low-power stability requirement”, with (6) fulfilled for
some P = PT > 0. Furthermore, let `? := 2 ϕ̄x |P |. Then
there exist µi > 0, i = 1, . . . , 4, such that for any ` > `?

the following bounds hold

|x̂i(t)− xi(t)| ≤ `i−1µ1 exp(−` µ2t) |x̂xx(0)− xxx(0)| +

µ3

`n+1−i ‖d‖∞ + µ4 `
i−1‖ν‖∞

(7)

for i = 1, . . . , n, and

|ηi(t)− xi+1(t)| ≤ `iµ1 exp(−` µ2t) |x̂xx(0)− xxx(0)| +

µ3

`n−i
‖d‖∞ + µ4 `

i‖ν‖∞
(8)

for i = 1, . . . , n−1, for any initial condition (x̂(0), η(0)) ∈
Rn × Rn−1 and for all t ≥ 0.

The proof of this theorem is deferred to Section 5.1.
Note that the redundancy of the observer can be em-
ployed to obtain a double estimate of the state vari-
ables (x2, . . . , xn), respectively given by (x̂2, . . . , x̂n) and
(η1, . . . , ηn−1). Furthermore, we observe that the lower
bound `? of the high-gain parameter is formally equal
to the one of the standard observer, namely it is propor-
tional to the Lipschitz constant of ϕ̄x and to the norm
of P . Regarding the latter, however, we observe that the
fact that P is the solution of the Lyapunov equation
associated to the matrix (An − KCn) ∈ Rn×n for the
standard observer, and to Mn ∈ R(2n−1)×(2n−1) for the
new observer, the resulting value of `? might be differ-
ent. As clear from the bounds (7)-(8), the new observer
preserves the same positive features of the standard ob-
server in terms of an arbitrarily fast exponential decay
rate of the estimation error and of an arbitrarily low
asymptotic gain as far as the disturbance d in concerned,
by overtaking the problem of (2) of having the high-gain
parameter powered at n. On the other hand it does not
eliminate the peaking phenomenon and it still has a sen-
sitivity to the class of bounded measurement noise that
depends on ` polynomially in i.

3.2 Sensitivity to high-frequency noise

As at the end of Section 2, we now consider the measure-
ment noise as generated by (4) and we characterise the
asymptotic gain between ν and the estimation error in
terms of the parameter ε. The main objective is to show
the benefit of the new observer in comparison with prop-
erties of the standard one as presented in Proposition 1.
In this respect, the main feature of the observer (5) is
that the relative degree between the “input” ν and the
i-th estimation error x̂i− xi is one for i = 1 (as for (2)),
and then increases for higher values of i. More precisely,
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by defining m as

m :=

⌈
n+ 1

2

⌉
(9)

and considering a general case in which the functionϕ(x)
is affected by x1, the relative degree in question is i for
i = 1, . . . ,m and n − i + 2 for i = m + 1, . . . , n. This
property is at the basis of the next proposition whose
proof is presented in Section 5.2.

Proposition 2 Consider system (1), (5) and suppose
that Assumption 1 holds, d(t) ≡ 0 for all t ≥ 0, and ν is
generated by (4). Let α ∈ Rn and β ∈ Rn−1 and ` > 1
be fixed according to the statement of Theorem 1. Then,
there exist ε?(`) > 0 and ĉ > 0 such that, for all positive
ε ≤ ε?(`), the following holds

lim sup
t→∞

|x̂i(t)− xi(t)| ≤ εi ĉ `2i−1 ‖ν‖∞

for i = 1, . . . ,m, and

lim sup
t→∞

|x̂i(t)− xi(t)| ≤ εn−i+2 ĉ ` ‖ν‖∞

for i = m+ 1, . . . , n.

Proposition 2 shows that observer (5) behaves as “low-
pass” filter, namely

lim
ε→0

lim
t→∞

sup |x̂i(t)− xi(t)| = 0 .

In addition, the remarkable feature of observer (5) is to
have an asymptotic gain between the measurement noise
and the i-th error component that is proportional to ε
powered at a value that increases as long as “higher”
components of the errors are considered, as opposed to
the standard case in which the asymptotic gain depends
on ε regardless the value of i (see Proposition 1). This
fact, which is strongly related to the relative degree prop-
erties mentioned above, clearly shows that the new ob-
server behaves better than the standard one as far as ε
tends to zero, namely as far as high-frequency noise is
concerned. The numerical analysis in Section 4 will pro-
vide further insights on the benefits of the new observer
over the standard one.

3.3 Peaking-free low-power observer

In this section we show how the observer (5) can be mod-
ified in order to overtake also the problem of peaking
while preserving the main features of the low-power ob-
server presented before.

By bearing in mind the definition of the saturation func-
tion given in the Notation and by defining ri > 0 as

ri := max
x∈X
|xi| i = 1, . . . , n , (10)

the low-power peaking-free observer (see Figure 2) takes
the form (compare with (5))

˙̂xi = ηi + αi ` ei , i = 1, . . . , n− 1,

˙̂xn = ϕs(x̂) + αn ` en ,

η̇i = satri+2
(ηi+1) + βi `

2 ei , i = 1, . . . , n− 2,

η̇n−1 = ϕs(x̂) + βn−1 `
2 en−1 ,

(11a)
with

e1 := y − x̂1
ei := satri(ηi−1)− x̂i, i = 2, . . . , n ,

(11b)

where x̂ = col(x̂1, . . . , x̂n) ∈ Rn, η = col(η1, . . . , ηn−1) ∈
Rn−1 is the state, α := col (α1 , . . . , αn) ∈ Rn and β :=

col (β1 , . . . , βn−1) ∈ Rn−1 are positive coefficients to
be properly chosen, and ` is the high-gain parameter.

The addition of saturation functions in (11) has the note-
worthy effect of eliminating the peaking as clarified in
the next proposition, but it imposes some restrictions on
the choice of the design parameters α and β with respect
to the low-power stability requirement detailed in Defi-
nition 1. In particular, by bearing in mind the definitions
ofMi,Ki, and Ei, introduced in the previous section, let
Λi : [0, 1] → R2i×2i, i = 1, . . . , n− 1, Λn ∈ R2n−1×2n−1

be continuous matrices defined as Λ1 := M1,

Λi(s) :=

(
Mi−1 sB2(i−1)B

T
2

KiB
T
2(i−1) Ei

)
i = 2, . . . , n− 1

(12)
where s ∈ [0, 1], and Λn := Mn. With this notations in
mind, the design parameters α and β must be tuned in
order to fulfil a “low-power strong stability requirement”
that is formally defined in the following.

Definition 2 (Low-power strong stability require-
ment). We say that α and β fulfil the “low-power strong
stability requirement” if the following holds:

• αi, i = 1, . . . , n and βi, i = 1, . . . , n−1, are all positive;
• for all i = 1, . . . , n, there existPi = PTi > 0 and µi > 0

such that for all s ∈ [0, 1] the resulting Λi(s) fulfils

PiΛi(s) + Λi(s)
TPi ≤ −µiI . (13)

It turns out that the previous requirement can be al-
ways fulfilled by an appropriate choice of α and β. In
particular, given a set of α and β satisfying the “Low-
power stability requirement” (see Definition 1), one may
always check if the “Low-power strong stability require-
ment” is fulfilled by applying Lemma 2 in Section 3.4.
Alternatively, one may design the coefficients α and β
by following the constructive procedure presented at the
end of Section 3.4.
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˙̂x1 = η1 + α1` e1

η̇1 = ηs2 + β1`
2 e1

y e1

x̂1

− ˙̂x2 = η2 + α2` e2

η̇2 = ηs3 + β2`
2 e2

η1 e2

x̂2

−

η2ηs2

η2

ηs3

ηs2

η3

Fig. 2. Block diagram representation of the peaking free low-power high-gain observer (11). We denote ηsi = sati+1(ηi) for the
sake of compactness.

Proposition 3 Consider system (1) under the As-
sumption 1. Consider the observer (11) with the design
coefficients α ∈ Rn and β ∈ Rn−1 chosen so that the
“low-power strong stability requirement” is fulfilled. Let
(x̂(0), η(0)) ∈ X̂ × E with X̂ × E an arbitrary compact
set of Rn × Rn−1. Then, the following holds:

(a) there exist p̄i > 0, i = 2, . . . , n, and, for each ν̄ > 0,
there exists p̄1 > 0 such that

|x̂i(t)− xi(t)| ≤ p̄i , i = . . . , n

|ηi(t)− xi+1(t)| ≤ ` p̄i , i = 1, . . . , n− 1
(14)

for all t ≥ 0, for all ` ≥ 1 and for all ν(t) such that
‖ν‖∞ ≤ ν̄;

(b) there exist ν̄ and `? ≥ 1 such that for each ` ≥ `?

there exists T > 0 such that

‖ν‖∞ ≤
ν̄

`i
⇒ satri+1(ηi(t)) = ηi(t)

for all t ≥ T , i = 1, . . . , n− 1.

The proof of the previous proposition is deferred to Sec-
tion 5.3. Proposition 3 has two main consequences. First
of all, the first inequality of (14), clearly shows that the
estimates x̂i, i = 1, . . . , n, given by the observer (11), do
not peak with `. In particular the ultimate bound ‖x̂i‖∞
depends on the compact sets X, X̂ and E but it is inde-
pendent of `. In other words, the observer (11) provides
a peaking-free estimate x̂(t) of the state x(t) of (1). On
the other hand, the second inequality of (14) shows that
the variables ηi may grow with ` during the transients,
namely the value ‖ηi‖∞ is proportional to the high-gain
parameter `. Nevertheless, it is worth noting that, from a
computational point of view, this should not worry since
the implementation of values proportional to ` is needed
in order to design the gains of the observer. In other
words, the maximum values that the auxiliary variables
ηi may reach is of the same order of magnitude of the
gains of the observers, allowing to implement numbers
which are in general well-conditioned. This interesting
feature is in general not guaranteed with other construc-
tions, such as see Teel (2016).

The second consequence of the Proposition 3 is that the
variables ηi, i = 1 . . . , n− 1, exit from saturation (item
(b)) if the amplitude of the sensor noise is sufficiently
small in relation to `i. In particular, if ‖ν‖∞ ≤ ν̄/`n−1,
the observer (11) boils down, in finite time, to the low-
power observer (5) by thus recovering all the asymptotic
properties detailed in Theorem 1 and Proposition 2. In
some situations, though, the bounds in item (b) may
be conservative (for instance when high-frequency mea-
surement noise is considered). Finally, note that, to have
item (b) fulfilled, the saturations level needs to be cho-
sen large enough according to (10).

3.4 Design of the coefficients fulfilling the “low-power
(strong) stability requirement”

The tuning of the coefficients (α, β) ∈ Rn × Rn−1 sat-
isfying the “low-power stability requirement” (see Defi-
nition 1) can be done by means of a procedure that as-
signs the eigenvalues of the matrixMn. This is presented
in the next lemma that links to a constructive design
procedure presented in Astolfi and Marconi (2015). The
MATLAB code for the design of the coefficients can be
also found in Astolfi (2016).

Lemma 1 LetP(λ) = λ2n−1+m1λ
2n−2+...+m2n−2λ+

m2n−1 be an arbitrary Hurwitz polynomial. There exists
a choice of design coefficients (α, β) ∈ Rn × Rn−1 such
that the characteristic polynomial of Mn coincides with
P(λ).

Proof: The triangular structure of the matrix Mn

implies that P(λ) = Pn−1(λ)(λ − αn) with Pn−1(λ)
the characteristic polynomial of Mn−1. Using the con-
structive procedure in Lemma 1 of Astolfi and Marconi
(2015), it turns out that the coefficients (α1, . . . , αn−1)
and (β1, . . . , βn−1) can be designed to assign an arbi-
trary polynomial Pn−1(λ). From this the result imme-
diately follows. �

Given a set of coefficients α and β one may check if also
the “low-power strong stability requirement” in Defini-
tion 2 is fulfilled by direct application of the following
Lemma.
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Lemma 2 Let Si−1 = STi−1 > 0, Si = STi > 0 and
γi−1, γi > 0, be such that
Si−1Mi−1 +MT

i−1Si−1 Si−1B2(i−1) B2(i−1)

BT2(i−1)Si−1 −γi−1I 0

BT2(i−1) 0 −γi−1I

 < 0,

(15)
SiEi + ETi Si SiKi B2

KT
i Si −γiI 0

BT2 0 −γiI

 < 0 . (16)

If γi−1γi < 1, then there exists Pi = PTi > 0 and µi > 0
such that (13) holds.

Proof: Consider the matrix Λi(s) defined in (12) and
regard it as the state matrix of a system resulting from
the feedback interconnection of a first Hurwitz system

ẋi−1 = Mi−1xi−1 +B2(i−1)vi−1

yi−1 = BT2(i−1)xi−1
(17)

with state xi ∈ R2i, input vi−1 ∈ R and output yi−1 ∈ R,
and a second subsystem

ẋi = Eixi +Kivi

yi = BT2 xi
(18)

with state xi ∈ R2, input vi ∈ R and output yi ∈ R,
under the feedback vi−1 = s yi and vi = yi−1. If Mi

is Hurwitz, then, by applying the bounded real lemma
see Lancaster and Rodman (1995), there exists Si−1 and
γi−1 such that inequality (15) holds and moreover the
Lyapunov function Vi−1 = γi−1x

T
i−1Si−1xi−1 satisfies

V̇i−1 ≤ −εi−1|xi−1|2 + γ2i−1|vi−1|2 − |yi−1|2

for some εi−1 > 0. Similarly, in view of (16), the Lya-
punov function Vi = γix

T
i Sixi satisfies

V̇i ≤ −εi|xi|2 + γ2i |vi|2 − |yi|2

for some εi > 0. Now consider the composite Lyapunov
function Wi = Vi−1 + aVi where a > 0 is a real number
to be selected. By using the previous inequalities and
the definitions of vi−1, vi, we obtain

Ẇi ≤ −εi−1|xi−1|2 + γ2i−1|vi−1|2 − |yi−1|2

−aεi|xi|2 + aγ2i |vi|2 − a|yi|2

≤ −εi−1|xi−1|2 − aεi|xi|2

+
(
yTi−1 y

T
i

)( (−1 + aγ2i )I 0

(s2γ2i−1 − a)I

)(
yi−1

yi

)
.

(19)

If γiγi−1 < 1, then there exists a > 0 satisfying

γ2i−1 ≤ a ≤
1

γ2i

and therefore, for any s ∈ [0, 1], the inequality (19)

reduces to Ẇi ≤ −µi(|xi−1|2 + |xi|2) where µi =
min{εi−1, aεi}. The matrix satisfying (13) is therefore
Pi := diag

(
γi−1Si−1, aγiSi

)
with a satisfying the previ-

ous condition. This concludes the proof. �

By recalling standard results on bounded real lemmas
and equivalences between L2 and H∞ gains, one may
verify the condition γi−1γi < 1 by computing γi−1, γi
as the H∞ gains of the transfer functions of systems
(17) and (18) instead of solving conditions (15) and (16).
Moreover, by bearing in mind the definitions of Ei and
Ki, we can compute theH∞ gain of the transfer function
of system (16) between input vi and output yi, which is
βi/αi. As a consequence, the result of Lemma 2 can be
directly applied to obtain a design procedure satisfying
the “low-power strong stability requirement” as follows:

step 1) take (α1, β1) as any pair of positive numbers;
step i) for all i = 2, . . . , n − 1, compute recursively αi

and βi as any positive numbers such that βi
αi
≥ 1

γi−1

with γi−1 the L2 gain of system (17);
step n) take αn as any positive number.

4 A numerical example

For illustration purposes we consider a system of the
form (1) with n = 5 with the nonlinear function ϕ chosen
as

ϕ(x) = 0.2(x21 − 1)− x2 − x3 − 4x4 − x5 . (20)

As shown in Sprott (2010), system (1), (20) is a crackle
system exhibiting chaotic behaviours, when the initial
conditions are close enough to the origin, and possi-
bly unstable otherwise. In the simulations we selected
x(0) = (−0.8, 0, 0, 0, 0)T . Numerical inspection shows
that, with this initial conditions, |x1(t)| < 2.5, |x2(t)| <
1, |xi(t)| < 0.5, i = 3, 4, 5, and |ϕ(t)| ≤ 0.5 for all
t ≥ 0. The observer (11) of dimension 9, has been im-
plemented by following the prescriptions of Section 3.
In particular, the coefficients α and β have been chosen
by following the recursive procedure of Astolfi and Mar-
coni (2015) 1 obtaining αi = 3 for i = 1, . . . , 4, α5 = 2,
β1 = 8.5714, β2 = 3.2122, β3 = 1.4267, β4 = 0.5347.
In this way the poles of the matrix Mn are real and
placed in the range [−2,−1]. It is also possible to verify
by direct application of Lemma 2 that, with this choice,

1 In particular we used the MATLAB code that can be found
in Astolfi (2016).
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the coefficients satisfy the low-power strong stability re-
quirement of Definition 2. The saturation levels have
been fixed to ri = 3, i = 1, . . . , 5. The function ϕs(·)
has been implemented by saturating the function ϕ such
that |ϕs(x)| ≤ 3 for any x ∈ R5. Figure 1 shows the
behaviour of the peaking-free low-power high-gain ob-
server (11) when ` = 7 with initial conditions chosen as
|x̂i(0)| = 1, i = 1, . . . , 5, |ηi(0)| = 0, i = 1, . . . , 4, with-
out measurement noise, namely ν(t) = 0. Then, we com-
pared the observer (11) with a standard high-gain ob-
server (2) of dimension 5. The parameters ki are chosen
as k1 = 7.5, k2 = 22.1875, k3 = 32.3438, k4 = 23.2188,
k5 = 6.5625, so that the roots of the matrix (A5−K5C5),
with K5 = (k1, . . . , k5)T , are real and equidistant in the
range [−2,−1]. The function ϕs(·) in (2) is the same we
used to implement observer (11).

In order to characterize the peaking phenomenon, we
run numerous simulations with random initial conditions
in the set {(x, η) ∈ R9 : |xi| ≤ 3, i = 1, . . . , 5, |ηi| ≤
3, i = 1, . . . , 4}. Table 1 shows, for different values of `,
the maximum peaking values of the state (x̂, η) of the
low-power peaking free high-gain observer (11) and the
time needed to converge to an error sufficiently small
(i.e. the time Tε such that |x(t)− x̂(t)| < ε for all
t ≥ Tε) among all the simulations that we run. Table 2
shows, for different values of `, the maximum peaking
values of the state x̂ of the high-gain observer (2) and
the time Tε. While the peaking on the estimates x̂i pro-
vided by (2) is proportional to increasing powers of `,
as expected by the bound (3), no peaking is present on
the estimates x̂i provided by the peaking-free low-power
high-gain observer (11). The peaking on the auxiliary
state variables ηi is only proportional to `, as expected
by Proposition 3. Then, in order to characterize perfor-
mance of the observer (11) in presence of measurement
noise, we fixed the high-gain parameter as `1 = 7. Note
that the largest coefficient we need to implement in the
observer (11) is in this case β1`

2
1 = 420. Similarly, we

fixed `2 = 4.17 for the high-gain observer (2) in order
to practically match convergence rates of the two ob-
servers, namely to achieve the same Tε with ε = 0.01. In
this case, note that the largest coefficient we need to im-
plement is k5`

5
2 = 8.27·103. We repeated the simulations

in four different scenarios. In the the scenarios (a) and
(c) we supposed that the measurement noise ν is some
coloured noise generated by filtering white noise respec-
tively with a band-pass filter (with band [50− 200]Hz)
and with a high-pass filter (with band [1000 −∞]Hz).
In contrast, in the scenarios (b) and (d) we supposed, as
in Propositions 1 and 2, that the measurement noise ν
is generated by a sinusoidal signal ν(t) = A sin(ω t). In
the scenario (b) we considered ω = 100 while in the sce-
nario (d) we selected ω = 5000. Tables 3 and 4 show the
maximum value of the estimation errors |x̂i(t) − xi(t)|,
i = 1, . . . , 5, in steady-state for the two observers. The
tables show the remarkable improvement in terms of dis-
turbance attenuation (especially for the components x̂i,
i > 2) of the low-power peaking free high-gain observer

` = 7 ` = 30 ` = 70

T0.01 4.881 0.995 0.471

‖x̂1‖∞ 3 3 3

‖x̂2‖∞ 4.10 4.04 4.03

‖x̂3‖∞ 3.69 3.61 3.59

‖x̂4‖∞ 3.37 3.90 3.29

‖x̂5‖∞ 3.20 3.05 3.02

‖η1‖∞ 43.89 181.81 421.98

‖η2‖∞ 33.36 135.15 312.22

‖η3‖∞ 18.43 69.93 159.90

‖η4‖∞ 9.19 30.80 68.35

Table 1
Converge time and peaking phenomenon of the low-power
peaking-free high-gain observer (11) when ν(t) = 0. Worst
case for initial conditions in xi(0) = {3,−3} for i = 1, . . . , 5
and ηi(0) = {3,−3} for i = 1, . . . , 4. T0.01 is computed such
that |x(t)− x̂(t)| < 0.01 for all t ≥ T0.01.

` = 4.17 ` = 20 ` = 41.7

T0.01 4.901 1.136 0.604

‖x̂1‖∞ 3 3 3

‖x̂2‖∞ 41.84 194.15 403.42

‖x̂3‖∞ 222.59 4.92 ·103 2.13 ·104

‖x̂4‖∞ 613.59 6.56 ·104 5.91 ·105

‖x̂5‖∞ 690.71 3.55 ·105 6.69 ·106

Table 2
Converge time and peaking phenomenon of the high-gain
observer (2) when ν(t) = 0. Worst case for initial conditions
in xi(0) = {3,−3} for i = 1, . . . , 5. T0.01 is computed such
that |x(t)− x̂(t)| < 0.01 for all t ≥ T0.01.

with respect to standard high-gain observer technique.
For the observer (11) the measurement noise is attenu-
ated on all components x̃i := x̂i− xi, i = 1, . . . , 5, while
for the observer (2) the measurement noise is amplified
for i ≥ 2 when considering medium frequencies and for
i ≥ 4 at high-frequencies. Similar results are obtained
when considering measurement noise with different am-
plitudes, frequencies or band-pass filters. Finally, we re-
mark that the data collected in Tables 3, 4 confirm that
the approximation given in Propositions 1 and 2 pro-
vides a good indicator of the steady-state behaviour of
observers (2) and (11) in presence of coloured random
measurement noise, thus supporting the validity of the
proposed nonlinear analysis.
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(a) (b) (c) (d)

‖ν‖∞T0.01
0.298 0.298 4.4894 4.4894

‖x̃1‖∞T0.01
0.059 0.065 0.017 0.0189

‖x̃2‖∞T0.01
0.280 0.263 0.004 0.0016

‖x̃3‖∞T0.01
0.660 0.404 0.0008 0.0004

‖x̃4‖∞T0.01
0.752 0.278 0.002 0.0020

‖x̃5‖∞T0.01
0.201 0.042 0.004 0.0038

Table 3
Effect of the measurement noise in the steady-state be-
haviour of the low-power peaking-free high-gain observer
(11) with ` = 7. In the table x̃i := x̂i−xi. (a): coloured ran-
dom noise with band-pass filter. (b): sinusoidal noise with
ω = 100. (c): coloured random noise with high-pass filter.
(d): sinusoidal noise with ω = 5000.

(a) (b) (b) (c)

‖ν‖∞T0.01
0.298 0.298 4.4894 4.4894

‖x̃1‖∞T0.01
0.078 0.092 0.025 0.028

‖x̃2‖∞T0.01
0.940 1.138 0.317 0.347

‖x̃3‖∞T0.01
5.628 6.919 1.927 2.106

‖x̃4‖∞T0.01
16.687 20.713 5.768 6.307

‖x̃5‖∞T0.01
19.491 24.417 6.797 7.439

Table 4
Effect of the measurement noise in the steady-state be-
haviour of the high-gain observer (2) with ` = 4.17. In the
table x̃i := x̂i − xi. (a): coloured random noise with band-
pass filter. (b): sinusoidal noise with ω = 100. (c): coloured
random noise with high-pass filter. (d): sinusoidal noise with
ω = 5000.

0 1 2 3 4 5 6 7 8 9 10

-4

-3
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-1

0

1

2

3

4

Fig. 3. Behaviour of the error dynamics x̂i(t) − xi(t),
i = 1, . . . , 5, of system (1), (20) and observer (11).

5 Proofs

5.1 Proof of Theorem 1

The proof follows the same idea of Astolfi and Mar-
coni (2015), with just minor adaptations due to the
different dimension of the actual observer (2n − 1 in-
stead of 2n − 2), and therefore it is just sketched. Let
χ̃ := col(χ̃1, . . . , χ̃n) with χ̃i ∈ R2 for i = 1, . . . , n − 1

and χ̃n ∈ R, defined as

χ̃i := col

(
x̂i − xi
`i−1

,
ηi − xi+1

`i

)
i = 1, . . . , n− 1 (21)

and χ̃n := `−(n−1)(x̂i − xi). By applying the previous
change of coordinates to (5), we obtain

˙̃χ = `Mnχ̃+
1

`n−1
B̄∆ϕ(χ̃, x, d) + ` K̄1ν(t)

where the matrix Mn is Hurwitz by design, B̄ =
col(B2n−2, 1), K̄1 := col(K1, 0, . . . , 0), and the func-
tion ∆ϕ := ϕ(x, d) − ϕs(x̂) satisfies |∆ϕ(χ̃, x, d)| ≤
`n−1ϕ̄x|χ̃| + R for all (χ, x, d) ∈ R2n−1 × Rn × D, for
some ϕ̄x > 0 and R := 2 max{x∈X,d∈D} |ϕ(x, d)|. By

definition, the following bounds `−(i−1) |x̂i − xi| ≤ |χ̃|,
`−i |ηi − xi+1| ≤ |χ̃| and |χ̃| ≤ |x̂xx − xxx| hold for ` ≥ 1.
As a consequence, bounds (7) and (8) can be obtained
by using previous bounds and by applying Lemma 4 in
Appendix A with `? indicated in the statement of the
theorem. �

5.2 Proof of Proposition 2

Firstly, it is worth expressing the signal (4) as an output
of an autonomous system properly initialised. In this
respect, we observe that, having defined S ∈ Rnw×nw
and P ∈ R1×nw as

S := blkdiag(S1, . . . , Snν ) , Si =

(
0 ωi

−ωi 0

)
,

and P := ((0 1) (0 1) · · · (0 1)), the measurement noise
(4) can be expressed as output of the following system

εẇ = Sw , w ∈ Rnw

ν = Pw ,
(22)

with initial condition w(0) dependent on νci and νsi . The
initial condition w(0), in particular, ranges in a compact
set W that is invariant for (22).

Then, the proof of the Proposition conceptually articu-
lates in three parts. In the first part the whole system,
given by the observed system (1), the observer (5) and
the noise generator (22), is transformed, by means of
a coordinates change, into a cascade autonomous sys-
tem given by an asymptotically stable system (which is
the estimation error dynamics) driven by a system with
bounded trajectories (which is the parallel of the ob-
served system and of the noise generator). This cascade
structure leads to a first conclusion that the state of the
estimation error dynamics asymptotically converges to
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a steady state governed by the state of the driving sub-
system (namely x and w). Such a steady state will be
clearly affected by the parameter ε characterising (22).
The core of the proof is then the characterisation of such
a steady state in terms of ε. In this respect, in the sec-
ond part of the proof an approximation of such a steady
state is presented (with an approximation that is of or-
der ερ with ρ properly defined). The result is contained
in the forthcoming Lemma 2, which is a technical lemma
that can be proved by following the computations in As-
tolfi, Marconi, Praly and Teel (2016). In the final part
of the proof, then, the asymptotic properties of the cas-
cade system are analysed in relation to the approximated
steady state to obtain the result claimed in the proposi-
tion. The structure of the proof follows the idea originally
presented in Astolfi, Marconi, Praly and Teel (2016) for
classical high-gain observers (2).

Consider the change of coordinates

ξ̃i := col(x̂i − xi, ηi − xi+1) i = 1, . . . , n− 1

with ξ̃i = col(ξ̃i1, ξ̃i2) ∈ R2 for all i = 1, . . . , n − 1, and

ξ̃n := x̂n− xn, that transforms the observer (5) into the
form

˙̃
ξ = F ξ̃ + B̄∆ϕ(ξ̃, x) +Gν(t) (23)

with the matrix F recursively constructed as F1 = H1,

Fi :=

(
Fi−1 N̄i

Ȳi Hi

)
i = 2, . . . , n−1, F :=

(
Fn−1 0

`q̄n −` αn

)

with Hi := A − D2(`)Ki C, Yi := D2(`)KiB
T , N̄i :=

B2(i−1)B
T
2 , for i = 1, . . . , n−1, B̄ = col(B2n−2, 1), G :=

col
(
G1, 0, . . . , 0

)
with G1 := D2(`)K1 and

∆ϕ(ξ̃, x) := ϕs(Γξ̃ + x)− ϕ(x, d) , (24)

with Γ := blkdiag (C2, . . . , C2︸ ︷︷ ︸
(n−1) times

, 1) . By compactly writ-

ing the system dynamics (1) as ẋ = f(x) the overall dy-
namics given by the observed system (1), the observer
error dynamics (23) and the noise generator (22) read as

εẇ = Sw

ẋ = f(x)
˙̃
ξ = F ξ̃ +B∆ϕ(ξ̃, x) +GPw .

(25)

Having taken the parameters (α, β) and ` according to
the prescription of Theorem 1, the trajectories of this
system are bounded. The system in question, thus, has a
well-defined steady state that can be characterised with
the tools proposed in Isidori and Byrnes (2008). More
specifically, the triangular structure of the system (with

the x and w subsystem driving the ξ̃ subsystem) implies
the existence of a possibly set-valued function πε : X ×
W ⇒ R2n−1 such that the set

graph(πε) =
{

(w, x, ξ̃) ∈W×X×R2n−1 : ξ̃ ∈ πε(w, x)
}

is asymptotically stable for (25). Furthermore, the prop-
erties of the high-gain observer when the measurement
noise is absent (i.e. when w = 0) show that πε(0, x) =
{0} for all x ∈ X. The following technical lemma pro-
vides an arbitrarily accurate approximation of a contin-
uous selection of πε(·, ·). The lemma refers to a number
of functions that enter in definition of the approxima-
tion. In order to keep compact the claim of the lemma,
we introduce those functions beforehand. In particular,
let

υ :=
⌈n

2

⌉
,

and let ρ be an arbitrary (integer) number satisfying
ρ ≥ m, with m given by (9). Note that for any n we have
m ≥ υ. The approximation of order ρ of the steady state
is then a function Ψε : W ×X → R2n−1 defined as

Ψε(w, x) := col
(

Ψ1, Λ1, Ψ2, Λ2, . . . , Ψn−1, Λn−1, Ψn

)
in which

Ψi(w, x) :=

ρ∑
j=ai

ψi,j(w, x) εj , i = 1, . . . , n

Λi(w, x) :=

ρ∑
j=bi

λi,j(w, x) εj , i = 1, . . . , n− 1

(26)
where the ai = bi = i for i = 1, . . . , υ, ai = n − i + 2,
bi := n− i+ 1 for i = υ + 1, . . . , n, with

ψi,j : X ×W → R, i = 1, . . . , n, j = ai, . . . , ρ,

λi,j : X ×W → R, i = 1, . . . , n− 1, j = bi, . . . , ρ,

appropriately defined continuous functions. We have
then the following technical result, instrumental to the
proof of Proposition 2.

Lemma 3 Consider system (25) and the notations in-
troduced before. There exist continuous functionsψi,j(·, ·)
and λi,j(·, ·) such that, having defined

Eε(w, x) :=
∂Ψε(w, x)

∂w
Sw +

∂Ψε(w, x)

∂x
f(x)

−FΨε(w, x)−GPw −B∆ϕ(Ψε(w, x), x) ,

the following holds

lim
ε→0+

Eε(w, x)

ερ−1
= 0 ∀ (w, x) ∈W ×X ,

Eε(0, x) = 0 ∀ (ε, x) ∈ [0, 1]×X .
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Furthermore, there exist continuous functions ψ̄i,ai(·, ·),
i = 1, . . . , n, satisfying

ψi,ai(w, x) := `2i−1 ψ̄i,ai(w, x), i = 1, . . . ,m,

ψi,ai(w, x) := ` ψ̄i,ai(w, x), i = m+ 1, . . . , n.

(27)

Proof: Due to space constraints, we just give here a
sketch of the proof, by focusing on the main steps to
derive the expression of Eε(·, ·). By letting

Eε(·, ·) := col
(
E1, Ξ1, E2, Ξ2, . . . , En−1, Ξn−1, En

)
it can be seen that the Ei, i = 1, . . . , n, and Ξi, i =
1, . . . , n− 1, components have the form

E1 = Ψ̇1 + `α1Ψ1 − Λ1 − `α1Pw

Ξ1 = Λ̇1 + `2β1Ψ1 − Λ2 − `2β1Pw
Ei = Ψ̇i + `αiΨi − Λi − `αiΛi−1
Ξi = Λ̇i + `2βiΨi − Λi+1 − `2βiΛi−1

i = 2, . . . , n− 2,

En−1 = Ψ̇n−1 + `αn−1Ψn−1 − Λn−1 − `αn−1Λn−2

Ξn−1 = Λ̇n−1 + `2βn−1Ψn−1 −∆ϕ(Ψε, x)

−`2βn−1Λn−2

En = Ψ̇n + `αnΨn −∆ϕ(Ψε, x)− `αnΛn−1
(28)

where, for the sake of compactness, we omitted the ar-
gument (w, x) from the functions Ψi, i = 1, . . . , n, Λi,
i = 1, . . . , n− 1 and Ψε := ΓΨε. Note that, since w and
x range in bounded sets and the function ψi,j(·, ·) and
λi,j(·, ·) are continuous, we have that

lim
ε→0+

Ψε(w, x) = 0 ∀ (w, x) ∈W ×X .

Therefore, we can expand the term ∆ϕ by a Taylor series

around Ψε = 0 to obtain

∆ϕ(Ψε, x) =

ρ∑
j=1

εjφj(w, x) + ερ+1Rε(w, x).

The main idea of the proof is then to iteratively select
the functions ψi,j+1(·, ·), λi,j+1(·, ·) to annihilate, in the
previous expressions, the terms in ε of order j, with j =
0, . . . , ρ− 1, for i = 1, . . . , n. By considering the term of
order 0 in ε in the expression of E1 and Ξ1 it is easy to
see that

ψ1,1(w, x) = `α1PS
−1w , λ1,1(w, x) = `2β1PS

−1w .

By proceeding iteratively one can select all the functions
ψi,j and λi,j according to the PDEs (28) to show that

Ei,Ξi are terms in ερ thus satisfying the first part of the
lemma. Similarly, the second part of the lemma follows
by inspecting the choice of ψi,j and the PDEs (28). �

With the result of Lemma 3 in hand, we are now in the
position of concluding the proof of Proposition 2. Let
consider the change of variables

ξ̃ 7→ ζ := ξ̃ −Ψε(w, x) ,

with Ψε(·, ·) introduced in the previous lemma with a
ρ > 1 and note that, by bearing in mind the definition
of Eε(·, ·),

Ψ̇ε = FΨε +B∆ϕ(Ψε, x) +GPw + Eε(w, x) .

Furthermore, note that

∆ϕ(ξ̃, x)−∆ϕ(Ψε(w, x), x)

= ∆ϕ(ζ + Ψε(w, x), x)−∆ϕ(Ψε(w, x), x)

= ϕs(Γ(ζ + Ψε(w, x)) + x)− ϕs(ΓΨε(w, x) + x)

= ∆ϕ(ζ,ΓΨε + x) ,

and that there exists ε?1(`) ∈ (0, 1] such that 2 for all
positive ε ≤ ε?1(`)

∆ϕ(0,ΓΨε(w, x) + x) = 0 ∀ (w, x) ∈W ×X .

As a consequence, we can compute the error dynamics
in the new coordinates as

ζ̇ = Fζ +B∆ϕ(ζ,ΓΨε(w, x) + x) + Eε(w, x) . (29)

Since the Lipschitz constant of ∆ϕ(·, ·) is not affected
by the value of the arguments, the same values of ` that
make system (23) ISS with respect to the input ν(t) make
also system (29) ISS with respect to the input Eε(·, ·).
In particular, there exists c0 > 0 such that

lim
t→∞

sup |ζ(t)| = lim
t→∞

sup |ξ̃(t)−Ψε(w(t), x(t))|

≤ c0 lim
t→∞

sup |Eε(w(t), x(t))|

≤ c0 ‖Eε(w, x)‖∞

Using the fact that, for any ρ ≥ m, Eε(w, x) is a term in
ερ, it follows that there exists c1 > 0 such that

lim
t→∞

sup |ζ(t)| ≤ c1ε
ρ ‖w‖∞ .

Consider now the expressions of the components Ψi(·, ·),
i = 1, . . . , n, of Ψε(·, ·) introduced in Lemma 3. It turns

2 Note that the value of ε? depends, among other things, on
the choice of the set Xδ on which ϕs(·) coincides with ϕ(·)
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out that there exist a positive ε?2(`) ≤ ε?1(`) and µ2 > 0
such that

|Ψi(w, x)| ≤ c2 ε
i `2i−1 |w| i = 1, . . . ,m,

|Ψi(w, x)| ≤ c2 ε
n−j+2 ` |w| i = m+ 1, . . . , n,

for all positive ε ≤ ε?2(`) and for all (w, x) ∈ W × X.
From this, for all j = 1, . . . ,m, we have

lim sup
t→∞

|x̂i(t)− xi(t)| = lim sup
t→∞

|ζi1(t) + Ψi(w(t), x(t))|

≤ c1ερ ‖w‖∞ + c2ε
i`2i−1 ‖w‖∞

and for i = m+ 1, . . . , n we have

lim sup
t→∞

|x̂i(t)− xi(t)| = lim sup
t→∞

|ζi1(t) + Ψi(w(t), x(t))|

≤ c1ερ ‖w‖∞ + c2ε
n−i+2` ‖w‖∞ .

Since ν(t) = Pw(t), and by recalling that ‖w‖∞ does
not depend on the choice of ε, there exists c3 > 0 satis-
fying ‖w‖∞ ≤ c3 ‖ν‖∞. The result follows by taking an
appropriate ε?(`) ≤ ε?2(`) and ĉ > 0. �

5.3 Proof of Proposition 3

The proof follows the main steps proposed in Astolfi,
Marconi and Teel (2016), with just minor adaptations
due to the different dimension of the actual observer
(2n− 1 instead of 2n− 2) and the presence of the mea-
surement noise ν, and therefore it is just sketched. Con-
sider the change of coordinates

ζi := col(x̂i − xi, `−1(ηi − xi+1)), i = 1, . . . , n− 1

and ζn := x̂n − xn, that transforms system (11) into

ζ̇i = `Eiζi + `−1B2ui + `Ki$i i = 1, . . . , n− 1,

ζ̇n = −`αnζn + un−1 + `αn$n

where $1 = ν and $i = satri(ηi−1) for i = 2, . . . , n,
ui := satri+2

(ηi+1)−xi+2 for i = 1, . . . , n−2 and un−1 :=
ϕs(x̂, 0) − ϕ(x, d). By definition of saturation function,
of ϕs(·, ·) and since x(t) and d(t) range in compact sets,
there exist ūi > 0, i = 1, . . . , n−1, independent of `, such
that ‖ui‖∞ ≤ ūi. Furthermore, note that the matrices
Ei, i = 1, . . . , n − 1, are Hurwitz by design of α, β and
αn > 0. Recall also that $i is bounded for any i =
1, . . . , n. Hence, by applying Lemma 4 in Appendix A,
it turns out that there exist constants cij > 0, with
i = 1, . . . , n and j = 1, . . . , 4, such that

|ζi(t)| ≤ ci1 exp(−ci2` t)|ζi(0)|+ ci3
`2
ūi + ci4

holds for any ` ≥ 1 and for i = 1, . . . , n. From

this, by using the fact that
1

`
|xi+1 − ηi| ≤ |ζi| and

|ζi| ≤ |xi − x̂i| + |xi+1 − ηi| hold for all ` ≥ 1,
the bound (14) immediately follows with p̄i :=
ci1 πi + ci3ūi + ci4, with ci1 proportional to ν̄ and
πi := max

x∈X, (x̂,η)∈X̂×E
{|xi − x̂i|+ |xi+1 − ηi|} for

i = 1, . . . , n− 1, and πn := max
x∈X, x̂∈X̂

|xn − x̂n| .

To prove the item (b) of the proposition, we proceed by
induction by recursively showing that all the ηi, from
i = 1 to i = n − 1, exit from the saturation if the mea-
surement noise is sufficiently small. For this, consider
the change of coordinates (21). The dynamics of χ̃1 are
given by

˙̃χ1 = `E1χ̃1 + `−1B2u1 + `K1ν(t) .

We observe that the initial condition χ̃1(0) ranges in
a compact set E1 not dependent on ` (for all ` ≥ 1).
Using the fact that E1 is Hurwitz, Lemma 5 in Ap-
pendix A, applied with k = 1 and X = E1, can be used
to claim that there exist a ν̄1 > 0 and, for any T1 > 0,
a `1 ≥ 1 such that for all ` ≥ `1 and all ν(t) satisfy-
ing ‖ν‖∞ < ν̄1/`, we have |` χ̃1(t)| ≤ 1 for all t ≥ T1.
Hence, by noting that `−1|η1 − x2| ≤ |χ̃12| ≤ |χ̃1| and
|η1| ≤ |η1 − x2| + |x2| holds for any ` ≥ 1, we get
|η1(t)| ≤ `|χ̃1(t)|+ |x2(t)| ≤ r2 + 1 for any ` ≥ `1 and
for all t ≥ T1, namely satr2(η1(t)) = η1(t) for all t ≥ T1.
Now we proceed by induction, namely we assume that
there exist a Ti−1 > 0, a ν̄i−1 > 0 and `i−1 > 0 such that

for all ` ≥ `i−1 and all ν(t) satisfying ‖ν‖∞ < ν̄i−1/`
i−1

then satrj+1
(ηj(t)) = ηj(t) for all j = 1, . . . , i − 1 and

t ≥ Ti−1. Let us use the notation χ̃[k] = (χ̃1, . . . , χ̃k)T

for the first k-th components of χ̃. By the Lipschitz
mean-value theorem, there exists a s(·) ∈ C[0,1] such that

satri+1
(ηi) − xi+2 = s(t) `iBT2 χ̃i . As a consequence, it

turns out that for t ≥ Ti−1 the χ̃[i] dynamics can be
written as

˙̃χ[i] = ` Λi(s(t))χ̃[i] +
1

`i
B2iui(t) + ` K̄iν(t)

where Λi(s(t)) is defined as in (12), K̄1 := (K1, 0, . . . , 0)T

and ui := satri+2(ηi+1) − xi+2 for i = 1, . . . , n − 2.
Note that the initial condition ε[i](0) ranges in a com-
pact set Ei not dependent on ` (for all ` ≥ 1). By
Lemma 5 in Appendix A applied with k = i and
X = Ei, it turns out that there exist a ν̄i > 0 and,
for all Ti > Ti−1, a `i ≥ `i−1 such that, for all ` ≥ `i
and all ν(t) satisfying ‖ν‖∞ < ν̄i/`

i, the inequality
|`iχ̃[i](t)| ≤ 1 holds for all t ≥ Ti. From this, by not-

ing that `−i|ηi − xi+1| ≤ |χ̃i2| ≤ |χ̃[i]| holds for any

` ≥ 1 and and |ηi| ≤ |`iχ̃[i]| + |xi+1| it follows that for

all ` ≥ `i and any ν(t) fulfilling ‖ν‖∞ < ν̄i/`
i, the in-

equality |ηi(t)| ≤ `i|χ̃[i]|+ |xi+1| ≤ ri+1 + 1 holds for all
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t ≥ Ti, namely satri+1
(ηi(t)) = ηi(t) for all t ≥ Ti. This

completes the proof. �

6 Conclusion

We presented a new class of nonlinear high-gain ob-
servers. Unlike classical high-gain observers, the pro-
posed structure has the nice feature of having the high-
gain parameter powered up to the order 2 regardless the
dimension of the observed system, and it eliminates the
so-called peaking phenomenon. Furthermore, superior
performance in terms of sensitivity to high-frequency
measurement noise has been shown. The proposed struc-
ture can be used in place of the standard one in several
settings where this class of observers is typically used,
such as output feedback stabilization, output regulation,
fault detection, and many others, see e.g., Astolfi et al.
(2017). In this paper we considered, for the sake of sim-
plicity, observed systems in the so-called phase-variable
form although the same ideas can be adopted to deal
with more general observability forms. The effect of high-
frequency measurement noise has been analysed in the
nonlinear context with the approach introduced in As-
tolfi, Marconi, Praly and Teel (2016). We modelled the
measurement noise as a summation of sinusoidal signals
and we analysed the steady-state behaviour of the ob-
server by computing an approximation of a partial differ-
ential equation. Numerical simulations confirm the va-
lidity of the approach. The proposed analysis tool is of
its own interest since it can be applied to other classes
of nonlinear observers to analyse the effect of measure-
ment noise.
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A Appendix

The proofs of the forthcoming lemmas follow by Lya-
punov arguments that are omitted.
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Lemma 4 Let consider the system

ẋ = `A(s(t))x+
1

`k
∆(x, d) + `K ν(t)

where s ∈ C[0,1], with state x ∈ Rn, bounded disturbances
d and ν, and with k and ` positive numbers. Suppose that:

(i) there exists P = PT > 0 such that PA(s) +
A(s)TP ≤ −I holds for all s ∈ [0, 1];

(ii) ∆(x, d) ≤ L|x|+R for some L > 0, R > 0.

Then, there exist µi > 0, i = 1, . . . , 4 and ` ≥ 1 such
that for all ` > ` and for all s(·) ∈ C[0,1] and t ≥ 0

|x(t)| ≤ µ1 exp(−`µ2 t)|x(0)|+
µ3 ‖d‖∞
`k+1

+ µ4 ‖ν‖∞ .

Lemma 5 Consider the system

ẋ = `A(s(t))x+
1

`k
Bu(t) + `K ν(t) (A.1)

where s ∈ C[0,1], with state x ∈ Rn, and with k and
` positive numbers. Assume there exists a ū > 0 such
that ‖u‖∞ < ū and that A(s) satisfies the assumption
in item (i) in the previous lemma. Then, there exists
ν̄ > 0 and, for any compact set X ⊂ Rn and T > 0,
there exists ` ≥ 1 such that for any ` > ` and any
s(·) ∈ C[0,1], trajectories of (A.1) originating from X

and subject to disturbances ν(t) fulfilling ‖ν‖∞ ≤ ν̄/`k,
satisfy |`k x(t)| ≤ 1 for all t ≥ T .
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