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Abstract

H(div)-conforming finite element approximation spaces are usually
formed by locally backtracking vector polynomial spaces defined on the
master element by the Piola transformation. The main focus of the present
paper is to study the effect of using non-affine elements on the accuracy
of three dimensional flux approximations based on such spaces. For in-
stance, instead of order k + 1 for flux and flux divergence obtained with
Raviart-Thomas or Nédélec spaces with normal fluxes of degree k, based
on affine hexahedra or triangular prisms, reduced orders k for flux and
k − 1 for flux divergence may occur for distorted elements. To improve
this scenario, a hierarchy of enriched flux approximations is considered,
with increasing orders of divergence accuracy, holding for general space
stable configurations. The original vector polynomial space is required
to be expressed by a decomposition in terms of edge and internal shape
functions. The enriched versions are defined by adding internal shape
functions of the original family of spaces up to higher degree level k + n,
n > 0, while keeping fixed the original border fluxes of degree k. This
procedure gives approximations with the same original flux accuracy, but
with enhanced divergence order k+ n+ 1, in the affine case, or k+ n− 1
for elements mapped by general multi-linear mappings. The loss of con-
vergence in the flux variable due to quadrilateral face distortions cannot
be corrected by including higher order internal functions. Application of
these enriched flux spaces to the mixed finite element formulation of a
Darcy’s model problem is discussed. The computational cost of matrix
assembly increases with n, but the global condensed systems to be solved
have same dimension and structure of the original scheme.
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1 Introduction
The mixed finite element formulation for elliptic problems is attractive for the
simulation of fluid flow and transport, as they provide accurate and locally
mass conservative velocity fields, and handle well discontinuous coefficients. The
method requires balanced pairs of approximation spaces Uh ⊂ L2(Ω) and Vh ⊂
H(div,Ω), for potential and flux variables, respectively. They are piecewise
formed by local spaces U(K) and V(K), over the elements K of partitions
Th = {K} of the computational domain Ω, which are obtained backtracking
scalar Û and vector V̂ polynomial spaces, defined on the master element K̂.
Usual transformations are used for scalar fields, but Piola transformations are
required in order to keep the H(div)-conformity of the mapped vector fields [1].

When affine geometric meshes are used, the kind of vector polynomial func-
tions in Û and V̂ are preserved in U(K) and V(K). Otherwise, the functions in
U(K) and V(K) may not be polynomials anymore, and accuracy degradation
may occur, specially for the vector fields. This fact is important in applications,
for instance, to geological media, such as in aquifers or petroleum reservoirs, for
which distorted meshes for irregular domains are usually required, as illustrated
in [2]. Because of this drawback, the technique has to be used with special care
in such cases, specially for low order schemes.

The present article studies some effects on the accuracy of the approximated
variables in mixed formulations that can be caused by the use of non-affine
hexahedral or prismatic meshes. For instance, instead of order k + 1 for flux,
potential and flux divergence approximations reached by the Nédélec-Raviart-
Thomas spaces [3] (here denoted by RTk) based on affine hexahedra, or by
Nédélec Nk spaces for affine prisms [4], these orders may be reduced to k, for
the flux, and to k − 1, for the flux divergence, if the elements are mapped by
general tri-linear or bi-linear mappings, respectively, causing degeneration of the
quadrilateral faces of the elements.

As shall be clarified latter in the paper, accuracy degradation occurs due
to the fact that, after the application of Piola transformations associated to
such deformed elements, the only guarantee is that vector polynomials of total
degree k−1 can be represented in the corresponding flux approximation spaces,
and that the divergence of them contains polynomials of total degree k − 2.
On this subject, the study in [5] characterizes optimal properties to be held
by a reference vector polynomial space V̂ such that a desired convergence rate
by approximations in the resulting spaces V(K) is guaranteed after the action
of the Piola tranformation associated to such kind of hexahedral or prismatic
deformed elements K.

In order to improve the above mentioned approximation scenarios, enhanced
versions of them shall be considered. In both cases, enriched flux spaces V̂+

are created by adding to their original reference space V̂ some properly chosen
internal functions (with zero normal components on the faces) of degree k + 2,
having divergence matching the corresponding potential functions Û+ = Ûk+1

(with higher degree than the border fluxes, which are kept at degree k). These
kind of stable enriched spaces have been considered for affine meshes in [6], where
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hierarchical shape functions are constructed for them. As shall be proved in
Section 6, this enrichment procedure is sufficient to produce mixed formulations
with improved flux divergence accuracy, going from the reduced order k − 1 of
the original scheme to order k, matching the flux accuracy order, which is kept
the same by the enriched configurations. Potential accuracy is also maintained
at the original order k + 1.

Pushing forward the frontier of this research area, the present paper also
addresses the following contributions:

• As remarked in [7], for two-dimensional triangular and quadrilateral meshes,
the enrichment methodology can also be applied to other existing stable
space configurations {V̂k, Ûk} for the mixed method, k indicating the
polynomial degree of flux face functions, in order to get an enriched ver-
sion {V̂+

k , Û
+
k }, provided some mild conditions are verified by the origi-

nal space framework. Consequently, from a space configuration of type
{V̂+

k , Û
+
k }, we can imagine a new enhanced configuration {V̂++

k , Û++
k },

and so on. We shall consider stable super-enhanced space configurations
{V̂n+

k , Ûn+
k }, n ≥ 1, which can hold without any geometry or dimension

constraint.

• Another goal is to verify to which extent previous error analyses devel-
oped for the mixed method with approximation spaces based on non-affine
quadrilateral elements, mapped by general bi-linear transformations (e.g.
in [8, 9, 7]), can be generalized to consider the proposed enriched space con-
figurations based on non-affine hexahedral and prismatic elements mapped
by general tri-linear or bi-linear maps, respectively. For such deformed el-
ement cases, the conclusion is that divergence errors can be obtained with
arbitrary high orders with the enriched spaces of type {V̂n+

k , Ûn+
k }, for

increasing n. However, flux errors may not be improved, staying at the
same order of the corresponding original versions. Furthermore, since the
best convergence rate that can be observed for potential fields is one unit
more than for the flux errors, they do not improve as well.

The paper is organized as follows. General aspects on notation for element
geometries, polynomial spaces, transformations, and approximation spaces are
set in Section 2. A summary of some aspects about mixed element formulation
for an elliptic model problem is presented in Section 3, for which a general
error analysis script is established. The proposed enriched approximation space
configurations are described in Section 4, where an error analysis is performed
by identifying the principal hypotheses required by the general script of Section
3. Three specific examples of enriched versions {V̂n+

k , Ûn+
k }, n ≥ 1 , are

discussed in Section 5, for tetrahedral, hexahedral and prismatic meshes. Section
6 contains some results verifying the a priori estimates of previous sections, and
Section 7 gives the final conclusions.
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2 Notation and general aspects

2.1 Geometry
For the present study, the considered master elements are:

• Tetrahedron: K̂ = Te = {(x̂, ŷ, ẑ); x̂ ≥ 0, ŷ ≥ 0, ẑ ≥ 0, x̂+ ŷ + ẑ ≤ 1}.

• Hexahedron: K̂ = He = [−1, 1]× [−1, 1]× [−1, 1].

• Prism: K̂ = Pr = T × [0, 1], where T = {(x̂, ŷ); x̂ ≥ 0, ŷ ≥ 0, x̂+ ŷ ≤ 1}.

2.2 Polynomial spaces
Approximation spaces are defined backtracking polynomial spaces defined on
the master elements. The following types of polynomials shall be used:

• Ql,m,n = span{xiyjzk; i ≤ l, j ≤ m, k ≤ n} is the scalar polynomial
space of maximum degree l in x, m in y, and n in z (used for hexahedral
elements). Similar spaces for quadrilaterals faces are denoted by Ql,m.

• Pk = span{xiyjzk; i + j + k ≤ k}, is the scalar polynomial space of total
degree k (used for tetrahedral elements). The same notation is used for
polynomials of total degree k on triangular faces.

• Wm,n = span{xiyjzk; i+ j ≤ m, k ≤ n} (used for prisms).

2.3 Transformations
Let Ω ⊂ R3 be a computational region covered by a regular partition Th =
{K}, where h refers to the maximum element diameter. For each geometric
element K ∈ Th there is an associated master element K̂ and an invertible
geometric diffeomorfism FK : K̂ → K transforming K̂ onto K. The geometric
transformations considered in this study are of the form:

• Affine transformations: FK(x̂, ŷ, ẑ) = A0 +A1x̂+A2ŷ +A3ẑ.

• Non-affine bi-linear (used for general prisms) or tri-linear transformations
(used for general hexahedra):

FK(x̂, ŷ, ẑ) = A0 +A1x̂+A2ŷ +A3ẑ + C1x̂ẑ + C2ŷẑ,

FK(x̂, ŷ, ẑ) = A0 +A1x̂+A2ŷ +A3ẑ + C1x̂ŷ + C2x̂ẑ + C3ŷẑ +Dx̂ŷẑ.

The coefficients Ai, Ci and D are constant vectors in R3.

4



2.4 Approximation spaces
Based on partitions Th of the computational region, finite dimensional approx-
imation spaces Vh ⊂ H(div,Ω) and Uh ⊂ L2(Ω) are piecewise defined over the
elements K. Different contexts shall be considered for any element geometry,
all sharing the following basic characteristics.

1. A vector polynomial space V̂ and a scalar polynomial space Û are consid-
ered on the master element K̂.

2. In all the cases, the divergence operator maps V̂ onto Û :

∇ · V̂ = Û . (1)

3. V̂ is spanned by a hierarchy of vector shape functions organized into
two classes: the shape functions of interior type, with vanishing normal
components over all element faces, and the shape functions associated to
the element faces, otherwise. Thus, a direct decomposition V̂ = V̂∂ ⊕ ˚̂

V,
in terms of face and internal flux functions, naturally holds.

4. The functions q ∈ Vh and ϕ ∈ Uh are piecewise defined: q|K ∈ V(K)

and ϕ|K ∈ U(K), by locally backtracking the polynomial spaces V̂ and
Û . The Piola transformation Fdiv

K or the usual mapping of scalar functions
FK are used, both induced by the diffeomorfism FK . Precisely:

• Vector functions defined in K are set as

V(K) = FdivK V̂ =
{

q| JK DF−1
K q ◦ FK ∈ V̂

}
,

where DFK is the Jacobian matrix of FK , and JK = det(DFK). It is
assumed that JK > 0. It can be verified that for q̂ ∈ V̂, and x̂ ∈ K̂

∇ · q̂ = JK(x̂)∇ · q. (2)

• Scalar functions defined in K are given by

U(K) = FKÛ =
{
ϕ| ϕ ◦ FK ∈ Û

}
.

The construction of hierarchic shape functions Φ̂ is described in [10] for
some classic vector spaces V̂ based on triangle (BDMk [11] and BDFMk [12])
and quadrilateral (RTk) master elements. It is based on appropriate choice of
constant vector fields v̂, based on the geometry of each master element, which
are multiplied by an available set of H1 hierarchical scalar basis functions ϕ̂
to get Φ̂ = v̂ϕ̂. There are shape functions of interior type, with vanishing
normal components over all element edges. Otherwise, the shape functions are
classified of edge type. The normal component of an edge function coincides on
the corresponding edge with the associated scalar shape function, and vanishes
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over the other edges. The required set of H1 hierarchical scalar basis functions
are the ones constructed in [13].

Particularly, the resulting flux spaces V̂ are spanned by bases B̂ of the form

B̂ =
{

Φl̂m,âs , Φl̂m,n
}

︸ ︷︷ ︸ ∪
{

ΦK̂,l̂m,n,ΦK̂,n1,n2

(1) , ΦK̂,n1,n2

(2)

}
︸ ︷︷ ︸,

edge functions internal functions

where l̂m are edges of K̂, âs are vertices of l̂m, n, n1 and n2 determine the
degree of the shape functions, and the subscripts (i), i = 1, 2, indicate two
linearly independent vector fields v̂(i) used in the definition of internal functions.

Therefore, the direct decomposition V̂ = V̂∂⊕ ˚̂
V is naturally identified for these

vector spaces, where ˚̂
V is the space spanned by the internal shape functions,

and V∂ being its complement, spanned by edge (or face) shape functions.
Usually, for stability, the divergence space is ∇·V̂ = Û = Û0⊕Û⊥, where Û0

are the constant functions, and Û⊥ is the complement formed by those functions
in Û with zero mean, the image of the internal functions V̊ by the divergence
operator, Û⊥ = ∇ · ˚̂V.

We also refer to [14], for the construction of such stable approximation
spaces, and for their application to mixed methods for curvilinear two dimen-
sional meshes on manifolds, to [6] for the treatment of cases based tetrahedral,
affine hexahedral and affine prismatic elements, and to [15], for the assembly of
them for three dimensional curved and hp-adapted meshes.

3 The mixed finite element formulation
Consider the model problem

∇ · σ = f in Ω, (3)
σ = −K∇u (4)
u = uD in ∂Ω, (5)

where f ∈ L2(Ω), and uD ∈ H1/2(∂Ω) is the Dirichlet boundary condition. The
tensor K is assumed to be a symmetric positive-definite matrix, composed by
functions in L∞(Ω).

Given approximation spaces Vh ⊂ H(div,Ω), for the variable σ, and Uh ⊂
L2(Ω), for the variable u, as described in the previous section, consider the
discrete variational mixed formulation for problem (3)-(5) [1]:
Find (σh, uh) ∈ (Vh × Uh), such that ∀q ∈ Vh, and ∀ϕ ∈ Uh

a(σh,q)− b(uh,q) = − < uD,q · η >, (6)
b(ϕ,∇ · σh) = f(ϕ), (7)
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where η is the outward unit normal vector on ∂Ω, < ·, · > represents the duality
pairing of H1/2(∂Ω) and H−1/2(∂Ω), and

a(σ,q) =

∫
Ω

K−1σ · q dΩ, b(u,q) =

∫
Ω

u∇ · q dΩ, f(ϕ) =

∫
Ω

fϕ dΩ.

3.1 Error analysis
The main required tools for classic error analyses for mixed finite element meth-
ods are:

1. Projections commuting the De Rham diagram on the master element: For
sufficiently smooth vector functions in Hα(K̂), α ≥ 1, assume that on
the master element a bounded projection π̂ : Hα(K̂) → V̂ is defined,
and consider the corresponding versions on the computational elements
πK : Hα(K) → V(K) given by πK = FdivK ◦ π̂ ◦ [FdivK ]−1. A global
projection Πh : Hα(Ω) → Vh is then piecewise defined: (Πhq)|K =

πK(q|K). Analogously, if λ̂ denotes the L2-projection on Û , a global
projection Λh : L2(Ω) → Uh is piecewise defined: (Λhϕ)|K = λK(ϕ|K),
where λK = FK ◦ λ̂ ◦ F−1

K . The projections π̂ and λ̂ are required to verify
the commutation De Rham property illustrated by next diagram:

Hα(K̂)
∇·−→ L2(K̂)

↓ π̂ ↓ λ̂
V̂

∇·−→ Û

, (8)

meaning that ∫
K̂

∇ · [π̂q− q]ϕ dK̂ = 0, ∀ϕ ∈ Û . (9)

2. Expressions of flux, flux divergence and potential errors in terms of projec-
tion errors for the corresponding exact solutions: Assuming the existence
of such projections Πh and Λh on the spaces Vh and Uh, approximate
flux, flux divergence and potential errors can be expressed in terms of
projection errors for the corresponding exact solutions, as stated in [8],
Theorem 6.1.

3. Projection error estimates: Based on such expressions, the complete er-
ror analysis for the numerical solutions of the mixed formulation requires
the study of error convergence rates for the projection Πh on H(div)-
conforming spaces Vh, and of Λh on Uh. For that, the mesh family Th
are required to be shape-regular and non-degenerate, as defined in [16].
The proofs make use of classic arguments using Bramble-Hilbert lemma,
and are similar to the ones of Theorem 4.1 and Theorem 4.2 in [8]. The
convergence rates are established in terms of the total degrees r and t of
flux and scalar polynomials that can be represented on the geometric ele-
ments K after the transformations FdivK and FK are applied to the vector
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and scalar polynomial spaces V̂ and Û defined on the master element,
and the total degree r of scalar polynomials contained in the range of the
divergence operator applied to V̂.

4. Optimal conditions determining the orders of accuracy of the projection
errors: The parameters determining the projection convergence rates can
be easily obtained when affine elements are used, since for them the ac-
tions of the function transformations FdivK and FK preserve polynomial
fields. For non-affine geometric transformations, with non-constant Ja-
cobian determinants, this is a more subtle task, specially concerning the
Piola transformation. For that, some optimality concepts are required.

The error analysis for the approximate solutions is then a combination of
the mentioned estimates, as stated in the following theorem.

Theorem 3.1 Consider approximation space configurations {Vh, Uh}, based
on shape-regular and non-degenerate meshes Th of a convex domain Ω, for which
projections Πh and Λh are defined, as discussed previously. Let s, r and t be the
degree of polynomial spaces such that: (i) [Ps]3 ⊂ V(K), (ii) Pr ⊂ ∇ ·V(K),
and (iii) Pt ⊂ U(K). If σh ∈ Vh and uh ∈ Uh satisfy (6)-(7), and u is regular
enough, then the following estimates hold:

||σ − σh||L2(Ω) . h
s+1||σ||Hs+1(Ω), (10)

|∇ · (σ − σh)||L2(Ω) . h
r+1 ||∇ · σ||Hr+1 , (11)

||u− uh||L2(Ω) . h
q+1||u||Hq+1 , (12)

where q = min{s+ 1, r + 2, t}.

The estimates (10) for the flux, and (11) for the flux divergence are derived
directly from their expressions in terms of projection errors, and from the cor-
responding projection error estimates. For the potential variable, the order of
accuracy follows from similar arguments as in the proof of Theorem 6.2 in [8],
and from the projection error estimates. The convexity of Ω only plays a role
for the elliptic regularity property, used to get (12).

In the literature, most of the convergence estimates for the mixed method
assume affine (or curved but asymtoptically affine) geometries, for which the
optimal parameters s, r and t indicated in Theorem 3.1 are easily determined.
In the seminal thesis by Thomas [17], curved quadrilateral meshes Th are indeed
considered, but they are obtained from regular affine meshes T̂h of a reference
domain Ω̂, which is globally mapped by a smooth (at least C2) invertible map
F : R2 → R2, such F (Ω̂) = Ω, and F (T̂h) = Th. The convergence rates for
curved meshes are then obtained in terms of the corresponding ones associated
to a transformed problem on the reference domain Ω̂, which is mapped by F
from the original problem in Ω. The same hypotheses are assumed in [18] for
the expanded mixed formulation proposed there.

In the above mentioned curved mesh circumstances, accuracy degradations
are not observed, the same orders as for affine mesh contexts being kept. A
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case for which they indeed occur has been analyzed in [8] for RTk spaces based
on non-affine quadrilateral meshes, for which the rate of divergence errors is
reduced. To overcome this drawback, and adopting bilinear geometric trans-
formations FK : R2 → R2, which are independent of the mesh resolution, and
may vary for different quadrilateral elements on the partition Th, necessary and
sufficient conditions are determined in [8] to obtain optimal error estimates for
H(div)-conforming approximations based on these general quadrilateral meshes.
Then, ABFk elements are introduced to accomplich such properties, which are
obtained by enriching the RTk elements. The conclusion is that the divergence
error, which may reduce to order k for the original RTk space based on such
non-affine quadrilaterals, can be improved by ABFk approximations to the same
order k + 1 of flux and potential variables. The study in [19] also obtain the
same divergence improvement using spaces called ACk, of minimal dimension,
for non-affine quadrilaterals. The error analysis in [9] is for the enriched version
RT+

k based on this kind of non-affine quadrilaterals, which also gives order k+1
for the flux divergence, but with a bonus enhancement of the potential variable
to order k + 2.

3.2 Characterization of optimal spaces
Having in mind the hypotheses required by the error estimations given in The-
orem 3.1, and for the determination of the projection convergence rates in the
presence of non-affine bi-linear or tri-linear transformations, with non-constant
Jacobian determinants, the following optimality concepts are helpful for the
error analysis presented in the next sections:

• Definition A: Ês, s ≥ 1, is the space of minimal dimension on K̂ such
that the following property holds

V̂ ⊃ Ês ⇐⇒ V(K) = FdivK V̂ ⊃ [Ps−1]3. (13)

• Definition B: F̂r, r ≥ 1, is the space of minimal dimension on K̂ such that
the following property holds

∇ · V̂ ⊃ F̂r ⇐⇒ ∇ ·V(K) = ∇ · FdivK V̂ ⊃ Pr−1. (14)

As already mentioned, the characterization of the optimal spaces Ês and
F̂r has been established in [8] for quadrilateral elements mapped by bi-linear
mappings. The lowest order case s = r = 1 for curvilinear cubic meshes has
been studied in [16]. For higher order cases, the characterization of the optimal
spaces Ês and F̂r has been determined in [5], Theorem 1, for general hexahedra
and prisms (and also pyramids), according to the formulae bellow. We also refer
to [20] for approximation properties of general differential forms on curvilinear
cubic elements, using exterior calculus, the case of H(div) d-dimensional being
the particular case of d− 1 forms.
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Optimal spaces for hexahedral elements According to [5], Theorem 1,
for general non-affine tri-linear transformations applied to K̂ = He, the optimal
vector spaces ÊHe

s , s > 1, are

ÊHe
s = Qs+1,s−1,s−1 × Qs−1,s+1,s−1 × Qs−1,s−1,s+1

⊕


 x̂iŷsẑj

0
0

⊕
 0

x̂j ŷiẑs

0

⊕
 0

0
x̂sŷj ẑi

 0 ≤ i ≤ s
0 ≤ j ≤ s− 1


⊕


 x̂iŷj ẑs

0
0

⊕
 0

x̂sŷiẑj

0

⊕
 0

0
x̂j ŷsẑi

 0 ≤ i ≤ s
0 ≤ j ≤ s− 1


⊕


 x̂s+1ŷj ẑs

0
−x̂sŷj ẑs+1

⊕
 0

x̂j ŷs+1ẑs

−x̂j ŷsẑs+1

⊕
 x̂s+1ŷsẑj

−x̂sŷs+1ẑj

0

 0 ≤ j ≤ s− 1


= (a)⊕ (b)⊕ (c)⊕ (d). (15)

Furthermore, according to Proposition 1 in [5], F̂He
r = ∇ · ÊHe

r+1.

Optimal elements for Prismatic elements By [5], Theorem 1, for general
non-affine bi-linear transformations applied to the prism K̂ = Pr, the vector
optimal spaces ÊPr

s are

ÊPr
s =

(
Ws−1,s(x̂, ŷ, ẑ)⊕ P̃s(x̂, ŷ)Ps−1(ẑ)

)2

×
(
Ws−2,s+1(x̂, ŷ, ẑ)⊕ P̃s−1(x̂, ŷ)Ps(ẑ)

)
⊕P̃s−1(x̂, ŷ)ẑs

 −x̂−ŷ
ẑ


=(a)⊕ (b), (16)

where P̃s(x̂, ŷ) = xiyj , i+ j = s, are homogeneous polynomials. By Proposition
1 in [5], ∇ · ÊPr

s = Ws−2,s(x̂, ŷ, ẑ)⊕ P̃s−1(x̂, ŷ)Ps(ẑ) $ Ws,s. Theorem 3, in [5]
proves that F̂Pr

r = Wr,r(x̂, ŷ, ẑ)⊕ Pr−1(x̂, ŷ)ẑr+1 ⊂Wr+1,r+1.

4 Approximation space configurations of type
{V̂n+

k , Ûn+
k }, n ≥ 1

Suppose that certain vector and scalar polynomial spaces V̂k and Ûk are defined
on the master element K̂, following the general script discussed in Section 2.
Namely, ∇·V̂k = Ûk, and V̂k = V̂∂

k⊕
˚̂
Vk is defined in terms of face and internal

flux functions, the index k corresponding to the degree of face shape functions
(polynomial degrees in ˚̂

Vk and Uk may be different from k). Accordingly, a
hierarchy of vector-valued basis BK̂

k are provided for V̂k, which can be either
of interior or of face types.
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This section summarizes a general methodology for the construction of en-
riched space configurations of type {V̂n+

k , Ûn+
k }, n ≥ 1, and the error estimates

for the mixed method based on them. This methodology has been stated in [7]
having in mind applications to two-dimensional problems, but it applies to more
general contexts, without restrictions to element dimension and geometry.

The principle in the definition of vector-valued spaces for flux approximations
of type V̂n+

k is to construct on the master element K̂ vector spaces V̂n+
k formed

by adding to the vector polynomials in V̂k those ones in V̂k+n of internal type
whose divergence are in Uk+n. Accordingly, the scalar approximation space for
the potential is formed by taking Ûnk = Uk+n. In summary, if

V̂k = V̂∂
k ⊕

˚̂
Vk,

then the direct decomposition for the enriched configurations are

V̂n+
k = V̂∂

k ⊕
˚̂
Vk+n.

Thus, by construction, this kind of space configuration verify the compatibility
property (1), and the mixed formulation based on it is stable.

Projections Suppose that for the original vector polynomial spaces V̂k the
following properties hold:

1. Bounded projections π̂k : Hα(K̂) → V̂k and λ̂k : L2(K̂) → Ûk verifying
the commutative De Rham property are available.

2. The projections π̂k can be factorized as π̂kq̂ = π̂∂k q̂ + ˚̂πkq̂, in terms of
edge and internal contributions.

Consequently, as suggested in [21] (see details in [7]), projections π̂n+
k : Hα(K̂)→

V̂n+
k are then defined as π̂n+

k q = π̂n+,∂
k q̂ + ˚̂πn+

k q̂, where:

1. The edge component π̂n+,∂
k q̂ = q̂∂ ∈ V̂∂ is determined by∫

∂K̂

[q− q̂∂ ] · η̂ φds = 0, ∀φ ∈ Pk(∂K̂), (17)

Pk(∂K̂) representing the normal traces of functions in V̂k.

2. The internal term ˚̂πn+
k q̂ = ˚̂q ∈ ˚̂

Vn+
k =

˚̂
Vk+n is taken as q̊ = ˚̂πk+n(q−q∂),

where ˚̂πk+n is the internal projection component of the original scheme
at level k + n.

The commutative De Rham property is also valid for the projections π̂n+
k and

λ̂n+
k = λ̂k+n associated to the enriched space configuration {V̂n+

k , Ûn+
k }.
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Optimal properties Assume also that the original space V̂k contains the
optimal vector polynomial space Ês+1, and that the associated divergence space
Ûk contains the optimal scalar polynomial space F̂r+1, and Pt as well. Recall
that these basic hypotheses imply that, on the mapped elements K ∈ Th, the
local enriched spaces satisfy

Vn+
k (K) ⊃ [Ps]2,

∇ ·Vn+
k (K) ⊃ Pr+n,

Un+
k (K) ⊃ Pt+n.

After the insertion of these results in Theorem 3.1, the following error estimates
hold for the flux, potential and divergence variables obtained by the mixed
finite element formulation based on approximations spaces of type {V̂n+

k , Ûn+
k }

enriched space configurations.

Theorem 4.1 Consider approximation space configurations {Vh, Uh} of type
{V̂n+

k , Ûn+
k }, obtained by the enrichment procedure of an original space config-

uration {V̂k, Ûk} verifying the hypotheses of Theorem 3.1. Then, the following
error estimates hold for the flux, potential and divergence variables, obtained by
the mixed finite element formulation based on them:

||σ − σh||L2(Ω) . h
s+1||σ||Hs+1(Ω), (18)

|∇ · (σ − σh)||L2(Ω) . h
r+n+1 ||∇ · σ||Hr+n+1 , (19)

||u− uh||L2(Ω) . h
q+1||u||Hq+1 , (20)

where q = min{s+ 1, r + n+ 2, t+ n}.

5 Error analysis for enriched versions of some
specific cases

In order to illustrate the proposed enrichment procedure described in the previ-
ous section, let us explore the following examples of original spaces {V̂k, Ûk},
whose enriched versions {V̂n+

k , Ûn+
k }, n ≥ 1, shall be analyzed and imple-

mented.

1. Example 1: BDMk spaces for tetrahedral meshes:
V̂BDMk

= [Pk]3, ÛBDMk
= Pk−1.

2. Example 2: RTk spaces for hexahedral meshes:
V̂RTk

= Qk+1,k,k ×Qk,k+1,k ×Qk,k,k+1, ÛRTk
= Qk,k,k.

3. Example 3: Ñk spaces for prismatic meshes:
[Wk,k]3 ⊂ V̂Ñk

⊂ [Wk+1,k+1]3, ÛÑk
= Wk,k. This is the space configu-

ration proposed in [6]. The face functions of Ñk are in [Wk,k]3, and the
internal components are taken from [Wk+1,k+1]3, constrained by the prop-
erty that their divergence are in Wk,k. As verified in [6], despite the fact
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that the divergence operator applied to the Nédélec space V̂Nk
also covers

Wk,k, it does not contain all flux functions in [Wk+1,k+1]3 verifying this
property. Thus, V̂Nk

( V̂Ñk
, the additional internal functions in V̂Ñk

being divergence free.

Table 1 contains the dimensions of face, internal and total functions associated
to the original space V̂k of the three examples, and to their first enrichment
setting V̂+

k . For general super-enriched cases V̂n+
k , n > 1, the dimensions are

not shown, since, as in the case n = 1, they can be obtained from the dimension
of face functions in V̂k, and from the dimension of internal functions in V̂k+n.

Element Type Face Internal Total

T e
BDMk 2(k + 1)(k + 2) 1

2 (k − 1)(k + 1)(k + 2) 1
2 (k + 1)(k + 2)(k + 3)

BDM+
k 2(k + 1)(k + 2) 1

2k(k + 2)(k + 3) 1
2 (k + 2)[k(k + 3) + 4(k + 1)]

H
RTk 6(k + 1)2 3k(k + 1)2 3(k + 1)2(k + 2)

RT+
k 6(k + 1)2 3(k + 1)(k + 2)2 3(k + 1)[6 + k(k + 6)]

Pr
Ñk (k + 1)(4k + 5) 1

2k
2(3k + 5) + 7k − 2 1

2k
2(3k + 13) + 16k + 3

Ñ+
k (k + 1)(4k + 5) 1

2 (k + 1)2(3k + 8) + 7k + 5 1
2k

2(3k + 22) + 51
2 k + 14

Table 1: Degrees of freedom of the original space V̂k, for tetrahedral (BDMk),
hexahedral (RTk), and prismatic (Ñk) elements, and of the enriched version
V̂+
k .

Projections associated to these original space configurations are already
known in the literature [1, 6]. For the determination of the optimal param-
eters associated to Example 2 and Example 3, for the considered non-affine
elements, the following results shall be applied.

Lemma 5.1 For hexahedral meshes mapped by tri-linear transformations, the
optimal space ÊHe

s is contained in V̂RTs
, but it does not contain [Qs,s,s]3.

Proof: By its definition in (15), its clear that ÊHe
s ⊂ V̂RTs

= Qs+1,s,s ×
Qs,s+1,s × Qs,s,s+1. However, the normal components of the first term (15)-
(a) over the faces of the unit cube are in Qs−1,s−1. For the terms in (15-
(b), (15)-(c) and (15)-(d), they are in Qs−1,s or Qs,s−1. Thus, face vector
functions with normal components of type Qs,s are missing in ÊHe

s , implying
that [Qs,s,s]3 * ÊHe

s .
According to Theorem 3 in [5], the optimal spaces for the divergence are

F̂He
r = Qr,r,r ⊕

{
x̂r+1ŷmẑn, x̂mŷr+1ẑn, x̂mŷnẑr+1, 0 ≤ m,n ≤ r

}
= Qr+1,r,r ⊕Qr,r+1,r ⊕Qr,r,r+1.

Furthermore, Proposition 1 in [5] states that F̂He
r = ∇ · ÊHe

r+1. �

Note that, the lowest order optimal spaces ÊHe
1 and F̂1 correspond to the

spaces denoted by Ŝ0 and R0 in [16], respectively. Since ∇ · V̂RT1
= Q1,1,1,

which does not contains F̂He
1 , then ∇ · FdivV̂RT1

may not contain constants for
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general tri-linear mappings FK . Thus, as concluded in [16], it does not suffice to
use RT1 to get O(h) of divergence errors on general hexahedral meshes mapped
by tri-linear meshes.

Lemma 5.2 For prismatic meshes mapped by bi-linear geometric transforma-
tions, ÊPr

s is contained in V̂Ñs
, but it does not contain [Ws,s]

3.

Proof: Recall that V̂Ñs
is obtained by adding to [Ws,s]

3 all the internal vector
functions in [Ws+1,s+1]3 whose divergence are Ws,s. By the definition in (16),
its clear that ÊPr

s ⊂ [Ws+1,s+1]3, and it has been proved that ∇ · ÊPr
s ⊂ Ws,s.

Concerning the normal traces of ÊPr
s over the faces of the master triangular

prism Pr, we observe that they are included in Ps−1 on the triangular faces,
and they are of type Qs,s−1 or Qs−1,s on the quadrilateral faces. In fact, on the
triangular faces ẑ = 0 and ẑ = 1, with normal ±[0, 0, 1]t, the normal trace of
term in (16)-(a) is in Ps−2(x̂, ŷ)⊕ P̃s−1(x̂, ŷ) = Ps−1(x̂, ŷ), and of term in (16)-
(b) is in P̃s−1(x̂, ŷ). On the quadrilateral face y = 0, with normal (0,−1, 0)t

the normal trace of the term (16)-(a) is in Qs−1,s(x̂, ẑ) and the normal trace of
in (16)-(b) is zero. On the quadrilateral face x = 0, with normal (−1, 0, 0)t the
normal trace of the term in (16)-(a) is in Qs−1,s(ŷ, ẑ) and the normal trace of the
term in (16)-(b) is zero. On the quadrilateral face F = x̂+ ŷ = 1, with normal
(1, 1, 0)t, the normal trace of the term in (16)-(a) has the form Ws−1,s(x̂, ŷ, ẑ)|F
or P̃s(x̂, ŷ)Ps−1(ẑ)|F , and the normal trace of the term in (16)-(b) is of the
form P̃s(x̂, ŷ)ẑs|F , which are of type Qs,s−1 or Qs−1,s. Consequently, the face
functions in ÊPr

s are in [Ws,s]
3, the internal functions in ÊPr

s are in [Ws+1,s+1]3,
with divergence in Ws,s, implying that ÊPr

s ⊂ V̂Ñs
. But the face functions of

[Ws,s]
3, whose normal components on the quadrilateral faces are of type Qs,s,

are missing in ÊPr
s . Thus, [Ws,s]

3 * ÊPr
s . �

Theorem 5.3 Let {V̂k, Ûk} be any of the original space configurations asso-
ciated to the three examples above. Their corresponding parameters s, r and t
determining their projection error estimates, stated in Theorem 3.1, are shown
in Table 2, for all geometries mapped by affine transformations, for general hex-
ahedral elements mapped by non-affine tri-linear transformations or for general
triangular prisms mapped by non-affine bi-linear transformations. Consequently,
the convergence orders in L2-norms presented in Table 3 hold for flux, potential
and divergence variables obtained by the mixed finite element formulation based
on enriched approximations spaces of type {V̂n+

k , Ûn+
k } associated to the three

examples.

Proof: Recall that Ûk = Pk−1 for Example 1, Ûk = Qk,k,k ⊃ Pk for Example
2, and Ûk = Wk,k ⊃ Pk for Example 3. Furthermore, V̂k ⊃ [Pk]3, for any of the
three cases. By the fact that affine transformations preserve polynomial spaces,
then for all the examples based on affine geometries s = k, and r = k − 1 for
Example 1, and r = k for Examples 2 and 3. Similarly, t = k − 1 for Example
1, and t = k for Examples 2 and 3, for any kind of the considered affine and
non-affine mesh geometry.
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A N-A

Spaces BDMk RTk and Ñk RTk and Ñk

s k k k − 1

r k − 1 k k − 2

t k − 1 k k

Table 2: Parameters s, r and t determining the rates of convergence (10)-(12),
stated in Theorem 3.1, for the original space configurations {V̂k, Ûk} of Ex-
ample 1, 2 and 3, for affine (A) elements of all geometry, and non-affine (N-A)
hexahedra and prisms.

Flux Potential Divergence
Element Space A N-A A N-A A N-A

Te
BDMk k + 1 - k - k -

BDM+(= BDFMk+1) k + 1 - k + 1 - k + 1 -

BDM+n
k , n > 1 k + 1 - k + 2 - k + n -

He
RTk k + 1 k k + 1 k + 1 k + 1 k − 1

RTk
n+ k + 1 k k + 2 k + 1 k + n+ 1 k + n− 1

Pr
Ñk k + 1 k k + 1 k + 1 k + 1 k − 1

Ñn+
k k + 1 k k + 2 k + 1 k + n+ 1 k + n− 1

Table 3: Convergence orders in L2-norms for the solutions of mixed element
formulations based on the original space configurations V̂k Ûk, and on their
enriched versions V̂n+

k Ûn+
k , n ≥ 1, for Example 1, 2 and 3, based on affine (A)

elements of all geometry, and non-affine (N-A) hexahedra and prisms.

For non-affine hexahedra, mapped by general tri-linear transformations, ÊHe

k ⊂
V̂RTk

, according to Lemma 5.1. Thus, the inclusions FdivK VRTk
⊃ FdivK ÊHe

k ⊃
[Pk−1]3 hold, implying that s = k− 1. Since on the master element ∇ · V̂RTk

=

Qk,k,k % F̂He

k−1, this fact implies that r = k − 2.
For non-affine prisms, mapped by general bi-linear transformations, Lemma

5.2 states that ÊPr

k ⊂ VÑk
. Consequently, for flux space configurations V̂n+

Ñk

associated to prisms, FdivK V̂Ñk
⊃ FdivK ÊPr

k ⊃ [Pk−1]3, which corresponds to
s = k − 1. By construction, ∇ · VÑk

= Wk,k % F̂Pr

k−1. From the optimality
condition of F̂Pr

k−1, we obtain that r = k − 2.
Finally, the convergence rates shown in Table 3 are obtained by the insertion

in Theorem 4.1 of the parameters s, r and t displayed in Table 2. �

Remarks

1. Note that the optimal conditions for lowest order case r = s = 1 have
been previously analysed in [16], for hexahedral meshes. In fact, it can be
verified that the optimal spaces Ê1 and F̂1 correspond to the ones denoted

15



there by Ŝ0 and R0, respectively. Therefore, the results in Theorem 8.1
in [16] can be seen as a special case of Theorem 5.3.

2. Because there are face terms in ÊHe

k+1 with normal components of type
Qk+1,k or Qk,k+1 (see the proof of Lemma 5.1), which can not all be
included in V̂RTk

(and neither in V̂n+
RTk

, n ≥ 1), the result can not be
improved to get s > k − 1 for general hexahedra. Similarly for general
prisms, in order to have s > k − 1, it would be necessary to verify that
ÊPr

k+1 ⊂ V̂Ñk
, which is not possible because the normal traces of ÊPr

k+1

on quadrilateral faces have components of type Qk,k+1 or Qk+1,k (see the
proof of Lemma 5.2), a prohibited fact in V̂Ñk

(and also in V̂n+

Ñk
, n ≥ 1).

3. It has been observed in [16] that there are some restricted classes of non-
affine hexahedra for which the optimal conditions for flux and flux diver-
gence approximations of order O(h) can be verified with less restrictions.
For instance, according to the property in equation (2), in order to include
constants in the space∇·V(K), the space∇·V̂ should contain the polyno-
mials defined by JK . For general tri-linear transformations the restriction
is that ∇·V̂ should contain the optimal space F1 = Q2,1,1⊕Q1,2,1⊕Q1,1,2.
Since ∇ · V̂RT (1) = Q1,1,1 does not contains F1, divergence errors of O(h)
can not be reached for general hexahedra. However, restricted to bi-linear
transformations FK , the resulting JK does not include terms with maxi-
mum degree 2. Therefore, divergence errors of order O(h) can be reached
with the RT1 space configurations based on these restricted kind of hex-
ahedra. Note also that O(h) convergence results obtained in [2] for the
MFMFE method assume special non-affine hexahedra obtained by the
so called h2-perturbations.

4. Note that the sub-optimal convergence orders occurring in the presence of
non-affine hexahedral and prismatic elements, namely, a reduction from
order k + 1 to k in flux accuracy, and of two units in the divergence
convergence rate, from order k + 1 to k − 1, are more severe than the
ones observed in two-dimensional cases. For instance, when quadrilateral
elements are mapped by general bilinear transformations, flux accuracy
for RTk spaces stays at the same order k + 1, as for affine quadrilaterals
ones, and the divergence degradation from order k = 1 to k is just of one
unit less [8].

6 Numerical verifications
In this section we present numerical results of the application of approximation
space configurations discussed on the three examples of the previous section to
solve a Darcy’s problem by the mixed formulation, illustrating the predicted
convergence rates shown in Table 3. The model problem is defined on the unit
cube Ω = (0, 1)3, with f and Dirichlet boundary conditions enforced in ∂Ω such
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that the analytic solution is given by the formula

u =
π

2
− tan−1

(
5
(√

(x− 1.25)2 + (y + 0.25)2 + (z + 0.25)2 − π

3

))
.

6.1 Some comments about computational implementation
For the numerical tests presented in the next section, flux approximations are
obtained from hierarchical vector shape functions constructed in [6].

The assembly of the linear system of equations of the discrete mixed for-
mulation (6)-(7) envolves the computation of integrals over each element K,
which are expressed back in the master element K̂ thanks to a change of vari-
able, where a factor 1

JK(x̂) appears on the terms involving flux shape functions
mapped by the Piola transformation. These integrals can not be numerically
computed exactly by using Gauss integration formulae for non-affine transfor-
mations FK . For the applications shown in this section, where enriched space
configurations are used, involving high degree of scalar potential approxima-
tions, and of internal flux shape functions, based on non-affine meshes, care had
been taken in the choice of the quadrature rules, without deterioration of the
the order of convergence of the method. See also [5] for some comments on
this matter concerning the integration of matrix elements involving the optimal
H(div) spaces used there.

In order to apply static condensation, the degrees of freedom of the flux σ are
organized in two parts: σ̊, and σ∂ , referring to internal and face components
of σ, respectively. For the variable u, take u0 be formed by constant values on
each element (the choice of any other degree of freedom for u corresponding to
a shape function in each element with nonzero average also works), and let ui
denote the remaining degrees of freedom except u0. Then, static condensation
is applied by eliminating the degrees of freedom σ̊, and ui, to get a condensed
system in terms of σ∂ , and u0, of same structure and dimension of the original
scheme for {V̂k, Ûk}. The MKL/Pardiso solver has been used for the resolution
of the global condensed linear systems.

For comparison, results for related H1-conforming simulations shall be pre-
sented, using hierarchical shape function constructed in [13]. They are classified
in terms of vertex, edge, face or internal types, and similar static condensation is
adopted, where the condensed systems are represented only in terms of vertex,
edge and face the contributions.

All these kinds of algorithms are particularly attractive if a computational
environment is available offering tools for the construction of the required en-
riched H(div)-conforming spaces for the usual element geometry. Typically, the
requirements include hierarchic high order vector and scalar shape functions, a
data structure allowing the identification of face and internal shape functions of
different degree orders, and procedures for shape function restraints in two or
three dimensions (as the ones usually adopted in adaptive hp-strategies). This is
the case of the object oriented programming environment called NeoPZ 1, used

1http://github.com/labmec/neopz
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for the implementations of the all the proposed and compared formulations.

6.2 Results for affine meshes
Uniform hexahedral meshes are considered with spacing 2−`, ` = 1, · · · , 4, and
the tetrahedral meshes are obtained by the subdivision of each cubic element
into six tetrahedra. Similarly, the prismatic meshes are constructed by the
subdivision of each hexahedral element into two prisms.

Figure 1 presents L2-error curves for σ = −∇u, ∇ · σ, and u obtained with
the mixed method using approximation space configurations BDBn+

2 , RTn+
2 ,

and Ñn+
2 of Examples 1, 2, and 3, versus the parameter h indicating the maxi-

mum of element diameters. For comparison, results for the H1-conforming for-
mulation are also shown, using continuous approximations obtained by mapping
the corresponding scalar polynomial spaces Û2 in the original space. Namely,
they are P1, Q2,2,2, and W2,2, for BDB2, RT2, and Ñ2, respectively.

We can observe that the expected convergence rates for affine meshes and
space configurations are verified. It should also be observed that space enrich-
ment for the mixed formulation has practically no effect on the magnitudes of
the flux, for n > 1. Similarly, the potential magnitude keeps almost the same
after the application of the second enrichment. On the other hand, divergence
accuracy improves systematically, at every enrichment step, as predicted by the
theory.

Figure 1 also illustrates the gain in convergences rates of the mixed formula-
tions in the flux variable (of order 3) when compared with the H1-formulations
using approximations mapped from the respective original potential spaces (of
order 1 for Te, and 2 for He and Pr). Furthermore, since the enrichment proce-
dure also enhances the potential accuracy, the enriched mixed formulations also
give better potential approximations, with higher convergence orders.

The plots in Figure 2 are for L2-error curves for σ and u, in terms of the
number of equations in the static condensed systems to be solved in the mixed
method, with space configurations BDB2+

k , RT+
k , and Ñ+

k , k = 2, 3 and 4,
based on uniform affine tetrahedra, hexahedra, and prisms, respectively. Corre-
spondingly, results for H1-simulations are also shown, using scalar polynomials
in Pk, Qk,k,k, and Wk,k. These plots illustrate that all the methods improve
their performance by increasing the degree of their polynomial spaces, despite
the increasing number of degrees of freedom required for them. The known rates
of convergence for H1 formulations (of order k + 1 for potential and k for flux
variables) are one unit less than the predicted rates for these enriched mixed
formulations for affine meshes (k + 2 and k + 1, respectively). What the plots
in Figure 2 also show is that these comparisons are also favorable for the en-
riched mixed methods when compared as a function of the number of condensed
equations to be solved, especially for hexahedral and prismatic meshes.

For instance, instead of order 2 hold by flux approximations based on affine
hexahedra, only order 1 is reached when this deformed split pattern is used,
the magnitude of the error being almost insensitive to space enrichment. As
expected, the divergence accuracy improves systematically, at every enrichment
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Figure 1: Affine meshes - L2-errors for σ, ∇·σ, and u, versus the mesh parame-
ter h, using the mixed formulation of Darcy’s problem with space configurations
BDM2 (left column), RT2 (midle column), and Ñ2 (right column), based on
affine tetrahedral, hexahedral, and prismatic meshes, respectively, and their en-
riched versions BDBn+

2 , RTn+
2 , and Ñn+

2 . Accordingly, H1-conforming results
are based on polynomials in P1, Q2,2,2, and W2,2.
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Figure 2: Affine meshes - L2-errors for σ (top side) and in u (bottom side),
versus the number of equations in the static condended form, using the mixed
formulation of Darcy’s problem with space configurations BDB2+

k , RT+
k , and

Ñ+
k (continuous lines), for k = 2 (blue) k = 3 (red), and k = 4 (black), based

on affine tetrahedral (left side), hexahedral (midle side), and prismatic meshes
(right side), respectively. Correspondingly, H1-conforming results (dashed lines)
are for scalar polynomials in Pk, Qk,k,k, and Wk,k.

step, but with the reduction of one unit in the convergence rates, with respect to
the affine context. Concerning the error in u, the predicted order 2 is verified for
any space configuration, independently or the enrichment stage. Furthermore,
almost the same error magnitude is kept after the first enrichment.

6.3 Results for non-affine hexahedral meshes
For non-affine hexahedral geometry, we adopt a split pattern, as suggested in [5].
Initially, the unit cube is subdivided into 6 tetrahedra. Then, each tetrahedron
is partitioned into four hexahedra. In total, 24 non-affine hexahedra are formed,
composing the coarse mesh Th0

, as displayed in Figure 3 (left side). Then, on
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refinement level `, the same procedure is applied to all cubes of the uniform
hexahedral meshes with sides 2−`, ` = 1, · · · , 3, to form shape regular non-
affine hexahedral meshes Th`

, showing a constant aspect ratio 3.52586. The
non-affine hexahedral mesh Th1

is shown in Figure 3 (right side).

Figure 3: Illustration of the non-affine hexahedral mesh Th0
at the coarser level

(left side) and Th1
at the next finer scale (right side).

Using the approximation space configurations RT1, RT+
1 , and RT 2+

1 , based
on the family of non-affine hexahedral meshes, the L2-error curves for σ =
−∇u, ∇ · σ, and u are displayed in the top side of Figure 4 in terms of the
mesh parameter h = h` measuring the maximum element diameter. We can
observe the deterioration of convergence rates for the flux and flux divergence,
as predicted by the error analysis of the previous section.

The plots in the bottom side of Figure 4 are considered for these space
configurations in terms of the number of equations to be solved. Having the same
number of degrees of freedom in the static condensed form, these plots confirm
the significant enhancements of the divergence and better potential resolutions
when the RT+

1 , and RT 2+
1 configurations are employed instead of the original

RT1 setting. They also show that their flux and potential error magnitudes are
smaller than the corresponding ones given by the H1 conforming formulation,
even when the comparison is made in terms of the size of condensed systems to
be solved.

For the readers interested in reproducing these simulations, the data corre-
sponding to the errors plotted in Figure 3 are stored in Table 4. Corresponding
results for k = 2 are also shown.

7 Conclusions
New insights into approximation properties of mixed finite element methods
for Darcy’s problems are obtained by analyzing the effect of using multi-linear
mappings to form H(div)-conforming spaces based on non-affine hexahedral or
prismatic meshes. A reduced rate of convergence for approximations of the flux
variable can be caused by the degeneration of the quadrilateral faces of the
elements.
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Figure 4: Non-affine split hexahedral meshes - L2-errors in σ, ∇ · σ, and u,
versus the mesh parameter h (top side), and the number of equations in the
static condended form (bottom side), using the mixed formulation of Darcy’s
problem based on the original RT1 space, and on its enriched versions RT+

1 ,
and RT 2+

1 . The H1-conforming results are for the original scalar polynomial
space Q1,1,1.

It is shown that the accuracy degradation observed on discretizations of the
divergence operator can be attenuated by the inclusion in the flux space of some
properly chosen higher degree bubble functions, i.e., with vanishing normal com-
ponents over the master element boundary, while matching the potential scalar
functions accordingly, without increasing the number of condensed equations
to be solved, which corresponds to the dimension of the face flux functions.
The loss of convergence in the flux variable due to quadrilateral face distortions
cannot be corrected by including higher order internal functions.

The adopted enrichment methodology can be applied to general space con-
figurations, provided some documented conditions hold, to give arbitrary high
order of accuracy for the divergence operator, but without improving the rates
of convergence of the approximate flux variable in L2-norm, keeping the same
rates of the original space framework. For the potential variable of enriched
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schemes, accuracy improves one order only for affine meshes.
The enriched H(div)-conforming approximations have been implemented for

classic space configurations based on tetrahedra, hexahedra and prisms, respec-
tively, confirming predicted orders of convergence for affine and the kind of
non-affine meshes under consideration. Numerical comparison results also show
that the mixed formulation based on these enriched spaces can give more precise
results for flux and potential variables than H1-approximations, both in terms
of mesh size and of the number of condensed equations to be solved. But the
price to pay for extra accuracy in mixed (and also hybrid) methods is higher
computational cost for matrix assembly, as shown by the comparison study in
[22]. However, the effect of combining static condensation and parallelism may
reduce CPU times for the mixed methods, as illustrated by an example presented
in [15].

It should be remarked that if the purpose of applying the space enrichment
procedure is just to restore the equilibrium of accuracy for flux and flux di-
vergence, presumably lost by the presence of non-affine meshes, then the first
space enrichment step is sufficient. However, for applications requiring better
divergence accuracy and/or discretizations with higher local resolutions in mul-
tiscale mixed formulations, as in the simulation of non-linear multiphase flows,
[23], the application of space configurations with increased internal orders may
be convenient.
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Split hexahedral meshes

RT1 RT2

`
pressure flux divergence

`
pressure flux divergence

Error order Error order Error order Error order Error order Error order
1 5.26e-2 2.23e-1 3.05e0 1 1.06e-2 7.22e-2 1.47e0

2 1.29e-2 2.02 8.37e-2 1.41 1.28e0 1.26 2 1.74e-3 2.60 1.61e-2 2.16 4.72e-1 1.64

3 3.25e-3 1.99 3.04e-2 1.46 5.80e-1 1.14 3 2.45e-4 2.82 2.70e-3 2.58 9.33e-2 2.34

4 8.18e-4 1.99 1.29e-2 1.24 3.17e-1 0.87 4 3.14e-5 2.97 5.53e-3 2.29 2.28e-2 2.03

5 2.05e-4 2.00 6.16e-3 1.07 2.35e-1 0.44 5 3.95e-6 2.99 1.27e-4 2.12 8.18e-3 1.48

6 5.13e-5 2.00 3.04e-3 1.02 2.12e-1 0.15

RT+
1 RT+

2

`
pressure flux divergence

`
pressure flux divergence

Error order Error order Error order Error order Error order Error order
1 1.19e-2 1.38e-2 1.47e0 1 2.91e-3 3.24e-2 6.47e-1

2 2.28e-3 2.39 5.76e-2 1.26 4.72e-1 1.64 2 3.73e-4 2.96 9.04e-3 1.84 1.17e-1 2.47

3 3.62e-4 2.66 2.11e-2 1.45 9.33e-2 2.34 3 2.93e-5 3.67 1.73e-3 2.39 1.31e-2 3.16

4 6.10e-5 2.57 8.77e-3 1.27 2.28e-2 2.03 4 2.30e-6 3.67 3.59e-4 2.67 1.82e-3 2.84

5 1.25e-5 2.28 4.13e-3 1.09 8.18e-3 1.48 5 2.29e-7 3.33 8.37e-5 2.10 3.19e-4 2.51

6 2.94e-6 2.09 2.029e-3 1.02 3.65e-3 1.16

RT 2+
1 RT 2+

2

`
pressure flux divergence

`
pressure flux divergence

Error order Error order Error order Error order Error order Error order
1 6.75e-3 1.15e-1 6.47e-1 1 1.38e-3 2.36e-2 3.27e-1

2 1.54e-3 2.13 5.47e-2 1.08 1.17e-1 2.47 2 1.71e-4 3.01 8.31e-3 1.50 4.00e-2 3.03

3 2.75e-4 2.46 2.04e-2 1.42 1.31e-2 3.16 3 1.60e-5 3.41 1.66e-3 2.32 2.82e-3 3.83

4 5.43e-5 2.34 8.42e-3 1.27 1.82e-3 2.84 4 1.66e-6 3.27 3.49e-4 2.25 1.55e-4 4.19

5 1.24e-5 2.13 3.95e-3 1.09 3.19e-4 2.52 5 1.98e-7 3.07 8.17e-5 2.09 1.34e-5 3.53

6 3.03e-6 2.04 1.94e-3 1.03 7.05e-5 2.18

Table 4: L2-errors and orders of convergence for approximations of σ, ∇ · σ,
and u obtained with the mixed formulation of the Darcy’s Problem, using the
original space RT1, and its enriched versions RT+

1 , and RT 2+
1 , based on the

family of split hexahedral meshes at refinement level `.
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