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Diversity Gain Analysis of Distributed CDD

Systems in Non-identical Frequency Selective

Fading
Kyeong Jin Kim, Marco Di Renzo, Hongwu Liu, Philip V. Orlik, and H. Vincent Poor

Abstract—This paper investigates the diversity gain of a dis-
tributed cyclic delay diversity (CDD) scheme for cyclic-prefixed
single carrier systems in non-identical frequency selective fading
channels. Two conditions are used to obtain an equivalent channel
matrix that is free of intersymbol interference. These conditions
allows the system to achieve the maximum diversity order at a
full rate in frequency selective fading channels. A given number
of CDD transmitters is obtained from the set of cooperative
transmitters in the system and is shown to be determined by
the symbol block size and the maximum time dispersion of
the channel. A new expression for the received signal-to-noise
ratio (SNR) is derived by using order statistics. To estimate the
achievable maximum diversity gain provided by the distributed
CDD scheme, we employ asymptotic analysis in the high SNR
regime. From the analytical framework, it is shown that the
maximum diversity is achieved even for non-identical frequency
selective fading channels. Link-level simulations are conducted
to verify the maximum achievable diversity gain.

Index Terms—Distributed single carrier system, cyclic delay
diversity, diversity gain, non-identical frequency selective fading.

I. INTRODUCTION

Several transmit diversity schemes such as distributed max-

imum ratio transmission (MRT) [1] and distributed space-

time-coding (STC) [2], [3] have been proposed. In contrast

to the MRT scheme proposed by [4] and [5], distributed

MRT can achieve the diversity gain for a general number of

single antenna transmitters by increasing the receive signal-

to-noise ratio (SNR) over independent frequency selective

fading channels. However, exact knowledge of channel state

information (CSI) is required at the transmitters, which is a

challenging problem in a distributed communications system.

It is also known that a full rate orthogonal space-time block

code (STBC) is not known for a general number of distributed

transmitters.

As a solution of these problems, we consider cyclic delay

diversity (CDD), which has been widely used in practical

Orthogonal Frequency Division Multiplexing (OFDM)-based
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Joliot Curie, Plateau du Moulon, 91192, Gif-sur-Yvette, France. (e-mail:
marco.direnzo@l2s.centralesupelec.fr).
H. Liu is with Shandong Jiaotong University, Jinan, China.
H. V. Poor is with the Department of Electrical Engineering, Princeton

University, Princeton, NJ, USA.
This work was supported in part by the U.S. National Science Foundation

under Grants CCF-1420575 and ECCS-1647198.

wireless systems such as [6] and [7]. Although CDD requires

lower complexity, in general, forward error correction (FEC)

is also required for OFDM transmissions to convert spatial

diversity into frequency diversity. Also, the conventional com-

munications systems apply CDD between antennas that are

installed at the same transmitter. In contrast to the employment

of the conventional CDD, we investigate the distributed CDD

(dCDD) that applies CDD between a single antenna transmit-

ters with a reduced feedback overhead from the receiver.

Cyclic-prefixed single carrier (CP-SC) transmissions has

been also proposed for several wireless systems [8] con-

sidering more practical issues such as peak-to-average ratio,

power-backing off, and dynamic range of the linear amplifier

[9]. For CP-SC transmissions, several works [10]–[13] have

attempted to use CDD between antennas. Only a recent work

[14] proposes a dCDD.

For frequency selective fading channels, it has been shown

by [15] and [16] that the multipath diversity can be achieved

without utilizing channel equalization [10]. Multiuser diversity

is also exploited to achieve the maximum diversity by using

either the best terminal selection [15] or best relay selection

[16]. A similar transmit antenna selection (TAS) [17] is also

proposed to achieve the diversity gain. However, these exist-

ing works assumes only identical frequency selective fading

channels, and then derives the diversity gain. Although there

are several works [18], [19] that derive the probability density

function (PDF) of the partial sum of the order statistics, they

mainly assume either identical Rayleigh fading or identical

frequency selective fading channels, so that it is not straight-

forward to use them in diversity gain analysis. Thus, to the best

our knowledge, the diversity gain analysis of the dCDD has

never been investigated for non-identical frequency selective

channels.

1) Motivated by the work in [12] and [13], we derive two

conditions that make an equivalent channel matrix inter-

symbol interference (ISI) free, so that dCDD can achieve

the maximum diversity promised by distributed CP-SC

transmissions at a full rate. It also makes it possible to

reduce feedback overhead from the receiver, and removes

the use of FEC comparing with OFDM transmissions

and other CP-SC transmissions schemes [11]. Thus, the

dCDD can reduce the complexity of the transmitters to

achieve the transmit diversity at a full rate.

2) We assume non-identical number of multipaths and

non-identical frequency selective fading channels. Since

dCDD maximizes the sum of the receive SNRs, it is
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necessary to use the order statistics for performance anal-

ysis. Comparing with the analysis [18], [19] that derives

the PDF and cumulative distribution function (CDF) of

the identical random variables, it is necessary to use the

permanent matrix [20]. Although tedious manipulations

are required, we can derive the closed-form expression

for the PDF, and then CDF, which makes us to derive

the outage probability. However, the derived expression is

complex, in general, so that we also make an asymptotic

outage probability analysis in the high SNR region. From

this derivation, we are able to extract effectually the diver-

sity gain achieved by dCDD in non-identical frequency

selective fading channels. Link-level simulation results

verify that the derived maximum diversity gain is correct.

Notation: IN is an N × N identity matrix; 0 denotes an

all zeros matrix of appropriate dimensions; N
(
µ, σ2

)
denotes

the complex Gaussian distribution with the mean µ and the

variance σ2; Cm×n denotes the vector space of all m × n
complex matrices; Fϕ(·) denotes the CDF of the random

variable (RV) ϕ, whereas its PDF is denoted by fϕ(·); The

binomial coefficient is denoted by
(
n
k

)△
= n!

(n−k)!k! .

II. SYSTEM AND CHANNEL MODEL

A block diagram of the proposed cooperative CP-SC sys-

tem is provided in Fig. 1. The CU provides perfect back-

haul connections {bm}Mm=1 to M single antenna transmitters

{TXm}Mm=1. We also assume one single antenna receiver,

R, in the considered system. As a channel, we assume in-

dependent and non-identically distributed (i.n.i.d.) frequency

selective fading channels. They can be composed by different

number of multipath components. A distance dependent path

loss model is used for a large scale fading. Since transmitters

are distributed in the system, different path losses can be

assumed as well.

CU

CP

CP CP

R

CP

Fig. 1. Block diagram of the proposed dCDD-based cooperative single carrier
system.

A. Distributed CDD Operation

Since we assume M > K transmitters in the system, we

need to selectK CDD transmitters that apply CDD processing.

Using known pilot symbols, p ∈ CQ×1, the receiver measures

the receive SNR over the channel hk connecting the kth
transmitter as

γk
△
=
PTαk‖hk‖2

σ2
z

= α̃k‖hk‖
2 (1)

where α̃k
△
=PT αk

σ2
z

with αk being used to model large scale

fading as αk = d−ǫ
k with the path loss exponent ǫ and the

distance dk from the kth CDD transmitter to the receiver. In

addition, PT denotes the transmission power at the transmit-

ters. An additive noise is modeled by nR ∼ N (0, σ2
zIQ).

We also assume that E{p} = 0, E{ppH} = IQ. The symbol

block size will be denoted by Q in the sequel. For a frequency

selective fading channel hk, the CDF and PDF of γk are,

respectively, given by

Fγk
(x) = 1− e

−
x

α̃k

Nk−1∑

l=0

1

l!

( x

α̃k

)l

and

fγk
(x) =

xNk−1

Γ(Nk)(α̃k)Nk
e
−

x
α̃k (2)

where Γ(·) denotes the gamma function and Nk denotes the

number of multipath components of the channel hk .

Now for M SNRs, we arranged them in ascending order

of magnitude in such a way 0 ≤ γ(1) ≤ γ(2) ≤ · · · ≤ γ(M)

with their corresponding indices as XI
△
=[(1), (2), · · · , (M)].

To reduce the feed back overhead, the receiver feeds back

only XI to the CU. Receiving XI , the CU will chooseK ≤ M
transmitters indexed by the last K elements of XI .

To make the equivalent channel matrix free from ISI, we

can find two conditions as follows:

C1 : Np = max(N1, . . . , NM ) (3)

C2 : ∆i = (i − 1)Np (4)

where condition C1 is required to remove ISI for CP-SC

transmission [16] with the CP length Np, whereas condition

C2 is required to form a non-overlapping equivalent channel

vector in converting the multi-input single-output (MISO)

channel into a single-input single-output (SISO) channel [13].

Based on conditions C1 and C2, the number of K will be

determined as follows:

K = 1 +
⌊ Q

Np

⌋

(5)

where ⌊·⌋ denotes the floor function. Since the CU needs to

know Np, the receiver needs to feedback this value to the CU

as well. The receiver can determine this value via a channel

sounding scheme. Having selectedK CDD transmitters, which

are indexed by the lastK elements of XI , the CU forms a table

for CDD delays, X∆
△
={∆1, . . . ,∆K−1,∆K}, which will be

used by K CDD transmitters.

B. Theoretical Background of the Distributed CDD

The kth CDD transmitter receives the transmission symbol

block s = [s1, ..., sQ]
T ∈ CQ×1, and then applies CDD delay

∆k, which is expressed as follows:

s̃k = P
∆k

Q s (6)
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where the permutation matrix, P∆k

Q , is obtained by circularly

shifting down the identity matrix IQ by ∆k.

After removing the CP signal, the received signal from the

K CDD transmitters is given by

r =

K∑

k=1

√

PTαkHkP
∆k

Q s+ zR (7)

where Hk is the right circulant matrix determined by hk. The

main objective of conditions C1 and C2 is to convert (7) into

the following way

r = HCDDs+ zR (8)

where HCDD is an equivalent right circulant channel matrix

comprising frequency fading channels from K CDD trans-

mitters to the receiver. Its first column vector is specified as

follows:

hCDD△
=
[√

PTα(1)(h(1))
T ,01×(Np−N(1)),

√

PTα(2)(h(2))
T ,01×(Np−N(2)), ...,

√

PTα(K)(h(K))
T ,01×(Np−N(K))

]T
∈ C

Q×1. (9)

Thus,HCDD is exactly determined by hCDD. Note that hCDD

shows no ISI from CDD transmissions. To make the form of

hCDD as in (9), P
∆k

Q should be orthogonal and circulant.

For a general right circulant channel matrix, Hcir, when we

apply the QR decomposition (QRD), we have

Hcir = QR and (10)

H∆k

cir

△
=HcirP

∆k

Q = Q∆kR. (11)

That is, the upper triangular matrix obtained from the QRD

of the column permutated circulant matrix is independent of

the column permutation. It has been verified that the receiver

performance is mainly determined by the magnitude of the

first diagonal element of the upper triangular matrix [21], as

follows:

trace
(

(H∆k

cir )
HH∆k

cir

)

= (R∆k(1, 1))2 =
N∑

l=1

|h∆k

cir (l)|
2

= (R(1, 1))2 =
N∑

l=1

|hcir(l)|
2(12)

whereR∆k(1, 1) andR(1, 1) are the first diagonal elements of

matrices R∆k and R, respectively. We can see that when we

use the maximum likelihood detector in the receiver, a different

deployment of the CDD delay does not change the receiver

performance when the CDD delay satisfies conditions C1 and

C2. That is, the CU has freedom in assigning a particular CDD

delay ∆k to a CDD transmitter.

III. PERFORMANCE ANALYSIS IN I.N.I.D. CHANNEL

To investigate the performance of the proposed dCDD, we

need to know the distributions of the receive SNR.

A. Receive SNR at the Receiver

Based on (8), the receive SNR, aggregated by K CDD

transmitters, is given by [16]

SK =

K∑

k=1

α̃(M−K+k)

N(M−K+k)
∑

l=1

|h(M−K+k)(l)|
2

=

K∑

k=1

γ(M−K+k)
△
=

K∑

k=1

βk (13)

where βk
△
=γ(M−K+k) denotes the kth largest SNR. Due to

CDD operation, βk has a different distribution depending on

its index k. For example, βK has the largest SNR; βK−1 has

the second largest SNR, and so on. Thus,

K∑

k=1

βk denotes the

sum of the K largest receive SNRs.

For β1 < β2 < . . . < βK , the joint PDF of β1, β2, . . . , βK

can be written as [20]:

fβ1,β2,...,βK
(x1, x2, . . . , xK) =

1

(M −K)!
PerAK (14)

where

AK
△
=













F1(x1) f1(x1) . . . f1(xK)

F2(x1) f2(x1) . . . f2(xK)

...
... . . .

...

FM (x1) fM (x1) . . . fM (xK)

C −K
︸ ︷︷ ︸

1
︸︷︷︸

1
︸︷︷︸

1
︸︷︷︸













(15)

with Fj(·) and fj(·) are respectively denoting the CDF and

PDF of γj , the receive SNR before applying dCDD opera-

tion. Their expressions are provided in (2). Also, we define









a11 a12
...

...

aC1 aC2

i
︸︷︷︸

j
︸︷︷︸










denoting i copies of the first column vector

[a11, a21, . . . , aC1]
T and j copies of the second column vector

[a12, a22, . . . , aC2]
T , and so on. The permanent of the square

matrixA, denoted by PerA, is defined similar to the definition

of the matrix determinant except that all signs are taken

to be positive [20]. For example, for a square matrix A,

given by A =






a b

c d

1
︸︷︷︸

1
︸︷︷︸




, we have PerA = ad + bc.

With some manipulations, a desired compact expression for

PerÃK
△
= PerAK

(M−K)! can be given by (16) at the next page. For

ease of analysis and expression, we assume Nj = Nh ∀j,

and introduce the notation XM
△
={1, . . . ,M} and Xp

△
=XM −

{i1, . . . , iM−K}. Also, the list of all possible permutations

of the elements of Xp is denoted by Pp
△
=Perms(Xp), where q

denotes the qth permutation of Pp. In addition, kl,q denotes the
lth element of permutation q. Having applied (16), the moment



4

PerÃK =
∑

i1,i2,...,iM−K
1≤i1<i2<...<iM−K≤M

∑

q∈Pp

M−K∏

j=1

Fij (x1)fk1,q (x1)

K∏

l=2

fkl,q
(xl)

=
∑

i1,i2,...,iM−K
1≤i1<i2<...<iM−K≤M

∑

q∈Pp

M−K∏

j=1

(

1− e
−

x1
α̃ij

Nij
−1

∑

l=0

(x1)
lα̃−l

ij

Γ(l + 1)

) (x1)
Nk1,q

−1e
−

x1
α̃k1,q

Γ(Nk1,q )(α̃k1,q )
Nk1,q

K∏

l=2

(xl)
Nkl,q

−1e
−

xl
αkl,q

Γ(Nkl,q
)(α̃kl,q

)Nkl,q

.(16)

generating function (MGF) of the RV SK can be evaluated as

follows:

ΦSK (s) =

∫ ∞

0

∫ xK

0

. . .

∫ x3

0

∫ x2

0

e−s(x1+...+xK)

PerÃKdx1dx2 . . . dxK−1dxK . (17)

Thus, the closed-form requires K-fold nested integrals. One

example for two CDD transmitters is provided in the following

theorem.

Theorem 1: The CDF of the receive SNR achievable by

two CDD transmitters in the i.n.i.d. frequency selective fading

channel is given by (18) at the next page. In (18), we have

defined D1
△
= q1

α̃i1
+ . . . + qM−K

α̃iM−K

+ 1
α̃k1,q

, m̃1
△
=q̃1 + . . . +

q̃M−K + Nh, q̃l
△
=

Nh−1∑

tl=0

tlql,tl+1, and D2
△
= 1

α̃k2,q
. In addition,

γl(·, ·) denotes the lower incomplete gamma function.

Proof: See [14].

IV. ASYMPTOTIC DIVERSITY GAIN ANALYSIS

Since the outage probability is a special case of the CDF,

we can readily derive its closed-form expression. For a given

outage threshold, γth, the outage probability is given by

Oout(γth) = FSK (γth). Although we can derive the closed-

form expression for the outage probability, it is not easy to

extract the diversity gain. Thus, we conduct an asymptotic

outage probability analysis in the high SNR region.

In the high SNR region, we can see that Oout(γth)
is the sum of the different combinations of (x1, ..., xK)
without changing the diversity gain. Thus, we

mainly focus on the major diagonal of Ak, namely

∆d
△
=
∏M−K

j=1 Fj(x1)fM−K+j(x1)
∏K

l=2 fM−K+l(xl). Based

on this knowledge, we can derive the diversity gain of dCDD

in the non-identical frequency selective fading channel.

Theorem 2: The achievable diversity gain by the proposed

dCDD in the high SNR region and in non-identical frequency

selective fading channel is given by Gd =
∑M

j=1 Nj .

Proof: See Appendix A.

Theorem 2 indicates that the number of transmitters in the

system and the number of multipath element of each channel

are two key parameters that determine the maximum diversity

gain of the CP-SC system with dCDD. We can see that the

number of multipath element of a channel give conflicting ef-

fects on the maximum diversity gain. As the multipath element

increases, a larger multipath diversity gain can be obtained.

However, the number of CDD transmitters is decreased, so

that the transmit diversity gain is decreased.

V. SIMULATION RESULTS

In the following link-level simulations, we employ Quadra-

ture Phase Shift Keying (QPSK) to the data symbols. The

curves obtained by the link-level simulations are denoted by

Ex. Analytically performance curves denoted by An. Asymp-

totically derived curves are denoted by As. The transmission

block size for CP-SC transmission is Q = 64. The transmis-

sion power is assumed to be PT = 1 for all transmitters. In

addition, a SNR threshold causing outage is fixed at 1 dB. For

Figs. 2 and 3, we assume αk = {0.12, 0.13, 0.14, 0.15} with

the same Nh = Nj , ∀j.
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Fig. 2. Outage probability for various cases.

Fig. 2 shows the correctness of the derived outage proba-

bility comparing with the exact outage probability. This figure

also shows that as the more CDD transmitters are involved in

dCDD operation, K , at the same number of transmitters, M ,

a lower outage probability is obtained. We can also see that

for the same number of CDD transmitters, a more number of

transmitters results in a lower outage probability.

Fig. 3 shows the diversity gain analysis of the CP-SC

system based on the asymptotic outage probability. Com-

paring with the asymptotic analysis, we can see the di-

versity gain Gd, which was verified by Theorem 2. For

{(M,K,Nh)|(3, 1, 1), (3, 2, 1), (3, 2, 2)}, asymptotic diversity

gain can be measured as Gd = {2.8065, 2.8864, 5.8574}, so
that Gd = MNh can be verified.

In Fig. 4, we use a different values of αk as

αk = {0.2617, 0.3728, 0.2574, 0.2450} and non-identical

number of multipath elements as Nj = {2, 3, 1, 2}. For

{(M,K)|(2, 1), (2, 2), (3, 1)}, we can measure respectively

Gd in the high SNR as: Gd = {4.65, 4.11, 5.3857}. Thus,
we can verify that Gd =

∑M
j=1 Nj . From Figs. 3 and 4, the
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FSK=2(x) =
∑

i1,i2,...,iM−2
1≤i1<i2<...<iM−2≤M

∑

q∈Pp

1∑

q1=0

. . .

1∑

qM−2=0

(
1

q1

)

. . .

(
1

qM−2

)

(−1)q1+...+qM−2

∑

q1,1,...,q1,Nh
q1,1+...+q1,Nh

=q1

. . .
∑

qM−2,1,...,qM−2,Nh
qM−2,1+...+qM−2,Nh

=qM−2

M−K∏

j=1

(

qj !

qj,1! . . . qj,Nh
!

)

M−2∏

j=1

Nh−1∏

tj=0

( 1

tj!

)qj,tj+1
M−2∏

j=1

( 1

α̃i,j

)q̃j( 1

α̃k1,q

)Nh Γ(m̃1)

Γ(Nh)

( 1

α̃k2,q

)Nh

[ m̃1∑

f=1

(−1)m̃1−f (D2 −D1)
−(m̃1+Nh−f)

(
m̃1 +Nh − f − 1

m̃1 − f

)
γl(f,D1x)

Γ(f)(D1)f
+

Nh∑

f=1

(−1)Nh−f (D1 −D2)
−(m̃1+Nh−f)

(
m̃1 +Nh − f − 1

Nh − f

)
γl(f,D2x)

Γ(f)(D2)f
−

m̃1−1∑

b=0

(2)−b−NhΓ(b +Nh)

Γ(b + 1)Γ(Nh)

[ m̃1−b∑

f=1

(−1)m̃1−b−f (D2/2−D1/2)
−(m̃1+Nh−f)

(
m̃1 +Nh − f − 1

m̃1 − b− f

)
γl(f,D1x)

Γ(f)(D1)f
+

Nh+b∑

f=1

(−1)Nh+b−f (D1/2−D2/2)
−(m̃1+Nh−f)

(
m̃1 +Nh − f − 1

Nh + b− f

)
γl(f, (D1/2 +D2/2)x)

Γ(f)((D1/2 +D2/2))f

]]

. (18)
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Fig. 3. Diversity gain analysis for various cases.
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Fig. 4. Diversity gain analysis for various cases.

large scale fading does not influence on the diversity gain of

the proposed system. If we compare the diversity gain with

those of [15] and [16], dCDD provides the same maximum

diversity gain. However, since dCDD can use more than one

transmitters for CDD operation, a larger coding gain can be

achieved. This can be easily observable from Figs. 3 and 4.

That is, dCCC can achieve the maximum diversity gain and

the coding gain simultaneously in the non-identical frequency

selective fading channels.

VI. CONCLUSIONS

In this paper, we have derived the diversity gain of dCDD

in the non-identical frequency selective fading channels. It has

been shown that dCDD makes it possible for the cooperative

CP-SC system to achieve the maximum diversity gain and

coding gain. This is possible since dCDD converts the MISO

channel into an ISI-free SISO channel over the frequency

selective fading channel. Thus, a lower outage probability

can be achieved over the cooperative diversity schemes that

achieve only the maximum diversity gain. The diversity gain

has been derived and verified via link level simulations.

APPENDIX A: DERIVATION OF THEOREM 2

In the high SNR region, we approximate Fj(x1) as [15]

Fj(x1)
x1 → 0

≈

(x1/α̃j)
Nj

(Nj + 1)
. (A.1)

Thus, ∆d is approximated as

∆d ≈
M−K∏

l=1

( 1

Nl + 1

)( 1

α̃l

)Nl

x
∑M−K

j=1 Nj

1

e
−

x1
α̃NM−K+1 xM−K+1

1

Γ(M −K + 1)(α̃M−K+1)NM−K+1

K∏

l=2

fM−K+l(xl). (A.2)
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Its first approximate contribution to the MGF is computed as

ΦSK (s) ∝

∫ ∞

0

fM (xK)e−sxKdxK . . .

M−K∏

l=1

( 1

Nl + 1

)

M−K∏

l=1

( 1

α̃l

)Nl

∏K
l=2 fM−K+l(xl)

Γ(M −K + 1)(α̃M−K+1)NM−K+1

∫ x2

0

e−x1(s+1/α̃M−K+1)x
∑M−K+1

j=1 Nj−1

1 dx1

∝
∼

∫ ∞

0

fM (xK)e−sxKdxK . . .

M−K∏

l=1

( 1

Nl + 1

)

M−K+1∏

l=1

( 1

α̃l

)Nl

∏K
l=2 fM−K+l(xl)

Γ(M −K + 1)(
∑M−K+1

j=1 Nj + 1)
. (A.3)

Keep continuing the computation of (A.3), we can have the

following

ΦSK (s) ∝∼

M−K∏

l=1

( 1

Nl + 1

) K∏

l=1

( 1

Γ(M −K + l)

)

K−1∏

l=1

( 1
∑M−K+l

j=1 Nj + 1

) M∏

l=1

( 1

α̃l

)Nl

Γ
( M∑

j=1

Nj

)

(

s+
1

α̃M

)−
∑

M
j=1 Nj

. (A.4)

Based on (A.4), the CDF can be derived as follows:

FSK (x) ∝∼

M−K∏

l=1

( 1

Nl + 1

) K∏

l=1

( 1

Γ(M −K + l)

)

K−1∏

l=1

( 1
∑M−K+l

j=1 Nj + 1

) M∏

l=1

( 1

α̃l

)Nl

( 1

α̃M

)−
∑M

j=1 Nj

γl

( M∑

j=1

Nj ,
x

α̃M

)

, (A.5)

which is further approximated as

FSK (x) ∝∼

M−K∏

l=1

( 1

Nl + 1

) K∏

l=1

( 1

Γ(M −K + l)

)

K∏

l=1

( 1
∑M−K+l

j=1 Nj + 1

) M∏

l=1

( 1

α̃l

)Nl

x
∑

M
l=1 Nl . (A.6)

Thus, at a given value of x = rth, (A.6) is evaluated as follows:

FSK (rth) ∝∼

M−K∏

l=1

( 1

Nl + 1

) K∏

l=1

( 1

Γ(M −K + l)

)

K∏

l=1

( 1
∑M−K+l

j=1 Nj + 1

) K∏

l=1

( 1

α̃l

)Nl

r
∑M

l=1 Nl

th . (A.7)

Converting FSK (rth) in the log− log scale, we can have

log(FSK (rth)) ∝∼ C1 −
M∑

l=1

Nl log
(PT

σ2
z

)

(A.8)

where C1 = −
∑M−K

l=1 log((Nj + 1)) −
∑K

l=1 log(Γ(NM−K+l)) −
∑K

l=1 log(
∑M−K+l

j=1 Nj + 1) −
∑M

j=1 Nj log(αk) + log(
∑M

j=1 Njγth). Thus, we can extract

diversity gain Gd.
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