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Abstract 13 

The screaming hairy armadillo (Chaetophractus vellerosus) is a mammal species containing disjunct and 14 

isolated populations. In order to assess the effect of habitat fragmentation and geographic isolation, we 15 

developed seven new microsatellite loci isolated from low-coverage genome shotgun sequencing data for this 16 

species. Among these loci, six microsatellites were found to be polymorphic with 8 to 26 alleles per locus 17 

detected across 69 samples analyzed from a relictual population of the species located in the northeast of the 18 

Buenos Aires Province (Argentina). Mean allelic richness and polymorphic information content were 15 and 19 

0.75, with observed and expected heterozygosities ranging from 0.40 to 0.67 and 0.58 to 0.90, respectively. 20 

All loci showed departures from Hardy-Weinberg equilibrium. The analysis of population structure in this 21 

relictual population revealed three groups of individuals that are genetically differentiated. These newly 22 

developed microsatellites will constitute a very useful tool for the estimation of genetic diversity and 23 

structure, population dynamics, social structure, parentage and mating system in this little-studied armadillo 24 

species. Such genetic data will be particularly helpful for the development of conservation strategies for this 25 

isolated population and also for the endangered Bolivian populations previously recognized as a distinct 26 

species (Chaetophractus nationi). 27 

 28 

Key words 29 

Molecular markers, armadillos, habitat fragmentation, molecular ecology  30 

 31 



3 

 

Introduction 32 

Reduced population size can cause loss of genetic diversity within populations and the emergence of harmful 33 

genetic effects associated with this genetic load. Small isolated populations can suffer from the effects of 34 

inbreeding and loss of heterozygosity, leading to a decrease in reproductive success and an increase in 35 

extinction probability (Frankham et al. 2002). The deleterious effects of isolation and low effective population 36 

size are often exacerbated by habitat loss or fragmentation, a situation experienced by many wild mammal 37 

populations in the Argentinean Pampas due to human activities related to cattle raising and farming (Viglizzo 38 

et al. 2011; Bilenca et al. 2012). Early detection of potentially deleterious genetic load and loss of genetic 39 

variability maximizes our ability to implement a management approach aims at limiting or reversing these 40 

effects before they become substantial or irreversible (Hedrick 2001). 41 

The screaming hairy armadillo (Chaetophractus vellerosus; Xenarthra, Chlamyphoridae) has been 42 

recently shown to include populations inhabiting high altitude grasslands of Bolivia, Chile, Peru, and northern 43 

Argentina, all of them previously recognized as a separate species, the Andean hairy armadillo 44 

(Chaetophractus nationi; Abba et al. 2015). Its geographical distribution once restricted to arid and semiarid 45 

regions with loose, sandy soil of southeastern Bolivia, northeastern Paraguay and central Argentina (Abba and 46 

Cassini 2010; Abba et al. 2011), has thus been largely expanded (Figure 1). In Bolivia, the high-altitude 47 

isolated populations are threatened by their overexploitation for traditional purposes and habitat degradation 48 

due to agricultural activities (Pérez-Zubieta 2011). In Argentina, a disjunct population of screaming hairy 49 

armadillo exists in the northeast of the Pampa region, which is separated from the main distribution area by 50 

about 500 km (Crespo 1974; Carlini and Vizcaíno 1987; Abba et al. 2011) (Figure 1). This relictual 51 

population is associated with the shelly beach ridges on the coast of the Río de la Plata Estuary, covering an 52 

area of less than 900 km2 (Abba and Superina 2010). It is currently at high risk of extinction because the 53 

environment is being heavily modified by human activities such as farming, cattle raising, and mining 54 

activities (Abba et al. 2011). Such disturbances are thought to affect both individual behavior and population 55 

dynamics. For example, Pagnutti et al. (2014) analyzed the home range of the screaming hairy armadillo in 56 

the same study area that we analyzed here, which is divided in two pastures with different use intensity (see 57 

Materials and Methods for details). Their results showed that the home range of the species was reduced by 58 

human disturbance and that individuals from the most disturbed pasture presented a more aggregated 59 
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distribution. In addition, the authors did not observe or recaptured the same marked individual in both 60 

pastures (AM Abba, personal communication), suggesting limited dispersal between the two areas. From 61 

these previous results, some degree of genetic differentiation might be expected between the two areas with 62 

different use intensity.  63 

The aim of this work is to conduct a preliminary study of genetic variation and structure in a relictual 64 

population of the screaming hairy armadillo by developing a set of microsatellite markers that would be 65 

useful for studying the conservation genetics of this species in wild populations. Microsatellites constitute 66 

useful genetic markers for estimating genetic diversity, population structuring, demography, social structure, 67 

parentage, and mating system (Avise 2004; Andrew et al. 2013). Estimating these parameters will be helpful 68 

for the development of future conservation strategies of the endangered populations of screaming hairy 69 

armadillos in both the northeast of the Pampas region in Argentina and the high altitude habitats of Bolivia.  70 

 71 

Materials and Methods 72 

Microsatellites development 73 

We used shotgun genomic data generated in a previous study focused on xenarthran mitogenomics (Gibb et 74 

al. 2016). As part of this phylogenetic study, single-end Illumina reads were produced from a C. vellerosus 75 

individual from the Mendoza province in Argentina (1,212,063 reads) and from an individual representing the 76 

high altitude populations of the Oruro department in Bolivia (790,237 reads), previously referred to as C. 77 

nationi (see Abba et al. 2015). De novo assembly of these reads was performed with ABySS (Simpson et al. 78 

2009). Identical contigs were collapsed using CD-HIT (Fu et al. 2012). By merging the contigs obtained from 79 

the two individuals, we obtained a total set of 4,232 unique contigs of more than 150 bp. These contigs were 80 

searched for di-, tri-, and tetra-nucleotide repeats using MSATCOMMANDER (Faircloth 2008). Primer 81 

design from the resulting 11 candidate loci was subsequently optimized using the BatchPrimer3 web server 82 

(You et al. 2008). 83 

 84 

Study area, sampling and DNA extraction 85 

During 8 years (2006-2013) armadillos were sampled in a 100 hectares cattle farm located in Magdalena, 86 

Buenos Aires, Argentina (35° 10.45’ S, 57° 20.66’ W; Figure 1). The field is bounded on the west by the 87 
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Provincial Route #11, to the east by the Rio de la Plata Estuary and to the north and south by two artificial 88 

canals that flow into this Estuary. These bounds represent physical barriers to dispersal for screaming hairy 89 

armadillos. This area is in turn divided in two pastures similarly sized (approximately 50 hectares each), but 90 

with different use intensity. The northern one, characterized by a low intensity of use, is mainly used for cattle 91 

and sheep breeding, while the southern one, with high intensity of use, is covered by modified grassland used 92 

for livestock feeding. 93 

Handling technique was used to capture individuals, sometimes helped by a net. Small ear punches of 94 

tissues were collected from 69 armadillos, 45 from the northern pasture and 24 from the southern one. 95 

Permanent, semi-permanent and temporal marks were made in each individual in order to avoid resampling. 96 

Tissue samples were used for DNA extraction using a phenol:chloroform and DNA precipitation method 97 

(Sambrook et al. 1989). Precipitated DNA was resuspended in buffer TE, pH = 8.0, quantified in a 98 

spectrophotometer at 260/280 nm and stored at -20 °C. 99 

 100 

Microsatellite amplification 101 

Optimal PCR conditions for 11 candidate loci were initially assayed using DNA obtained from 10 individuals. 102 

PCR amplifications were successful for seven of the 11 loci tested in all 69 samples. The PCR amplification 103 

protocol consisted of one step of denaturation at 95°C for 3 min; followed by 35 cycles, each involving 104 

denaturation at 95°C for 30 sec, 45 sec at annealing temperature (Table 1) and extension at 72°C for 30 sec; 105 

with a final extension step at 72°C for 5 min. PCR amplifications were carried out in 25 l volumes 106 

containing 10 ng of DNA, 1× PCR buffer (PB-L, Argentina), 3 mM MgCl2, 0.2 mM of dNTPs mix 107 

(Genbiotech, Argentina), 0.4 μM of each primer (Genbiotech, Argentina), 0.5 U of Taq DNA polymerase 108 

(PB-L, Argentina) and sterile distilled water to reach final volume. One of the primers of each pair was dyed 109 

with FAM or HEX fluorochromes (Table 1). Amplification products were visualized by migration on 2% 110 

agarose gel electrophoresis at 4 V/cm. 111 

 112 

Data analyses 113 

Genotypes were determined using GeneMarker v. 2.2.0 (Softgenetics). Allelic richness, probability of 114 

identity, probability of identity among siblings, and observed and expected heterozygosities, were estimated 115 
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with GenAlEx v. 6.5 (Peakall and Smouse 2012). Adjustment to Hardy-Weinberg Equilibrium  (HWE) and 116 

FIS values for all loci were calculated using GENEPOP v.4.2 (Raymond and Rousset 1995). Polymorphic 117 

Information Content (PIC) was evaluated using Microsatellite Toolkit v. 3.3.1 (Park 2001). Null allele 118 

frequency was estimated using FreeNA (Chapuis and Estoup 2007). An AMOVA analysis was performed 119 

with Arlequin v. 3.5 (Excoffier et al. 2010) in order to evaluate potential genetic differences between the 120 

southern and northern pastures. A corrected FST value was obtained with FreeNA in order to determine the 121 

effect of null alleles on genetic structure estimation. Finally, population structuring in our data set was tested 122 

using STRUCTURE 2.3.4 (Pritchard et al., 2000). This approach uses a Bayesian clustering analysis to assign 123 

individuals to clusters (K) without prior knowledge of their population affinities. STRUCTURE simulations 124 

were performed with the number of presumed clusters ranging from K = 1 to K = 7 and 20 runs per tested K 125 

value following the recommendations of Evanno et al. (2005). For each run, the initial burn-in period was set 126 

to 100,000 followed by 1,000,000 Markov Chain Monte Carlo (MCMC) iterations. The most probable 127 

number of clusters was determined by plotting Delta K as a function of K using Structure Harvester (Earl and 128 

vonHoldt 2012), an on-line application of the Evanno´s method (Evanno et al. 2005). We chose a proportion 129 

of membership threshold value of q ≥ 0.8 to assign individuals to clusters. This value provides a statistical 130 

cut-off within the range of suggested values in the literature (Manel et al. 2002) and indicates that ≥ 80% of 131 

ancestry can be attributed to the respective subpopulation. Finally, using the Alleles in Space (AIS) software 132 

(Miller 2005), we performed a Genetic Landscape Shape interpolation analysis in order to relate genetic data 133 

with the geographic coordinates of individuals. 134 

 135 

Results and Discussion 136 

Microsatellites characterization 137 

We developed seven microsatellite loci and used them to analyze 69 individuals from an isolated population 138 

of the screaming hairy armadillo (C. vellerosus). The seven loci assayed were successfully amplified. 139 

However, one of them (locus 5656_750_3130) was found to be monomorphic in our sample set, amplifying a 140 

unique fragment of 124 bp. The other six loci were polymorphic with a number of alleles ranging from 8 to 26 141 

and a mean allelic richness of 15 (Table 1). All polymorphic loci were highly informative, registering PIC 142 

values greater than or equal to 0.530, with a mean of 0.752 (Table 1). 143 
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Probability of Identity (PID) and the Probability of Identity among Siblings (PIDsibs) for the whole set of 144 

loci were 1.0 x 10-7 and 3.2 x 10-3, respectively. This result indicate that any individual in this population 145 

could be identified, and distinguished from the other individuals in the population, with a probability greater 146 

than 0.99. Individual identification is crucial for carrying out behavioral studies in wild populations aiming at 147 

determining the mating system or the presence of a social structure (Prodöhl et al. 1996). The newly 148 

developed microsatellites will allow such surveys in the screaming hairy armadillo for which these life-149 

history traits are poorly characterized. 150 

Observed heterozygosities estimated from our microsatellite loci ranged from 0.403 to 0.672, averaging 151 

0.583. Expected heterozygosities varied from 0.584 to 0.898, with a mean value of 0.766. None of the six 152 

polymorphic loci adjusted to HWE (p < 0.001; Table 1). Five of them showed positive FIS values, but only the 153 

value for loci 300_304_832 was significant (Table 1). Waples (2015) conducted an exhaustive study 154 

analyzing the possible causes of departures from HWE in natural populations. The possible causes include: 155 

overlapping generations, population structure, endogamy, small effective population size, and genotyping 156 

errors (i.e. null alleles), among others (Waples 2015). Departure from HWE in our data set could be due to an 157 

overlapping generations effect, taking into account that samples used in our study were taken from 2006 to 158 

2013, and that offspring, juveniles and adults were captured. Another possibility is the presence of null alleles 159 

in the data set, which frequencies ranged from 0.029 to 0.261 (Table 1). However, these values should be 160 

taken with caution since null alleles frequencies calculated in FreeNA and related software are obtained 161 

assuming panmixia and ascribing heterozygote deficiencies to the presence of null alleles. The panmixia 162 

assumption is quite hardly supported by our data given the effect of overlapping generations previously 163 

mentioned. Population genetic structure (Wahlund effect) would be another possible cause of the HWE 164 

deviations observed. In consequence, we carried out an AMOVA and a STRUCTURE analysis (see below) in 165 

order to test the existence of population structure. Finally, we cannot reject endogamy or small effective 166 

population size as possible causes of the HWE deviation.  167 

 168 

 169 

Population structure 170 
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As previously mentioned, the departure from HWE and the positive FIS values obtained would be explained 171 

by the existence of a population structuring in our study area. Because a reduced home range due to human 172 

disturbance and a more aggregated distribution of individuals in the most disturbed pasture (Pagnutti et al. 173 

2014) could have restricted gene flow between pastures, we test the existence of genetic structure between the 174 

northern and southern pastures by means of an AMOVA. Our results showed no significant genetic 175 

differentiation between pastures (FST = 0.007; p = 0.095). The corrected FST value obtained taking into 176 

account the presence of null alleles, also support the lack of genetic structuring (FST = 0.003; p > 0.05). A 177 

STRUCTURE analysis was also carried out without defining subpopulations a priori. Results showed a 178 

maximum mean Ln P value at K = 3 (Mean Ln P = -1423.79), suggesting the existence of three genetic groups 179 

within our study area (Figure 2A). The Evanno’s method confirmed this result, showing a peak at K = 3. 180 

Forty-nine of the 69 individuals (71%) were assigned to one of the three groups. Two of them were composed 181 

of 17 individuals, while the remaining was composed by 15 individuals. Figure 2B shows the geographic 182 

distribution of the three genetic groups. Most individuals that composed one of these groups were found in the 183 

southern pasture, while most individuals that composed the other two groups were found in the northern one. 184 

In addition, the Genetic Landscape Shape interpolation analysis (Figure 3) produced a surface plot that 185 

qualitatively support results from STRUCTURE. Two major ridges were observed in the landscape, 186 

indicating the areas of greatest genetic distance separating the population in three genetically distinct groups. 187 

However, field surveys did not detect evidence of physical barriers to dispersal in the study area that might 188 

explain this genetic structuring. The observed genetic structure might thus be due to the social behavior or the 189 

mating system of the species. Future studies using a higher number of samples and loci together with 190 

biological data of the animals obtained during the field works (i.e. sex, age, weight) and parentage analyses, 191 

could contribute to a better understanding of this surprising observation. 192 

 193 

 194 

Comparison with other xenarthrans 195 

The screaming hairy armadillo belongs to Xenarthra, a superorder of Neotropical mammals grouping 196 

armadillos, anteaters, and sloths, which are notably understudied (Superina et al. 2014). Few studies have 197 

been previously conducted to estimate genetic diversity in xenarthrans using microsatellites as molecular 198 
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markers (Table 2). In this handful of studies, observed heterozygosity values range from 0.06 to 0.71. The 199 

lowest value was registered in an endangered population of the giant anteater (Myrmecophaga tridactyla), 200 

which suffered from high inbreeding (Collevatti et al. 2007). The estimated heterozygosity for our population 201 

(0.58) is comparable with that obtained for populations of the nine-banded armadillo (Dasypus novemcinctus) 202 

that are abundant and inter-connected with other populations (Prodöhl et al. 1996; Loughry et al. 2009; 203 

Chinchilla et al. 2010; Arteaga et al. 2012). This result is somewhat unexpected considering that our 204 

population occupies a relatively restricted area with high level of geographic isolation. Future studies will be 205 

necessary to understand the underlying mechanisms involved in such a high level of genetic variability in the 206 

screaming hairy armadillo. 207 

 208 

Conclusions 209 

Our results show that these microsatellite loci can be useful to study this particularly isolated population and 210 

other populations of C. vellerosus, such as the endangered populations that live in the Andean region of 211 

Bolivia (Abba et al. 2015). These loci might also prove useful for the study of the population genetics of other 212 

closely related euphractine armadillo species such as Chaetophractus villosus, Euphractus sexcinctus, and 213 

Zaedyus pichiy (Abba et al. 2015). Finally, the genetic structuring described here might have to be considered 214 

in future conservation actions, taking into account that this relictual population is highly impacted by human 215 

activities and is about 500 Km away from the core distribution area of the species. 216 
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 232 

Figure legends 233 

Figure 1 Geographical range of Chaetophractus vellerosus and location of the relictual population 234 

(Magdalena, Buenos Aires Province) where sampling was carried out. Map was extracted from IUCN SSC 235 

Anteater, Sloth and Armadillo Specialist Group, Chaetophractus vellerosus, The IUCN Red List of 236 

Threatened Species. 237 

Figure 2 Results of the STRUCTURE analysis. A) STRUCTURE bar plot for the screaming hairy armadillo. 238 

Each bar represents one individual and each color (light grey, dark grey and black) represents the posterior 239 

probability of the individual to belong to that cluster. B) Geographic distribution of the 49 individuals 240 

assigned to each of three genetic groups. Colors correspond to those in Figure 2A. 241 

Figure 3 Results of the Genetic Landscape Shape interpolation analysis using a 50 x 50 grid and a distance 242 

weighting parameter (a) of 1. X and Y axes correspond to geographic locations within the overall physical 243 

landscape examined in this study. Surface plot heights reflect genetic distances. Arrows indicate the two 244 

major ridges in the landscape (areas with the highest genetic distance).  245 
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Table 1. General features of microsatellite loci for the screaming hairy armadillo (Chaetophractus vellerosus). 

 

 

 

 

 

 

 

 

 

Ta, annealing temperature. n, individuals. NA, number of alleles. PIC, polymorphic information content. Ho, observed heterozygosity. He, expected 

heterozygosity. PHWE, p value for exact test of Hardy-Weinberg equilibrium. FIS, inbreeding coefficient.  

*** P < 0.0001 

 

 

Locus name Primer sequences 
Repeat 

motif 
Ta n 

Size range 

(bp) 
NA PIC Ho He PHWE FIS 

Null alleles 

freq 

376_440_1976 
GACCCGGTTCGATTTAATA  

CACTGCTTGACATTCTCATT 
(AG)13 56°C 69 95-111 10 0.708 0.551 0.738 *** 0.260 0.115 

2824_669_1772 
CTGGGTATTCACACCAGAA 

GGGGTGACGAAAGTTAAAG 
(AC)14 56°C 68 88-108 15 0.781 0.559 0.796 *** 0.304 0.148 

54997_179_933 
CTAACCGTGCATTTTATGG 

GGCCTAAGACGGTATTACA 
(TC)8 54°C 67 71-142 8 0.530 0.657 0.584 *** -0.117 0.029 

3972_751_4333 
TCAAAGACAATGTCCCCTA 

ATTTTCCAGCCTTGATCTG 
(AC)15 54°C 67 77-112 13 0.789 0.672 0.812 *** 0.180 0.101 

17379_526_1988 
CAAGCAAGCAAGCAAG      

GCCACGGTTTAGTTAATCA 
(AAC)8 49°C 61 87-109 18 0.741 0.656 0.771 *** 0.158 0.116 

300_304_832 
ACCCTTCAAAAACACTTATT 

TAAAAACAAGCAAGCAAGC 
(TTG)8 48°C 67 77-168 26 0.890 0.403 0.898 *** 0.556 0.261 

5656_750_3130 
CGATGAATCAACCCTTAGA 

GTGCCTGAAGATGTGTGTC 
(GT)22 52°C 69 124 1 ― ― ― ― ― ― 

     Mean 15 0.752 0.583 0.776    
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Table 2. Studies estimating genetic diversity in xenarthrans using microsatellites. 

 

Species n # loci Ho Reference 

Chaetophractus vellerosus 69 6 0.58 This study 

Dasypus novemcinctus 310 7 0.49 Prodöhl et al. (1996) 

Dasypus novemcinctus 139 4 0.64 Loughry et al. (2009) 

Dasypus novemcinctus 40 9 0.46 Chinchilla et al. (2010) 

Dasypus novemcinctus 116 5 0.62 Arteaga et al. (2012) 

Bradypus variegatus 32 18 0.71 Moss et al. (2012) 

Choloepus hoffmannii 23 16 0.55 Moss et al. (2011) 

Myrmecophaga tridactyla 15 6 0.61 García et al. (2005) 

Myrmecophaga tridactyla 27 5 0.059 Collevatti et al. (2007) 

 

n, individuals. Ho, observed heterozygosity. 
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