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Abstract
In this study, a new centrifugal instability mode, which dominates within the boundary-layer flow over a
slender rotating cone, defined by half-angle ψ < 40◦, is used for the first time to model the problem when
an enforced oncoming axial flow is introduced. The resulting similarity solution represents the basic flow
more accurately than previous studies in the literature. This mean flow field is subsequently perturbed
leading to disturbance equations that are solved via numerical and analytical approaches, importantly
yielding favourable comparison with existing experiments. Meanwhile, a formulation consistent with
the classic rotating-disk problem has been successful in predicting the stability characteristics of broad
rotating cones, defined by half-angle ψ > 40◦, in axial flow.
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1. INTRODUCTION

This article forms part of a series of studies which have used
theoretical techniques to construct the correct models of gov-
erning instability for both broad and slender rotating cones.
The current study represents a significant extension to the
general problem in the slender cone case, introduced when
enforcing an oncoming axial flow.

Physically, the problem represents an accurate model of
axial airflow over rotating machinery components at the lead-
ing edge of a turbofan. In such applications, laminar-turbulent
transition within the boundary layer can lead to significant
increases in drag, resulting in negative implications for fuel
efficiency, energy consumption and noise generation. Conse-
quently, delaying transition to turbulent flow is seen as benefi-
cial, and controlling the primary instability may be one route
to achieving this. Ultimately, control of the input parameters
of such a problem may lead to future design modifications
and potential cost savings.

Our results are discussed in terms of existing experimental
data and previous stability analyses on related bodies. Impor-
tantly, axial flow is seen to delay the onset of convective
instability for both broad and slender rotating cones; the exact
mechanism of interaction governing the transition process
however is very different for both instabilities. Broad-angled
rotating cones are susceptible to a crossflow instability visu-
alised in terms of co-rotating spiral vortices, whereas slender
rotating cones have transition characteristics governed by a
centrifugal instability, which is visualised by the appearance
of counter-rotating Görtler vortices. It is the relative com-

petition of these two governing mechanisms that is explored
in detail in this study, particularly with regard to the role of
travelling modes in the breakdown process.

2. METHODS
We consider a cone of half-angle ψ rotating in a fluid of
kinematic viscosity ν∗ with an angular velocity Ω∗ in an anti-
clockwise direction around the streamwise coordinate axis
x∗ (where a ∗ denotes a dimensional quantity in all that fol-
lows). We construct coordinate axes aligned along with and
perpendicular to the spiral vortices (x̂∗ and y∗, respectively),
as shown in Figure 1. Further details of the relationship be-
tween the coordinate systems, including a required Mangler
transformation, are provided in [5]. These are shifted from the
conventional streamwise and azimuthal coordinates, x∗ and
θ, which are based on cylindrical polar coordinates. In such
a problem, there exists a boundary layer close to the rotating
cone surface characterised by the distance along the cone l∗

and defined by the Reynolds number, R, such that:

R =
Ω∗l∗2 sinψ

ν∗
.

With the important distinction of the inclusion of the oncom-
ing axial flow, the physical problem is subsequently altered
such that there now exists a dimensional local slip veloc-
ity at the edge of the boundary layer, obtained via a well-
known potential-flow solution (see for example [1]), given by
Ue = C∗x∗m , where C∗ is a constant.

We subsequently compare this velocity to the rotational
velocity of the cone surface, given by Vw = Ω∗x∗ sinψ, to
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Figure 1. Diagram of the spiral vortex instability on a rotating cone placed in an oncoming axial flow, showing coordinates in
the x̂- and y-logarithmic spiral directions, as well as the corresponding vortex wavenumber, γ, and vortex waveangle, φ.
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Figure 2. Velocity profiles Û (s, η1) and V̂ (s, η1) in the x̂-
and y-directions, respectively, at ψ = 15◦ for
s = 1.5,2,3,4,5,10,16 and
φ(s) = 30.2◦,22.5◦,13.6◦,6◦,0◦,0◦,0◦ (in the directions of
the arrows).

obtain an important ratio, which in part characterises the prob-
lem, known as the rotational-flow parameter, given by

s =
(Vw

Ue

)2
,

and used in [2, 3, 4]. In this study, we will use s to facili-
tate comparison of our results with experiments, as well as
make reference to physical cases where the cone is rotating
‘quickly’ and the axial flow is increased from a zero value (ie.
s decreasing from∞), for example during the take-off phase
of an aeroplane, once the rotating turbofans have reached an
optimum rotational velocity.

Essentially, the boundary-layer flow undergoes compe-
tition between the streamwise flow component, due to the
oncoming flow, and the rotational flow component, due to
effect of the spinning cone surface, which can be described
mathematically in terms of the control parameters, ψ and
s. We present the results of convective instability analyses
for the boundary-layer flow over broad and slender rotating
cones in a variety of imposed axial flows, based on large
Reynolds-number and short-wavelength asymptotics, as well
as numerical solutions obtained via an Orr–Sommerfeld sta-
bility analysis.

Importantly, the basic flow quantities Ũ and Ṽ are ex-
pressed as projections along the shifted spiral coordinates.
However, due to the introduction of an oncoming axial flow,
these are now functions of both the non-dimensional stream-
wise and surface-normal coordinates, x and z, respectively
(where x is the streamwise direction over the cone, scaled
on l∗). Hence, obtaining the base flows now require the so-
lution of a system of PDEs (see [4] and [5] for full details
and discussion) as opposed to the projected von Kármán so-
lution of a system of ODEs presented in [6] for the still fluid
problem. While there exist similar numerical basic flow for-
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mulations used by [2] and [3], experimental verification of
the basic flow is currently planned by R. Lingwood (personal
communication, 2015).

At this point, we outline the important link between the
standard surface-normal coordinate η and the modified surface-
normal coordinate η1 scaled on boundary-layer thickness ac-
cording to the new velocity scales applied to the basic flow
boundary-layer equations. The coordinate stretching yields

η1 = η
(m + 3

2s
1
2

sinψ
) 1

2 . (1)

This relation enables the shifted velocity profiles Ũ (x, η) and
Ṽ (x, η), expressed in terms of the standard boundary-layer
coordinates, to be written in terms of f ′(s, η1) and g(s, η1),
which depend on s and the modified boundary-layer coordi-
nate. The shifted basic flow quantities are written correctly in
the form:

Ũ (x, η) = U (x, η) cos φ + V (x, η) sin φ,
Ṽ (x, η) = U (x, η) sin φ + V (x, η) cos φ.

Here, U (x, η) and V (x, η) can be expressed in terms of the
solution functions f ′(s, η1) and g(s, η1) (where ′ indicates
∂
∂η1

) obtained in [5] and presented in [4] for ψ = 50◦,70◦. The
numerical solutions for f ′(s, η1) and g(s, η1) are obtained via
the D03PEF NAG routine using a Keller box scheme and the
method of lines. However, in this study, we remain consistent
with the formulation presented in [5], pertaining to the shifted
basic flow quantities, which are essential when considering
the slender rotating cone problem for ψ < 40◦. Specifically,
we may write

Ũ (x, η) =
Ue

Ω∗l∗ sinψ

(
f ′(s, η1) cos φ + s

1
2 g(s, η1) sin φ

)
= s−

1
2 Û (s, η1),

(2)

Ṽ (x, η) =
Ue

Ω∗l∗ sinψ

(
f ′(s, η1) sin φ + s

1
2 g(s, η1) cos φ

)
= s−

1
2 V̂ (s, η1),

(3)

where Û and V̂ are presented in Figure 2 for ψ = 15◦ in
a range of axial flows, increasing from s = 1.5 to s = 16
(corresponding to a ‘quickly’ rotating cone). We note that the
x̂-component, Û exhibits a familiar inflexional nature, with
its limiting value at the edge of the boundary layer increasing
as s increases. However, for s ≥ 5, we observe from the
results of [3] that φ = 0◦, which is consistent with our basic
flow solution where Û recovers the streamwise basic flow
component, f ′, to within a factor of s−

1
2 . In contrast, the

y-component of velocity V̂ exhibits a uniform shear and is
consistently reduced as s is increased.

We assume that the spiral waves are periodic in the x̂-
direction and introduce periodicity into the perturbation quan-
tities of vortex x̌-wavenumber a and ȳ-wavenumber b. Scal-

ing our perturbation quantities on the boundary-layer thick-
ness, we introduce a combined flow of the form

ũ∗ = Ω∗l∗ sinψ[{Ũ (x, η),Ṽ (x, η),R−
1
2 W (x, η)}

+R−
1
2 {ũ(η), ṽ(η), w̃(η)}exp(iax̌ + ibȳ)].

Similarly, the pressure perturbation term scales as

p∗ = (ρ∗Ω∗2l∗2 sin2 ψ)R−1 p̃(η)exp(iax̌ + ibȳ). (4)

3. RESULTS AND DISCUSSION
3.1 Asymptotic analysis
We proceed to solve the governing disturbance equations
(identical to those given in [5]) to determine leading- and
next-order estimates of the scaled Taylor number for neutrally-
stable modes, which arise due to the scaling analysis and
loosely follows [7] for the Taylor problem of flow between
concentric rotating cylinders. Importantly, we are able to form
comparisons with results in the literature expressed in terms of
Reynolds numbers. The corresponding Taylor number, which
characterizes the importance of centrifugal to viscous forces,
is given by

T =
2 cotψ cos φ

sin4 ψ
. (5)

In the axial flow problem, for a fixed ψ, this quantity is an
output of the analysis and represents a measure of how s
affects the physical flow characteristics.

Upon incorporating the basic flow expansions, we expand
the perturbation quantities and pose a WKB solution for small
values of ε , where a = ε−1 for the wavenumber a in the x̌-
direction. As for the still fluid problem, the dominant terms in
the governing disturbance equations balance if we scale T ∼
ε−4 and W/V ∼ O(ε−2), resulting in identical perturbation
expansions to those presented in [6] (reproduced here for
clarity when manipulating subsequent quantities):

ũ =E(u0(η) + εu1(η) + ε2u2(η) + . . .),

ṽ =ε2E(v0(η) + εv1(η) + ε2v2(η) + . . .),

w̃ =E(w0(η) + εw1(η) + ε2w2(η) + . . .),

T =ε−4(λ0 + λ1ε + λ2ε
2 + . . .),

where λ = λ0 + λ1ε + λ2ε
2 + . . ., E = exp( i

ε

∫ ϕ
K (τ)dτ),

ϕ =
sinψ
h̄1

η. and following [7], the growth K is a quantity to
be determined.

After solving the leading- and first-order problems fol-
lowing [5] and scaling out various dimensional quantities,
we obtain an estimate for the scaled effective Taylor number,
which is given by

T̄ = ε−4
( 2
√

s
m + 3

) 1
2
[ 1
V̂ ′(s,0)

+
2.3381 × 3

1
3

|V̂ ′(s,0) |
ε

2
3
( V̂ ′′(s,0) + s−

1
2 V̂ ′(s,0)2 cos φ

V̂ ′(s,0)

)2
+ . . .

]
. (6)
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Figure 3. Asymptotic scaled Taylor number T̄ as a function
of non-dimensional vortex wavenumber ε−1 for
ψ = 15◦, s = 1.5,2,3,4,5,10,16 and
φ(s) = 30.2◦,22.5◦,13.6◦,6◦,0◦,0◦,0◦.

Logarithmic plots of the scaled asymptotic Taylor number
against vortex wavenumber, ε−1 = a, are shown in Figure 3
for ψ = 15◦ and various values of s. We note that the asymp-
totic branches presented capture the effects of the leading- and
first-order estimates for T̄ . The unstable region is above the
curves and the stable region below. In general, we observe
that increasing s leads to a trend of reducing the asymptotic
Taylor number branch. Physically, this can be interpreted as
promoting the more dangerous centrifugal instability mode,
and hence destabilising the flow, which leads to a larger un-
stable region above the neutral stability branch, as depicted in
Figure 3.

3.2 Numerical analysis
In this section, we develop the corresponding numerical so-
lution, outlining the major differences between the axial flow
problem formulated in this study and the still fluid case pre-
sented in [6]. These arise due to the fact that the basic flow
quantities Ũ and Ṽ are now functions of the logarithmic spiral
coordinates x̌ and ȳ, as well as η. We manipulate the gov-
erning disturbance equations and subsequently express the
basic flow terms in terms of η1 by making use of the coordi-
nate stretching (1). The analysis involves neglecting Coriolis
terms and viscous streamline-curvature effects. Importantly,
we note that the centrifugal mode under investigation dif-
fers from the streamline-curvature mode for large half-angle
cones, which arises due to viscous effects of the cone surface.
In contrast, the centrifugal mode for small half-angle cones
arises from the centrifugal forces present in the mean flow
for small ψ, owing to the effects of surface-curvature. Such
centrifugal curvature terms are not neglected in the analysis
and contain the Taylor number as a factor. Proceeding in this
fashion yields a modified Orr–Sommerfeld (OS) equation for
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Figure 4. A comparison between the experimental
observations of [3] (dot-dashed line, 4) and the current
theoretical predictions (solid line, ◦) of the vortex orientation
angle, φ, at the onset of instability. The diagram illustrates
φ(s) reduces with increased rotational flow parameter, s, to a
limiting value of φ = 0◦ at s = 5.

stationary disturbances within the system, given by

[
i
(
∂2
ηη − k2

)2
+

Re
√

s

(
α1Û + β1V̂

) (
∂2
ηη − k2

)
−

Re
2s

(m + 3) sinψ
(
α1Û ′′ + β1V̂ ′′

) ]
w̃ = 0, (7)

where

α1 =
a sinψ

Re
, β1 = b sinψ, k =

√
α2

1 + β2
1

represent the vortex wavenumbers in the x̌-, ȳ- and effective
velocity-directions, respectively, and ∂2

ηη = ∂2/∂η2. Further-
more, Re = x sinψ is the local Reynolds number, interpreted
as the local non-dimensional radius of the cone surface from
the axis of rotation.

Importantly, we note from the basic flow profiles that
for s ≥ 5, the vortex activity is located at the wall, with
the minimum of V̂ ′(s, η1) existing at η1 = 0. However, for
s < 5, the curve has a minimum slightly departed from the
wall, indicating the location of vortex activity will not be
at η1 = 0. This correlation results as a consequence of the
requirement of obtaining valid real solutions for the growth
rate K when solving the governing eigenvalue equation at
leading order, which itself arises by following the study of [7]
for the Taylor problem of flow between concentric rotating
cylinders. For the case of s < 5, the solutions obtained
are not the most dangerous modes available, but we include
them as they provide useful information about non-zero wave
angles (spiral waves) for a 15◦ rotating cone in axial flow.
Furthermore, an interesting observation pertains to the related
study of [8] on the rotating disk in axial flow, where non-
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stationary travelling modes become more important as the
strength of oncoming axial flow increases.

Indeed, the results of the numerical analysis are shown in
figure 4, which presents the numerically calculated wavean-
gle, φ = tan−1(β1/α1), versus various s for a 15◦ rotating
cone. We compare results from the present study with the
experiments of [3], observing close agreement. Both studies
observe that in the regime of a ‘quickly’ rotating cone (s > 1),
increasing s leads to a reduction in φ, to the point where φ = 0
for s ≥ 5, physically corresponding to the transition from spi-
ral waves to circular or ‘Taylor’ vortices. Interestingly, this
appears consistent with our basic flow and asymptotic solu-
tions where for s ≥ 5, the vortex activity remains located on
the wall at η = 0. Conversely for s < 5, the stronger axial
flow acts to sweep vorticity in the streamwise direction, which
is again consistent with our asymptotic findings, namely that
the vortex activity undergoes a slight departure from the wall
in this regime.

Specifically, for s < 5 in the current problem, it appears
that the location of vortex activity departing slightly from the
wall suggests that travelling modes may grow as s is reduced
and in fact become the most unstable modes in this parameter
regime. Indeed, physically, the departure of a vortex from the
wall suggests that vorticity within the boundary layer is no
longer fixed on the cone surface, but is instead propagating or
travelling in the effective velocity x̂-direction. Ultimately, in
order to confirm whether travelling instabilities may harbour
the most unstable modes for the slender rotating-cone prob-
lem, a further investigation would be required, taking account
of time-dependent terms within the governing disturbance
equations.

In general, we observe close agreement between our asymp-
totic and OS numerical stability results, as well as with the
numerical calculations of [2] (see [9] for comparisons of var-
ious slender cones with ψ < 40◦). Importantly, while we
have used the asymptotic results to provide an envelope for
the right-hand branch of the numerical neutral stability curve,
they are unable to predict the effect of varying axial flow on
the critical Reynolds numbers. Nevertheless, the asymptotic
analysis has proved invaluable in this study, as it reveals the
correct length-scalings on which to model the counter-rotating
vortex pairs, which characterise the centrifugal mode. Further-
more, by expanding the shifted basic flows about the location
η = 0, we were able to confirm that the vortex activity of the
most dangerous modes is located at the wall. Subsequently as
s was varied, we tracked the location of vortex activity, observ-
ing that it departs slightly from the wall for s < 5. As a result,
we have posed the hypothesis that stationary modes could
dominate in the region s ≥ 5, but below this non-stationary
(or ‘travelling’) modes may begin to grow. Such an observa-
tion requires further investigation, but would not be possible
through solely conducting a numerical analysis. Hence, the
importance of an asymptotic analysis is clear in revealing the
underlying physical mechanisms at work, along with how they
might interact.

In contrast, the OS numerical stability results complement

Figure 5. Plot of asymptotic neutral wavenumber predictions
against rotational Reynolds number for inviscid type I and
viscous type II modes for ψ = 70◦, s = 0.1 − 0.6 (type I),
s = 0.1 − 10.0 (type II). Increasing s shifts the curves as
shown.

the asymptotics in confirming the existence of the neutral
stability curve for the centrifugal mode. Furthermore, we
observe a reduction in the critical Reynolds number Rec as
well as an increase in the critical amplification rate α1,c with
increasing s (see [9] for various slender cones with ψ < 40◦).
Hence, larger values of s are destabilising, suggesting that the
centrifugal-instability mode is physically the most dangerous
mechanism, despite alternatives being present, including the
crossflow and Tollmien-Schlichting instabilities.

Ultimately, we propose a condition of ‘optimal’ stability
existing around s = 1, where the competing effects of the ro-
tational and streamwise flow components balance. For s < 1,
the physical problem changes from a ‘quickly’ rotating cone
(the parameter range considered in this study) to a ‘slowly’
rotating cone. In this regime, the physical effect of the oncom-
ing axial flow strengthens, thereby promoting the streamwise
Tollmien-Schlichting instability, which begins to dominate
over the centrifugal mode. This optimal stability criterion of
s = 1 appears to exist not only for the centrfiugal instability
studied here, but also for the crossflow instability studied by
[5] for a cone with ψ = 70◦ rotating in an oncoming axial
flow (see figure 5). The flow for both inviscid type I and
viscous type II modes stabilises for increasing s, with s = 1
corresponding to the most stable flow setup in the type II case.
Hence, for both flow instabilities on the rotating cone the
findings predict an optimal stability criterion, which appears
to be close to s = 1, where the effects of the two competing
instabilities balance. This conclusion has interesting impli-
cations for the design of spinning projectiles, for example
in military and defence applications. Here, the streamwise
component is often large due to the projected velocity of the
missile. For example, projectile applications that involve high
rotation rates, such as spinning bullets and spinning missiles,
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can spin up to 3000◦ per second and higher. In such case,
it is important to design a missile that spins at sufficiently
high rotation rate in order to promote the centrifugal mode
and obtain a suitable balance between the competing insta-
bilities. In fact, the primary instability can break-down to a
secondary instability, which has been observed, for example,
by [10] in the formation of ‘horseshoe-like’ vortices. Essen-
tially, the aim in such spinning body applications is to reduce
the parameter-scope for transition-to-turbulence within the
flow. Therefore, influencing the primary and, potentially, the
secondary instability, over a longer streamwise distance along
the spinning body may achieve a delay in turbulent-transition,
which consequently leads to more accurate targeting and pro-
jectile control properties. It should be noted at this point that
the current study neglects the effects of compressibility, which
would play a significant role in accurately modelling such
high-speed applications.
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