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Abstract—We present a developmental framework based on a to automatized high-level parameters search such as Bayesian
long-term memory and reasoning mechanisms (Vision Similarity Optimization [3], especially suited where the evaluation of the
and Bayesian Optimisation). This architecture allows a robot to algorithm, treated as a blackbox function, is very expensive

optimize autonomously hyper-parameters that need to be tuned - L . .
from any action and/or vision module, treated as a black-box. and noisy (which is the case for real world robotic grasping

The learning can take advantage of past experiences (stored@pplication). These automated con guration techniques are
in the episodic and procedural memories) in order to warm- however commonly used before the deployment of the solution
start the exploration using a set of hyper-parameters previously on a system, or launched manually when needed, separated
optimized from objects similar to the new unknown one (stored Jfrom the autonomous "life circle'ife. of ine) of the robotics

in a semantic memory). As example, the system has been use . L .

to optimized 9 continuous hyper-parameters of a professional platform from mstange. Hence_, the optimizations are starting
software (Kamido) both in simulation and with a real robot from scratch each time (this is calledcald-star) without
(industrial robotic arm Fanuc) with a total of 13 different objects.  taking advantage of the previous experience of the system

The robot is able to nd a good object-speci ¢ optimization in  (warm-star) [4], as opposed to developmental framework that
68 (simulation) or 40 (real) trials. In simulation, we demonstrate mights bene t from transfer learning

the benet of the transfer learning based on visual similarity, o tributi ist of a devel tal it
as opposed to an amnesic learningi.¢. learning from scratch ur contribution consist or a developmental cognitive ar-

all the time). Moreover, with the real robot, we show that the Chitecture (composed of a long term memory and reasoning
method consistently outperforms the manual optimization from modules) allowing a robot to optimize by experience the
an expert with less than 2 hours of training time to achieve more parameters of a manipulation and/or vision algorithm (treated
than 88% of success. as black-box) where ne-tuning according to objects is needed.
Index Terms—developmental robotics, long-term memory, The Iearning procedure ef ciency is increased by taking ad-
learning from experience, Bayesian Optimisation, transfer learn- vantage of previous experience®(past optimization of sim-
ing, automatic hyper-parameters con guration ilar objects). The framework will be tested in both simulation

and with real robot.
I. INTRODUCTION

Many algorithms and frameworks in the eld of robotics Il. RELATED WORK

require optimal parameter settings to yield strong performanceBayesian Optimization (BO) [5], [6] has been used in
(e.g.Deep Neural Networks [1], Reinforcement Learning [2]}the robotic eld, especially for automatic gait optimization
whether they are used to move from one place to another(erg.[7]-[9]). Among others, Cullyet al. developed a walking
to grasp objects. These parameters can be manually optimirzalot that can quickly adapt its gait after been damaged using
by a human expert, but this task is tedious and error-proran intelligent trial and error algorithm [10]. The robot is
Moreover, this solution is not viable in practice for situationtaking advantage of previous simulated experiences where legs
where the hyper-parameters have to be de ned frequently, suglre damaged, with the best walking strategies stored in a
as for each subset or tasé.§.for each object to be grasped).6-dimensional behavioural space (discretized at ve values
To overcome these challenges, techniques have been develdpedeach dimension, representing the portion of time each
leg is in contact with the ground). For our application, the
This work was in part supported by the EU FEDER funding through thgehavioral space will have to represent the object similarity to
FUI PIKAFLEX project and in part by the French National Research Agency, ,. . .
Gptimize the search. However, such behavioural space cannot

I'’Agence Nationale de Recherche (ANR), through the ARES labcom proje! o= i ’
under grant ANR 16-LCV2-0012-01. be objectively and numerically obtained because the concept of
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Fig. 1. Architecture of the cognitive developmental framework, based on Long-Term Memory (with episodic, procedural and semantic memories) and
Reasoning Modules (Bayesian Optimisation and Visual Similarity) allowing a robot to learn how to grasp objects. This learning consists of guiding an ef cient
hyper-parameters optimization of black-box algorithm controlling the robot. The blue arrows represents the data ows during a learning phase without transfer
learning {.e. without taking advantage of the Long-Term memory, just storing the experiences). The red arrows shows the additional queries and exchanges
of information during a learning phase with transfer learning, based on the visual similarity between objects the robot knows how to grasp, and a new one.

similarity is not easily interpretable into discrete dimensionsiith a procedural memory [17] (where skills are stored) of
Regarding robot grasping tasks, the recent work of Noguejainting actions. A framework integrating declarative episodic
et al. uses BO allowing a humanoid robot iCub to not onlyand procedural memory systems for combining experiential
learn how to perform grasping, but also doing it safdlg.( knowledge with skillful know-how has also been proposed in
not sensitive to small errors during grasp execution) [11][L8], based on joint perceptuo-motor representations. However,
However, this method only concerns single object graspitige procedural memory consist in a simple repository of pre-
(i.e.isolated objects) where they can be grasped in a collisiote ned elementary actions (reach, push, grasp, locomote and
free environment from every direction, which is not the caseait) instead of growing exible and adaptable skills.

for our context.

Transfer Learning is commonly used to reduce the time
needed for a real robot to acquire new skills, usually involvingj: Architecture Overview

reinforcement learning domain (see Tayler al. for a re-  The architecture of the cognitive system (see Fig. 1) relies
view [12]). In particular, the most recent work is from Breyepn an Long-Term Memory that stores information in 3 differ-
et al. with a sim-to-real transfer based reinforcement learnirght syb-memories (as described by Tulving [19]): 1) personally
for a grasping robot [13] which also has the restriction thakperiences events, that can be localized precisely in time,
the objects needs to be isolated. The idea of transfer learnjghe episodic memory2) motor skills or action strategies
has also been applied for Bayesian Optimisation techniqu@$ithe procedural memonand 3) facts and knowledge about
Feureret. al. [14] used meta-learning consisting of speedingoncepts and objects in tisemantic memoryThe information

up the BO by starting from promising optimisation results thagored in such memories is built and accessed by reasoning
performed well on similar datasets. We are following here thgodules (a Bayesian Optimisation, see Sec.llI-B, and a Visual
same strategies but applied on real robotics using the S|m|largyn,|amy component, see Sec.lll-C). This allows the robot
between objects. to take advantage of the growing knowledge acquires from
Among the work onLong-Term Memory for robots (see experiences. Indeed, We consider as a single experience the
review from Woodet al. [15]), some studies were using theperformance score given by the robake(a percentage of
memory to improve the learning. Recently, a lifelong autobiqyccessful grasps) using a specic set of hyper-parameters
graphical memory has been proposed for the humanoid roleht was chosen by the Bayesian Optimisation module to be
iCub [16] allowing reasoning modules to stores and colleg;(pmred_ Theepisodic memorys thus composed by tuples
multi-modal data. Initally focusing on the declarative (episodigith the label of the object, the set of hyper-parameters
and semantic) memory, the framework has been extendeghd and the obtained performance. The best set of hyper-

Ill. METHODOLOGY
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Fig. 2. Main architecture of the Visual Similarity module. A 3D CAD model is rst sampled randomly and normalized into set of(points), then it is
fed into a deep neural network based on PointNet, which learns a global geometry shape by aggregating results of all points into a 1024 feature vector.

parameters at the end of a rune( an full session of an run will provide a single optimized set of parameters and can
Bayesian Optimisation) are stored in thecedural memory be decomposed in 3 main parts:
along their performance and the corresponding object. Each initial design (init _design”): select points independently
set represent a strategy for analysing the scene and grasping to draw a rst estimation of the objective function.
the object that has been de ned by and is thus adapted to the Bayesian search mechanisiin(l _eqi”), balancing ex-
robot used. Thesemantic memorjocuses here on the visual ploitation and exploration, where the next point is ex-
component where the 3D points clouds of objects are stored tracted from the acquisition function (constructed from
with their names by the Visual Similarity module. This module  the posterior distribution over the objective function) with
is also able to provide the more similar objects known by the the Expected Quantile Improvement (EQI) criteria from
robot against another one. The Bayesian Optimisation module Pichneyet al. [23]. It is an extension of the Expected
queries and push data from and to the episodic and procedural Improvement (El) criteria for heterogeneously noisy func-
memory of the robot. Indeed, the transfer learning will be tions, where the improvement is measured in the model
employed for manipulation tasks on objectsg( grasping) rather than on the noisy data.
where similar domains for the transfer implies similar objects  nal evaluation ( nal _eval’), where the best predicted
to be manipulated. The combination of both these reasoning set of hyperparameters (prediction of the surrogate, which
modules gives to the robot the capability of Transfer Learning: re ects the mean and is less affected by the noise) is
when confronted to a new object, the robot will rst use the used several times in order to provide a distribution of
Visual Similarity component to extract the labels of known  the optimization results.
objects with similar shape. It is then able to access the sets oft has to be noted that the BO is dealing withhyper-
optimized hyper-parameters for these objects in order to forfggrameterp,; p,; ::;pn 2 [0 : 1], which are transformed using
the Bayesian Optimisation module to explore such strategie boundaries of the hyper-parameters before sending them
during the initial design. to the robot. The BO module then launches the robot in order
B. Bayesian Optimisation module to achieve a taske(g.try to grasp X times an object) which
For the BO module, we are using the R package Provides, inreturn, a performance scere [0 : 100](i.e. the
rMBO! [20] using Gaussian Processes (GP), also known Bgrcentage of successful grasps among K attempts), where
the Kriging model [21] as surrogate model. It is the mod§ the iteration number.
often used surrogate model to estimate both the tness (used visual Similarity module

to exploit) and the uncertainty (used to explore) [22]. A BO L . . o
ploit) y ( plore) [22] The Visual Similarity module (see Fig. 2) is retrieving the

Lhitps://github.com/berndbischl/mirMBO most similar objects from semantic memoryg. a retrieval
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and classi cation system learned from a reference databade transfer learning, the number of total points during the
where each reference's parameters has been optimized.”"ifit_design” will be xed.
train such semantic memory, we apply a deep learning neural IV. EXPERIMENTS

network, such as PointNet [24] on 3D model. PointNet is aTh task s t 15 i f h luttered
deep Learning method for 3D Classi cation and Segmentation, € taskis to grasp Imes from an homogeneous cluttere
Ik composed of the same object instance (simulated or

designed to learn point clouds geometrical shape in 3D. ¥

takes the coordinates bf points as input, that are transformec{fal' see Fig. 3). We are using a professional software called

with an af ne transformation matrix by a mini-network called amido’ from the company Sileane as a black-box controlling

T-Net. Then, each point is learned by convolutional kern& parallel-jaw gripper robot that need to get parametrized for

(size of 1), and nally aggregated by symmetric operation%aCh object to manipulate. We will confront the framework

(i.e. max-pooling), into a global feature of dimension 102 with the_optimization of 9 conti_nuous hyper-parameters, used
followed that, three fully connected layers are stacked onzgéf Kamido to 1) analyse the images from the scene and 2)
learn the object classes. e ne a proper grasping target.

To learn the semantic memory, our reference 3D CAD mo _For the experiment in simulation, we authorize a nite_
els are represented rst with point clouds. Then the last Iaygl’wlget (to be able to compare each run with the same leaming
in PointNet is modi ed into our reference database (chan S
number of classes), and we further ne-tune the PointNet
freezing earlier layers ofonvg based on pre-trained model
from ModelNet40 [25], which turns out a satisfactory accura
and ef ciency.

nditions) of 80 iterations for the BO process, with a decom-
sition in 18/50/12 iterations for the 3 steps (9 parameters).
he init_design points are selecting using a Maximin Latin
ypercube function [27] to maximize the minimum distance
etween points in order to cover space as much as possible
To retrieve the most similar models from a new given 3 jnitially fprcing the e_xploratipn). The .GP‘S kernel i_s a Matern
model, we rst sample the new object into point clouds$ ( 2 classically us_ed n machmellearmng (a; explained in [28],
points of (x;y;z)), then we extract its global feature Withp85)' The EQI criterion Is set W'th a quantile levek 0:7. .It

1024 dimensions, and nally we calculate its pair of distanc.réaS been experimentally obtained, and allows the algorithm to

between each reference model, with the most similar refereﬁe%.rease the optimization at the |l _eqi step after reaching

. . . a limit during the initial design step, as shown in Fig. 4,
corresponding to the minimal distance. when considering 5 different objects and optimized multiple

D. Memory times (between 3 to 12 runs). To optimize the in Il criterion,

The memories are stored in a Postgre3@atabase sim- We are using a Covariance Matrix Adapting Evolutionary
ilarly to other implementation of long-term memory sysStrategy (CMA-ES) [29], [30] from the packagenae$. It is
tem [16], [26]. The episodic memory stores for each iteratich Stochastic derivative-free numerical optimization algorithm
i of each runr the label of the Object, the set of hyper- for dif cult (non-convex, ill-conditioned, multi-modal, rugged,
parametersf py(i); p2(i); :::;pn (i)g tested and the scors; Noisy) optimization problems in continuous search spaces.
of the performance. The procedural memory is only com-
posed by the best set of hyper-parameters for eachryun
fPir; Por it Prr O, @long the object name learned in the run.

The semantic memory contains the visual information (stored
as points clouds) about the objects in order to recognize them.

E. Transfer Learning

The transfer learning process is implementing a human-
like strategy, as proposed by Feuret: al. [14] and called
meta-learning, which consists of warm-starting the BO by
recovering previously optimized set of hyper-parameters for
similar tasks ite. similar datasets for [14]) and try them
before the bayesian search mechanism. While similarity was
de ned by the human in their work, we will use our Visual
Similarity module to provide the most similar known object
(compared to a new one) which allows the robot to query it&. 3. Reduced CAD models of the objects used in simulation (top) and
procedural memory for such object, and X different sets Jictures of the objects used in experiments with a real robot (bottom).
optimized hyper-parameters (obtained from X different runs) V. RESULTS
are transmitted to the BO module. They will be tested & From simulated Robot
the end of the the "initdesign”, where the other previous The simulator is based on the real-time physics pyBullet.
iterations are still proposed by the maximimLHS functionObjects are loaded in the environment from their CAD model,

It has to be noted that in order to estimate the effect of
Shttp://www.sileane.com/en/solution/gamme-kamido
2http://www.postgresgl.org/ “4https://cran.r-project.org/package=cmaes
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on which we apply a volumetric hierarchical approximate Fig. 5 provides a detailed look at the results, by 1) focusing
convex decomposition [31] in order to reduce the complexitgn thein Il _eqi process and on the nal evaluations, and 2)
of the collisions. by splitting the results among the different object. In Fig. 5(a)

Simulation results will be shown using curves and boxplotsie show the consistent increasing of performance during the
For each run we calculate the third quartile (Q3) of the alread iterations of the BAn Il _eqi part. The object D is the
explored points at each iteration and compute their maximumardest to optimize and need the full 50 iterations to reach a
up to now for each run (instead of the maximum directlpnaximum, where for the other objects the method could nd
because the evaluation is very noisy), before eventuatipe in roughly 20 iterations only. Fig. 5(b) shows the nal
calculating the mean among the repetitionise.(same results of the obtained optimized sets of parameters for each
objects or With/Without transfer learning depending on thein, grouped by objects, and completed by numerical results
gures). The curves corresponds to a smoothing among tfiem Table II. Object B is more dif cult than the others but still
obtained points, using the non-parametric LOcally weighteathieve a decent optimization with a median score of 66.67%
RegrESSioni(e. "loess”) method [32]. We also reinitialized (all runs combined) and 73.34% (best run). The optimization
at the beginning of each new sted(initial design, Bayesian of the objects A, C1, C2 and D are better, with median score
optimisation using EQI criteria, nal evaluation) to haveof respectively 73.33%, 80%, 93.33% and 86.67% (all runs)
independent pointse(g. nal_eval curves are not in uence and 83.33%, 86.67%, 93.33% and 90% (best run).
by the previous step).The boxplot are representing the mear2) Experiment 2, with Transfer Learningtn these ex-
of all the nal performances of the optimized parameters fqreriments, we demonstrate the effectiveness of the Visual
each run, grouped by their corresponding object. Similarity component allowing the robot to take advantage

of its acquired procedural memory to optimize faster and
better with a Transfer Learning strategy when confronted to
new objects. We de ne the number of con guration coming
from such method to 3, with the parameter sets proposed
by the maximinLHS method reduced to 15 in order to keep
an ’init_design” phase with the same number of explored
strategies.

We exemplify the concept of visual similarity and transfer
learning on object D: as all other objects, the simulated
model has been obtained from the volumetric hierarchical
approximate convex decomposition of the original CAD model
in order to reduce the complexity of collisions. For the trans-
fer learning, we use the optimized sets of hyper-parameters
obtained from experiments with the unmodied version of
the object, called D', in order to shows the effect of transfer
learning when using experience from very similar object. The
objects A, B and C1 will be also optimized using the proce-
dural memory of previously learned objects that are the most
similar to them, respectively C2, C2 and E (corresponding

Fig. 4. Mean of the max(Q3) of the % of success for all objects and ru§§0res are shown in Table I). It has to be noted that whereas
combined (without transfer learning), and for each BO steps, with EQ¥s  the pairs D/D' and C1/C2 are highly similar, the couples A/C2
0:7 and B/E are more loosely related.

1) Experiment 1, without Transfer LearningWe show Fig. 6 shows the performance during the BO iteration where
here how well the robot can develop its procedural menthe runs are grouped between cold-stag. ithout transfer
ory to manipulate objects by optimizing its grasping hypetearning, object A, B, C and D) and with the transfer learning
parameters without using any prior informatidre(a "cold- based on similarityife. A_TL_C2, B TL_E, CL TL_C2 and
start”, without transfer learning) We have tested 5 differem_TL_D"). At the beginning of the "in |_eqi” part, the robot
objects in simulation: A, B, C1, C2.€.very similar to C1) and is performing better with transfer learning, and is reaching
D (see Fig. 3). We have several repetitions for each objecitgher optima. These results are con rmed in Fig. 7 where the
in order to check the robustness of the system, respectivelyréns are grouped among their respective objects (including the
6, 12, 3 and 12. differentiation between cold-start and with transfer learning, in

Fig. 4 shows an overview of the BO performance during thgastel). The optimization is consistently faster to converge and
iterations, split among the 3 partse( init_design inll _eqi, with a higher optima when using transfer learning compared
nal _eval), with objects and runs without transfer learningo without: the robot explores in a more ef cient manner.
combined. It demonstrates that the robot bene t from the BO As shown in Table Il the optimization is better overall
inll _eqi part with an increase of the performance thanks {ae. all runs for each object grouped together) with transfer
the smart exploration and exploitation trade-off of the methokkarning as opposed to without for every tested object. This
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(a) Mean among the runs for each object of the Max(Q3) of the % (b) Boxplot showing the %of success of the optimized parameters,
of success, when considering thell _eqi step. during the nal _eval step.
Fig. 5. Detailed results of the cold-start experiences from simulation, with an overview of the different performances for each object. Best viewed in colors.

TABLE |
MOST SIMILAR OBJECT KNOWN TO THE ROBOT COMPARED TO A
REQUESTED OBJECTWITH THE CORRESPONDING SIMILARITY

[ Object Requested Most Similar Object | Similarity Score
A Cc2 16.35
B E 12.09
C1 C2 11.63
TABLE I
OPTIMIZATION RESULTS FROMSIMULATION WITH TRANSFERLEARNING
Ref. Nb Runs | % success (all run, | % success (best run
mean sd, median) | mean sd, median)
A 6 65.47 27.3, 73.33 78.89 11.31,83.33
A_TL_C2 6 76.11 10.19, 76.67 | 82.78 9.93 83.33
B 6 68.01 12.89, 66.67 | 72.78 14.34, 73.34
B_TL_E 6 68.11 12.17 66.67 | 73.06 13.52, 76.67
C1 12 78.95 10.87, 80 83.89 7.63 86.67
C1TL_C2 6 81.30 11.04 80 82.5 11.82,88.33
D 12 86.92 9.45, 86.67 91.11 8.21, 90
D_TL_D' 6 87.33 7.44 86.67 90.56 7:76, 90
[ Cc2 [ 3 [ 91.76 6.74,9333 [ 95 4.14,93.33 |

Fig. 6. Comparison With/Without Transfer Learning: Mean of the max(Q
of the % of success for all objects & runs combined, and for each BO ste
Best viewed in colors.

. From real Robot

In this experiment, we will compare the results of the set
of hyperparameters optimized from the Bayesian algorithm
to the one manually de ned by an expert after a day of
tuning, without any transfer learning capabilities. We will use
4 different items (see Fig. 3).

benet is conrmed even if we consider only the best run We are using a 6-DOF industrial robotic arm FANUC M-

per objects: ,When conditions are equ.als (6 runs for the Obj%ﬁfiA/lZLf’ with parallel gripper. In order to keep the training
A and B, with/without transfer learning) the best run frony,o rejatively shorti(e. less than 2 hours), we are reducing
transfer learning achieves a better performance than the b[ﬂét BO to a total of 45 iterations (20, 20 and 5 iterations
run from without transfer learning. On the other hand, W'tnsspectively for design, Bayesian loop and nal evaluation).

tran.sfer 'e.aff“”g’ the best optimized set of hyper—p.arametqgole Il shows that our optimization method outperforms the
achieve similar performance than the corresponding couyty

terpart without transfer learning, despite having twice less

independent runs. Shttp://www.fanuc.eu/fr/en/robots/robot- lter-page/m-20-series/m-20ia-12l
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(a) Transfer Learning: Mean among the runs for each object of the(b) Transfer Learning: Boxplot showing the %of success of the
Max(Q3) of the % of success, during thell _eqi step. optimized parameters, during theal _eval step.

Fig. 7. Detailed results of the comparison between cold-start and warm4istawithout and with transfer learning) experiences from simulation, with an
overview of the different performances for each object and learning. Best viewed in colors.

82% of successful grasp. Moreover, item 2 is a mix of differemixploitation budget (20 iterations instead of 50) to keep the
but similar objects put together in an heterogeneous bulk, apptimization process below 2 hours.

the robot is showing robustness, by still being able to learn aln this work, we have implemented a transfer learning where
common strategy to grasp them all. a similar experiencei.e. grasping in simulation) of an object
O was used for the learning of a similar object O', with the

TABLE Il " : .
same conditions. Another type of transfer learning might be

OPTIMIZATION FROM AN EXPERT VS ALGORITHM

implemented in a future work: use the experience in simulation

Ref. Nb. | % success | % success Time per Tot. training . . . .
(expert) (method) iter. (sec) | time (min) with an object O in order to warm-start the exploration of the
1 80.0 88.0 133.8 215 100.4 same object but in reality, such as studied with the balancing a
2 88.2 88.6 124.3 49:3 93.2 cart-pole [33] or grasping problems [13]. The current method
3 74.3 82.2 160.8 487 120.6 i i i ; iacti iz ati
: . oy TS 5o F is focusing on a noisy single objective optimization, where

the score is solely based on the performance in terms of
success. Future work might target to extend the system for
optimizing multi-objective function, where for instance the
speed of execution is an additional component to take into
We have shown how the robot can take advantage of 3., nt. pareto front of multiple criteria will then has to be
experience and its long-term memory to perform transfepqjgered using additional method provided by neVIBO
learning when objects are similar, both in simulation and Witﬁ-package [34], [35]. Another possible bene t of our frame-
areal robot. In simulation, with a xed budget of 68 trials (ove, qry js that the exploration and storing of different optimized
which the last 50 are de ned by the evaluation function of g,; o hyper-parameters can lead to embodied symbols or

Bayesian optimization method), we are able to optimize folncents emergence [36]. By providing human labels about the
each 5 objects 9 continuous hyper-parameters of an indust ﬂ&/sical aspect of objects.g."heavy”, " at”), co-occurences

grasping algorithm and achieve good performance, despite be detected between these adjectives and a sub-set of

fact that the evaluation is noisy. Indeed, we achieve a Megfkimized parameters, in a similar way that done to discover
percentage of grasping success between 73% and 95%,184,ns [37] or body-parts and basic motor skills [38]. In
simulation (depending on the object) with a faster convergengg, i ~this might lead to another form of transfer learning,
with transfer learning. The method has also been tested in\@Ran some hyper-parameters will be directly extracted and

experiment with a real robot, where the framework has b_e%d based on description labels of new objects provided by
confronted to an expert. The autonomous method providgs,

better optimization than the manually exploration from the
expert, with between 82.2% and 91.7% of success over 4
objects (representing an increase .Of.SUC'CGSS bet\’yeen 0.4% ?ﬂd\]. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
8% compared to the expert's optimization) despite a smaller tion of machine learning algorithms,” ikdvances in neural information

VI. CONCLUSION AND FUTURE WORK
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