
HAL Id: hal-01879172
https://hal.science/hal-01879172

Submitted on 22 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ENOrMOUS: ENergy Optimization for MObile
plateform using User needS

Ismat Chaib Draa, Smail Niar, Emmanuelle Grislin-Le Strugeon, Morteza
Biglari-Abhari, Jamel Tayeb

To cite this version:
Ismat Chaib Draa, Smail Niar, Emmanuelle Grislin-Le Strugeon, Morteza Biglari-Abhari, Jamel
Tayeb. ENOrMOUS: ENergy Optimization for MObile plateform using User needS. Journal of Sys-
tems Architecture, 2019, 97, pp.320-334. �10.1016/j.sysarc.2018.10.004�. �hal-01879172�

https://hal.science/hal-01879172
https://hal.archives-ouvertes.fr


ENOrMOUS: ENergy Optimization for MObile plateform using
User needS

Ismat Chaib Draa, Smail Niar, Emmanuelle Grislin-Le Strugeon

Univ. Valenciennes, CNRS, UMR 8201 - LAMIH, F-59313 Valenciennes, France

Morteza Biglari-Abhari

University of Auckland, New Zealand

Jamel Tayeb

Intel Corporation, Portland, USA

Abstract

Optimizing energy consumption in modern mobile handled devices plays a crucial role as lower-
ing the power consumption impacts battery life and system reliability. Recent mobile platforms
have an increasing number of sensors and processing components. Added to the popularity of
power-hungry applications, battery life in mobile devices is an important issue. However, the
utilization pattern of large amount of data from the various sensors can be beneficial to detect
the changing device context, the user needs and the running application requirements in terms
of resources. When these information are used properly, an efficient control of power knobs can
be implemented to reduce the energy consumption. This paper presents a framework for ENergy
Optimization for MObile platform using User needS (ENOsMOUS). This framework is able to
identify user contexts and to understand user habits, preferences and needs to improve the op-
erating system power scheme. Machine Learning (ML) algorithms have been used to obtain an
efficient trade-off between power consumption reduction opportunities and user satisfaction re-
quirements. ENOrMOUS is a generic solution that manages the power knobs. When applied to
the CPU frequency, the sound level, the screen brightness and the Wi-Fi, ENOrMOUS can lower
the power consumption by up to 35% compared the out-of-the-box operating system power man-
ager schemes with a negligible overhead.

Keywords: Mobile Systems, Mobile Power Consumption, Neural networks, Run-Time
Analysis, Data Mining Algorithms

1. Introduction

Mobile and communicating devices are drastically changing our professional and personal
activities. The number of smartphones users in western Europe has been predicted to increase
from 240.3 millions in 2016 to 279.6 millions in 2019 1. The capabilities and hardware complex-
ity of these handled devices are in constant improvement. They include a large number of cores,

1www.statista.com/statistics/494554/smartphone-users-in-western-europe
Preprint submitted to Journal of Systems Architecture September 22, 2018



a powerful GPU, large caches and a significant number of embedded sensors. For instance, the
Samsung Galaxy S7 launched in 2016 contains 10 sensors, representing 6 additional sensors in
comparison to the Samsung Galaxy S marketed in 2010. The number of cores has also increased
from 1 to 8 cores. In addition, applications running on current and future mobile devices are very
power-hungry and more complex. As a result, the user and applications needs in terms of com-
puting, communication and storage can deplete the device’s battery in a few hours and impact
user satisfaction. Nowadays, battery life has become one of the biggest obstacles for mobile de-
vice advancements. For these reasons new power consumption management systems are needed
to extend battery life without impacting the processing power and user’s experience.

Most of the existing energy saving techniques take into account neither the user individual
profiles nor the changing application needs and user requirements. In this paper, our work is
based on the user context information and habits. In the literature, many definitions of the context
are given [1]. In [2], the context is defined by any information that can be used to characterize
the situation of an entity. An entity is a person, place, or object that is considered relevant to the
interaction between a user and an application, including the user and applications themselves.
Adapted from [2], we define the user context as a set of information that characterize the situation
in which the mobile device is used. The information may be divided in 3 subsets depending
on their subject: the user, the time and space environment, and the device. This includes the
information that may impact the configuration of a hardware resource such as ambient luminosity
for the screen brightness, the applications needs in terms of CPU and so on. ENOrMOUS exploits
the large set of embedded sensors to collect, store and process the user context information and
application requirements at run-time. The collected data are then exploited to generate power
policies. The purpose here, is to improve the default power management policies of the operating
system and to increase the battery life. In the worst case scenario, ENOrMOUS offers a similar
energy management to the operating system. In this paper, we assume that a mobile system can
be exploited by many users and to differentiate between them, we identify each user by his/her
specific session. Our contribution can be summarized as follows:

1. We exploit the rich sensor hubs and the operating system’s application programming in-
terfaces (APIs) to collect a large set of data relative to the user, the launched applications,
the consumed resources and so one to represent the user context. This data collection
phase is performed by a software module consisted of several probes. Each software probe
corresponds to a specific kind of information such as environmental information, system
information, etc. These probes are implemented as background process. All the collected
information are stored in unified XML way to be processed in the next phase.

2. In the second phase, we propose a new user context classification based on the collected
information of the previous phase. The collected information will be processed through
machine learning algorithms to extract usage pattern and regularities, identify the user con-
text and predict the user’s associated actions. The employed machine learning techniques
allow us to use the opportunities to decrease the energy consumed by unused resources in
some cases. The classification tends to find a trade-off between the user satisfaction, the
running application requirements and power consumption reduction opportunities.

3. In this last phase, the designed classification techniques are used to implement new and
efficient power policies to control the power knobs and to reduce the whole system power
consumption. Techniques such as Dynamic Frequency Scaling (DFS), Wi-Fi management,
screen brightness and sound level adjustments, can thus be efficiently implemented.

The aim is to offer the users, with different profiles and needs, a customized management ap-
2



proach depending on their habits, requirements, lifestyle and job. In ENOrMOUS, the power
savings are achieved at run-time and are transparent to the user. The goal here, is to minimize
the user involvement.

The reminder of this paper is organized as follows. The ENOrMOUS functional architecture
is presented in Section 2. In Section 3, we present the classifiers architecture. In Section 4, we
present the experimental results obtained with our approach and a comparison with the OS power
management is given. Section 5 presents the related work and finally we conclude and give some
prospects of the project in Section 6.

2. ENOrMOUS functional architecture

Several software modules have been developed to implement the three phases described pre-
viously. All these modules are shown in Figure 1.

Data	Collection	Module	(DCM)

Data	Processing	Module	(DPM)::	Classifiers

Optimizer	Actuator	(OA)::	Ressource	
Management

Power	Policies	
(PP)

Current State	Module	
(CSM)

User	Satisfaction	Checker	
(USC)

User	Context	
Information

DPM	Rules

HW	Ressources	
Configuration	Values

Current System	
Usage

Figure 1: ENOrMOUS abstract architecture

Details of these software modules are as follows:

• Data Collection Module (DCM): this module encapsulates 3 probes.

– User Probe (UP): this probe is linked to the launched applications and the user’s
preferences in terms of resources used during a certain period of time. The UP is
executed at run-time and is transparent to the user. The probe indicates if the ap-
plication is running in the background or foreground and its average running time
in a given time period, as shown in Section 2. We assume that users have different
behaviors in weekdays and weekends, and also in different periods of a given day.
This probe retrieves also the user mobility and permits us to know when the user is
walking, running or in a stationary state. We use a two-week period to collect the
required information through UP. The user can change this information collection
period.

3



– Environment Probe (EP): this probe gathers information about the user’s environ-
ment. It indicates: ambient luminosity, ambient noise, device stand, date and time
and user position. These information are captured using available embedded sensors
such as Ambient Noise Sensor (ANS), Ambient Light Sensor (ALS), Acceleromeeter,
GPS and so on.

– System Probe (SP): this probe indicates the resources consumed by the system. The
collected information are: average utilization of the CPU in percentage, the allocated
CPU frequency by the OS, sound level, screen luminosity, Wi-Fi status, battery level
and GPS state. This probe can also give information about the user’s habits and
needs in terms of system configuration preferences. For example, the CPU average
utilization varies from a user to another depending on their needs.

The user context data for using each application is stored separately and later all contexts
information are used to obtain the resource usage patterns as shown in Figure 2.

Application A 

Context 
1 

Context 
2 

Context 
n 

. . .  

Context 
1 

Context 
2 

Context 
n 

Application B 

Application N 

. . .  

Context 
1 

Context 
2 

Context 
n 

. . .  

. . .  

Application A  
Context Database 

Application B 
Context Database 

Application N  
Context Database 

Learning 
Database 

Context Changing  

A
p

p
licatio

n
 C

h
an

gin
g  

Figure 2: Context changes depending on the foreground application

DCM is the first executed module in ENOrMOUS and corresponds to the data collection
phase. These data are captured and stored during two consecutive weeks in order to create
a knowledge base that will be processed by the next module. DCM runs as background
process and is executed when the mobile device is switched on. All these information are
captured by interfacing the aforementioned probes with the embedded sensors and APIs
offered by the operating system. The collected information are then stored in a data base
in unified XML to be processed by the Data Processing module (DPM). Figure 3 shows
the DCM structure.

4



Data  Collection Module (DCM)

Application 
duration

Background 
process

Application 
name
User 

preferences

Ambient 
luminosity
Ambient 

noise

Device stand

Date & Time

Position

CPU usage

CPU freq
Microphone 

level
Screen 

luminosity

Wi-Fi status

User probe Environment 
probe

System probe

Battery level

GPS state

Figure 3: DCM collecting user context

As shown in the experimental section, the overheads due to DCM utilization is low. The
DCM is launched only once, except when the user is not satisfied by the generated power
policies. In this case, the data collection is redone to enrich the knowledge base as it will
be detailed in the next sections.

• Data Processing Module (DPM): this module is at the heart of our framework. It uses a
large number of ad-hoc classifiers based on neural networks and data mining algorithms
to process the stored DCM information and generate Power Policies (PP).

• Power Policies (PP): the DPM’s outputs represent a set of rules for each user context.
These rules are applied to several power knobs to control them. For example, for managing
screen brightness, a rule is the range of the most suitable screen brightness levels for the
specified context. If the user is in a dark environment and the foreground application does
not require high brightness level, the rule could be [0%-25%]. It means that the maximum
value of screen brightness configuration in this context is 25%.

• Current State Module (CSM): this module retrieves the current usage of the device. It
permits to not impact negatively the user experience before applying the power policies by
configuring some used hardware components. The retrieved information by the CSM are
the background application and the consumed resources like the Wi-Fi connectivity, the
screen brightness intensity, the sound volume, the mobility sensors and so on. Taking into
account the current device usage will also increase the accuracy of the generated power
policies.

• Optimizer Actuator (OA): it performs resource management and subsystems configura-
tion. The aim of ENOrMOUS is to propose a generic solution that will manage all the re-
sources. In this paper, we focus on CPU frequency scaling, sound and brightness manage-
ment and Wi-Fi interface configuration. These resources represent the most power-hungry

5



hardware components. The Optimizer Actuator takes into account the current power policy
and the device’s current state before applying the new power policy

• User Satisfaction Checker (USC): after adjusting the resources and configuring the hard-
ware, the user’s satisfaction is checked by analyzing his/her behavior as shown in Figure
4.

Figure 4: User Satisfaction Checker

The user satisfaction is checked as follows:

– If the user disables the resources management, ENOrMOUS is notified to modify the
power policy that is responsible for the user’s dissatisfaction. For example, when the
CPU frequency is scaled, the user satisfaction checker verifies the acceptance of the
proposed frequency by the user. If a new frequency is set by the user, this new value
is stored and will be taken into account for the next run in the same context and for
the same foreground application.

– In order to check the user satisfaction in terms of CPU configurations, for each speci-
fied context, hooks have been implemented as ActionListners. Specified contexts are
defined by the executed foreground applications. For each foreground application,
the evolution of the user’s context is shown in figure 4. Thus, we have the different
CPU frequencies allocated by ENOrMOUS. The number of contexts varies from one
user to another depending on their behavior. We have on average 30 different con-
texts for the same application, knowing that we have on average 40 applications per
user, the number of these contexts reaches 1200. The contexts are stored in an XML
file that does not exceed 4 MB per user. The different stored contexts are enriched
and redundancies are removed in order to reduce memory storage overheads. The
storage of these different contexts is temporary, once the hardware configuration sat-
isfies the user, All the context data is deleted. This operation reduces the impact on
the memory consumption.

6



The ActionListeners identify interaction’s speed and manner between the user and
his mobile system. When the user launcheso an application during a given time, the
number of times the user touches the screen and refreshes the application is collected
and stored. The implementation of ActionListerners is simple and intuitive in the
current version of ENOrMOUS. These ActionListerners have been implemented as
Input librarries (ILs). The IL starts when a new foreground application is executed.
If the user context has already been checked for user satisfaction, the ActionListner
is not started and vice versa. Then, an average is calculated and is compared to the
current number of interactions. If a difference is detected between these two values,
the CPU frequency is increased by the OA and the same process is repeated until no
gap between these values is detected. A difference threshold of 20% is used for the
number of touches to detect user dissatisfaction . A decrease or an increase of 20%
is synonymous with a too low frequency for the user. These 20 % was determined
after an explicit questionnaire with users who mentioned that their dissatisfaction
can be expressed by incessant tactile support or by an expectation. These 20 % can
vary from one user to another, for this reason, as a perspective we will determine this
value by using classification algorithms depending on the user interaction manner.
This new frequency will be allocated to for the next similar context, thus correcting
classifier outputs.
In this paper, we take into account the user’s reactions. Indeed, the user’s reaction to
an optimization is quite indicative of her/his satisfaction. This process allows us to
improve the classifiers accuracy and gauge user needs deeply.

3. User Context Classification for Power Reduction

The user context is continuously changing at run-time. The changes concern several param-
eters such as the foreground and background applications running, the available Wi-Fi connec-
tivity, the mobility of the user, the brightness or noise of the environment, the CPU workload
and so on. The first consequence of these variations is that the user behavior and applications
needs in terms of resources are strongly affected. Indeed, depending on the context, the user and
applications may require more or less resources than those allocated by the operating system.
For example, when user is in a dark or dim environment and depending on his/her preferences
in terms of luminosity, we can reduce the screen brightness. This reduction is not taken into
account by the OS and will permit us to have a gain in terms of power consumption. Secondly,
different users may react differently to the same context changes. In a given context, two distinct
users launching the same application may need different levels of resources configuration. This
behavioral difference stems from many factors such as job, lifestyle, activity, eyesight and so on.
In order to take advantage of these characteristics and differences, a device/user context clas-
sification has been designed. As mentioned before, the classifiers are implemented in the Data
Processing Module (DPM). The classification purpose is to determine which is the device current
context of use to be able to generate adaptive power policies for each hardware component. The
predictive model issued from the ENOrMOUS classifiers must lead to provide to the user only
the hardware resources that are needed for the his/her current context. This resource calibration
has to satisfy two major requirements:

7



• to provide all the possible power reduction opportunities. In the worst case, the proposed
power scheme is similar to the OS power consumption;

• to produce power policies which will not impact negatively the user’s satisfaction.

The output of the classification is thus used to select the appropriate power policy for each of
the controlled resources according to the current context, as detailed in the following.

3.1. ENOrMOUS Resources Classifiers

The aim of the classification is to create a model able to predict the right target values for
four resources: CPU, sound volume, screen brightness and Wi-Fi, according to the user context.
As mentioned before, the context is defined by information related to the user, the environment
and the device:

context = (User,Environment,Device)

with :

• User data include two values about the user’s preferences:

User = (soundPref , lightPref )

From the user probes (see Section 2), the sound level and the brightness level are regularly
recorded during one full day. Based on this information, their average level is computed
and then assumed to be preferred by the user;

• Environment data include ambient noise and lux levels as sensed by the device:

Environment = (ambientNoise, ambientLux)

• Device data include the CPU current frequency, the ratio of the used CPU frequency to the
maximum CPU frequency, the number of running applications, the application categories,
the download and upload Wi-Fi rates, and the mobile use:

Device = (CPUfreq, freqRatio, #Appli, appliCategories,WiFiRates,mobility)

These information constitute the input of the classification. We consider the four resources as
independent targets for the classification. For this reason, the context identification is achieved
by 4 classifiers, one ad-hoc classifier for each resource as shown in Figure 5. For each classifier,
we have selected the input context data that are relevant given the output target resource.

3.1.1. CPU Classification
The CPU classifier uses data that cover application needs and user preferences in terms of

computation:

• CPUfreq: this input is trivial and represents the CPU frequency allowed by the operating
system. In our experiments, we consider four different values, 800 MHz, 1250 MHz, 1750
MHz and 2200 MHz, which are the CPU frequencies allowed by the mobile devices we
used for the experiments.

8



Figure 5: Resources ad-hoc classifiers

• freqRatio: this parameter indicates the ratio of the allowed OS CPU frequency relatively
to the maximal frequency. It helps us to get an idea about the user preferences, when this
ratio is high, it means that the user needs high computational resources and vice versa.

• #Appli: this input includes the number of running applications in background and fore-
ground. It assists in finding the correlation between the number of running applications
and the appropriate CPU frequency.

• appliCategories: it represents the category of the foreground application. Indeed, we made
a specific classification of the applications into three distinct categories according to their
requirements, as will be explained in the next section 3.1.5. The application category is
used here to determine its requirements in terms of computation.

The output of the CPU classifier is an appropriate CPU frequency among four classes. These
classes are defined by the four frequency values we chose:

• L: context requiring a low CPU frequency (under 800 MHz).

• M: context requiring a medium CPU frequency (between 800 MHz and 1.25 GHz).

• H: context requiring high computing resources (between 1.25 and 1.75 GHz).

• VH: context requiring very high computing resources (over 1.75GHz).

3.1.2. Sound Classification
Sound context is built according to three selected inputs:

9



• ambientNoise: this value indicates the noise level of the environment and is captured by
the available embedded sensor on the platform. When the ambient noise is too high, the
sound level must be increased and vice versa.

• soundPref : the sound level that is assumed to be preferred by the user (see Section 3.1).
This data can be representative of the user hearing.

• appliCategories: the category of the foreground application is used here to determine its
requirements in terms of sound level. For example the sound required by Spotify differs
from the sound level needed by Word.

In the absence of a research background related to this question, we made the arbitrary choice
of a four level scale for the sound volume, what constitutes a first attempt that should be refined.
The output of this classifier is an appropriate sound level among four sound level classes:

• VL [0%-25%] : when the user needs a very low sound level.

• L [25%-50%]: when the need for the sound level is low.

• M [50%-75%]: when the need for the sound level is medium.

• H [75%-100%]: when the need for the sound level is high.

3.1.3. Brightness Classifier
The brightness classifier uses data that cover the ambient luminosity, the application needs

and the user’s preferences: Luminosity context is built according to three selected parameters
from the probes.

• ambientLux: this input is common to the brightness management methods. For example
in the Samsung Galaxy S7, the brightness adjustment in only based on the ambient lumi-
nosity [3]. This value indicates the luminosity of the environment and is captured by the
available embedded sensor of the platform. This parameter value is very significant when
the ambient luminosity is too high or when we need a high screen brightness level, and
vice versa. The parameter values are available in the environment probe.

• lightPref : the screen brightness level that is assumed to be preferred by the user (see
Section 3.1). These data may give information about the user’s eyesight.

• appliCategories: the category of the foreground application is used here to determine its
requirements in terms of screen brightness. For example, Facebook brightness needs dif-
fers from Spotify needs.

As for the sound, we used an arbitrary four level scale for the brightness. The output of this
classifier is an appropriate brightness level among these four classes:

• VL [0%-25%] : when the user needs a very low screen brightness.

• L [25%-50%]: when the need for the screen brightness is low.

• M [50%-75%]: when the need for the screen brightness is medium

• H [75%-100%]: when the need for the screen brightness is high.
10



3.1.4. Wi-Fi Classification
For this classifier, we select 4 input data which are:

• WiFiRates: the rates of downloaded and uploaded data in kb/s.

• appliCategories: the category of the foreground application is used here to determine its
requirements in terms of Wi-Fi.

• mobility: mobile use of the device, provided by an API that permits to know when the
user is stationnary, walking or running. It is calculated by using the acceleromeeter data
combined with the compass. It will help us define whether the user is close to a Wi-Fi
hotspot or not.

The output of this class is an appropriate Wi-Fi state among these three states:

• 1: when the user needs to be connected.

• 1/0: the Wi-Fi interface is on but disconnected.

• 0: the Wi-Fi interface is disabled.

All these input data values are captured at the same time and stored into a database. The
time-period of a collection is adjustable depending on the foreground application change.

3.1.5. Application categories
Each of the four classifiers includes in its input dataset the application category regarding the

targeted resource. This parameter has been introduced to improve the classifiers accuracy. The
application categories have been subjectively evaluated based on their functionality and our own
usage, according to the CPU, Wi-Fi, watching and listening needs. This is illustrated in Table 1.

Table 1: Resource requirement categories for a selection of applications

Applications CPU Wi-Fi Watching Listening
Youtube M 1 H H
Word L 0 H L
Skype L 1 M H
Facebook H 1 H L
Messenger M 1 H L
Spotify L 1/0 L H
Adobe Reader L 0 H L
2048 M 0 H L
Chrome M 1 H M
VLC M 0 H H
OneNote L 0 H L
Sudoku L 0 H L

• For CPU, we use three categories, L for low need, M for medium need and H for high need
in terms of computation.

11



• For Wi-Fi, we also use three categories, 1 for applications that require internet connectivity
and 0 for applications that do not. We have also 1/0 for the applications that can run in
offline mode like Spotify or Google Maps.

• For brightness and sound needs, we have respectively evaluated screen watching and lis-
tening parameters with three values L for low need, M for medium and H for high needs.

The application categories are used by the four classifiers previously described. These classi-
fiers are at first trained to build a predictive model using supervised machine learning, that means
we use a set of instances for which we have the desired outputs (targets). The resulting model
is then used to determine the proper power adjustments according to the input data that identify
new situations.

In the following, we present how we create the predictive models.

3.2. Creation of the predictive models

The aim is to create four models dedicated to predict the power resource requirements ac-
cording to the context. These four models correspond to the four classifiers presented previously.
This is a classification problem since we know the target classes of the models. Among the nu-
merous classification methods [4], we chose Artificial Neural Networks (ANN) because of our
type of data and the uncertain aspect of user behavior [5]. Indeed, neural networks can be used
to detect patterns and trends that are too complex to be noticed using statistics techniques. For
example, in our case, the uncertain aspect of user behavior is linked mainly to his/her interac-
tion manner following his context. These data may strongly impact the energy consumption of
the mobile system and consequently the results of our proposed solution. In addition, we have
various data that cover several axes to describe the user context as shown in section 2.

A neural network is made of input nodes, output nodes and hidden nodes that link the input
to the output nodes. The hidden nodes are organized in one or more layers, what forms the
architecture of the network.

• The inputs units receive information to be processed. In our case, it is the collected user
context.

• The outputs units receive the results of the processing. In our case, they are four context
classes for each CPU, sound and brightness. For The Wi-Fi, we have three outputs units
corresponding to each state.

• The hidden units connect the input units to the output units. Their activity is determined
by the activities of the input units and the weights on the connections between the input
and the output units.

Many studies discussed the use of several ANN architectures and training algorithms for
classification. In ENOrMOUS, since it is based on a set of known-correct outputs for each
context, the backpropagation (BP) models are appropriate. The BP algorithm adapts the network
according to the input-output associations that are expected.

The method used to create this training dataset is described in the following subsection.

12



3.2.1. Training dataset
The set of instances for which we have the desired outputs constitute the training dataset,

which is based on the user’s actions. Examples of appropriate brightness and sound level are
inserted in the training dataset through the application of the change blindness mechanism [6].
Indeed, we exploit the change blindness concept by decreasing screen brightness and sound level
gradually until it is no longer acceptable by the the user. When the screen brightness and the
sound volume levels are gradually lowered and the user does not change these values manually,
we conclude that the user is satisfied with these new screen brightness and sound volume values.
Then, we store these appropriate brightness/sound values as targets for the specified context.
However, when our automatic adjustment is not tolerated and is modified manually by the user,
the target value for the screen brightness and the sound volume are the last values that have not
been modified manually.

A similar method is used to detect relevant CPU frequency: we decrease the frequency until
a manual readjustment by the user is detected. Then, we store the last frequency that satisfied
the user. In order to define the Wi-Fi targets, for each input sample we try to determine a corre-
sponding connectivity configuration by experimentation. The user feedback is taken into account
to correct the classification.

This process represents the only phase where the user changes resources configuration man-
ually. This is necessary for the construction of the learning dataset. This is done just once before
the start of the classification. All remaining phases are automatic and do not require any user
action. The differences in the users’ needs and preferences explain why the classifiers are trained
specifically for each user.

Figure 6 shows the target classifiers selecting process

Input 1 Input n Input 3 Input 2 

Specified User Context  

Resources 
Decreasing / 

Resources 
Configuration 

User 
Readjustement 

Check User 
Satisfaction 

Training 
Dataset 

Figure 6: Target classifiers selecting process.

13



3.2.2. Network architecture
The back-propagation learning algorithm (BPLA) is one of the most studied and used al-

gorithms for neural networks learning. It is a widely used method for ANN learning in many
applications [7]. We used the sigmoid function to calculate the output of the neurons. The shape
or architecture of the network is another parameter that must be decided upon to design an ANN.
The architecture depends on the way the neuron layers are connected to each other, the number
of hidden layers and the number of neurons per layer. Unfortunately, there is no generic method
to determine the optimum values for these parameters.

About the connections between the layers, two architectures were tested: a simple Feed-
forward BP architecture and a Cascade BP architecture [5]. Both of them are among the most
popular multilayer ANN. Their network architectures differ by the number of connections be-
tween the neurons: in the feed-forward BP architecture, each hidden layer (n) node is connected
to the previous layer (n-1) nodes, whereas in the cascade BP architecture, each hidden layer (n)
node is connected to every previous layer (input layer-0, 1, ..., n-1). We simulate and compare the
results obtained by each type of architecture in order to choose the right model and the suitable
configuration for each classifier and each user. The most accurate architecture will be chosen to
be embedded on the device.

We perform tests with ANNs containing two intermediate layers and with variations from 1
to 10 neurons in each hidden layer. Weights and biases were randomly initialized. We select 200
inputs samples for each resource and each user to test and choose which of the feed-forward or
the cascade BP architecture were the most appropriate. Our networks were trained during 100
training cycles (or epochs). These 200 samples were divided 80% for training, and 20 % for
validation. The evaluation of our ANNs has been done by experimentations in order to select
different architectures (hidden layers size) and comparing obtained results.

We noticed that:

• In our case, changing the intermediate layers and neurons number did not affect the accu-
racy result. On the contrary, increasing the ANN size was counter-productive and causes
latency with power overheads.

• We also notice that changing the number of input samples affect the accuracy of the ANN.
By selecting less than 200 samples, the accuracy was decreased.

• Increasing the number of input samples can lead to a problem of over-learning.

• In the literature, there is no method to determine the ideal number of samples. The most
recommended method is experimentation and comparison of different results. For ENor-
MOUS the number of selected samples is sufficient to demonstrate the feasibility of our
solution.

Table 2 presents the neural networks architecture comparison for our four classifiers. This
table represents results for one user in order to show how the ANN architecture choice is done.
The table presents the mean square error, the number of iterations (Epochs) performed for the
validation performance to reach a minimum and the regression results.

• The mean squared error (MSE) for each ANN with the number of epochs is shown. The
MSE indicates the accuracy of our algorithm, which should be at an acceptable level.

• Regression results show the relationship between the outputs of the network and the targets
during the two phases: Training and validation. If the training were perfect, the network

14



outputs and the targets would be exactly equal, but the relationship is rarely perfect in
practice. The regression plot will confirm our choice concerning the right architecture and
algorithm.

Table 2: Neural network accuracy for one user

Resource ANN MSE Epochs Training Validation

CPU
Feed FBP 0.21 4 0.49*Tar + 0.073 0.51*Tar + 0.17
Cascade
FBP

0.062 12 0.71*Tar + 0.077 0.69*Tar + 0.012

Wi-Fi
Feed FBP 0.02 14 0.84*Tar + 0.058 0.84*Tar + 0.044
Cascade
FBP

0.11 10 0.61*Tar + 0.11 0.56*Tar + 0.15

Sound
Feed FBP 0.049 16 0.92*Tar + 0.002 0.87*Tar + 0.039
Cascade
FBP

0.044 3 0.69*Tar + 0.085 0.75*Tar + 0.07

Brightness
Feed FBP 4 e-08 19 0.89*Tar + 0.006 0.89*Tar + 0.096
Cascade
FBP

0.073 3 0.7*Tar + 0.11 0.7*Tar + 0.13

Training and validation represent the linear equation which shows the relationship between the
targets and the obtained outputs for our two neural networks and for one user. The MSE and the
regression results analysis provide the following information for the specific user:

• Cascade FBP provides better results than the simple Feed FBP for CPU and sound classi-
fiers.

• Simple Feed FBP provides better results compared to the Cascade FBP for Brightness and
Wi-Fi classifiers.

• The accuracy of our different neural networks by referring to the mean square error in-
dicates that the number of samples is sufficient. Increasing this number may eventually
improve accuracy, but this requires further data collection.

The ANN architecture selection and accuracy can also be different for each user because of
the interaction manner, resources requirements, running application and so on. This difference
indicates the need for separate experiments to determine the most suitable architecture for each
user.

4. Experimental Results

This section presents the experimental results of our proposed solution. The purpose of these
experiences is to validate our framework’s architecture, evaluate the obtained energy consump-
tion reduction and the cost of our solution. The presented evaluation is considered as preliminary
results in an academic context. The section is divided in four parts. We first present the tools
used in the implementation phase and in the experiments. In the second part, we present the
obtained experimental results in terms of power consumption. The third part presents additional
results regarding the power consumption results obtained with ENOrMOUS. We finally present
the cost of our solution regarding the resource usage.

15



4.1. Tools and Experimental Environments
This section presents the experimental environment, the tools and their usage.

4.1.1. Measure and control tool
The Intel Energy Checker SDKit (IecSDK) [8] has been used to implement our solution. The

SDK has been designed to measure and optimize applications energy efficiency. Two components
of the SDK are leveraged in this work: the main driver (ESRV - Energy Server) and the Modeler.
The Modeler provides the services required to implement data collection process and energy
saving heuristics. Several data collection extension modules, a.k.a. Inputs Libraries (ILs), as
well as Actuators Libraries (ALs) have been developed. The Modeler is composed of three
components: the Front-End (FE), the Input Bus (IB), and the Back-End (BE).

• The Front-End(FE) collects the data through the Inputs Libraries (ILs): CPU Utiliza-
tion, display brightness, battery level, front end applications, etc. If necessary, new data
can be collected by developing new ILs.

• Once collected by the ILs, data are made visible on the Input Bus. Any module connected
to the bus has direct access to the metrics. The IB is the main interface between the FE
and the BE.

• The Back-end(BE) provides core services e.g. a logger or a power-to-inputs automatic
correlation, a watchdog as well as an interrupts and communications manager. The BE
can be expanded via Actuators Libraries (ALs). ALs are designed to perform specific
actions such as dynamic OS configuration and dynamic platform configuration. Usually
ALs are used to implement various optimization heuristics that are driven in real-time by
the inputs provided by the FE.

Figure 7 depicts the architecture we used to implement our approach.

Energy	Server	(ESRV)

Input	Libraires	(ILs

Actuator	Libraries	(ALs)

Input	Bus

Power	Energy	
Metrics

Sensors,	user	data,	
environment,	APIs,	

etc.

Produce

Consume

Front	End	(FE)

Back	End	(BE)

OA DPM

DCM:	User	probe	
System	Probe	
Environment probe

CSM

USC

Figure 7: ENOrMOUS architecture based on IecSDK

ENOrMOUS has been implemented as:

• For the data collection module (DCM), we have three ILs corresponding to our three
probes.

16



• For the data processing module (DPM), we have four ALs corresponding to each resources
classifier.

• The current state module (CSM) has been implemented as an IL.

• Finally, we have four actuator libraries, one actuator library for each resource.

The developed Inputs Libraries and Actuator libraries are generic and cross platform. They can
run under Linux/Android and iOS. They can a priori be embedded on any mobile devices thanks
to their low cost in terms of power consumption, memory and CPU usage.

4.1.2. Development of the neural networks
For the neural networks setup for preliminary experiments as shown in section 3.2.1, Matlab

neural Networks toolbox functions are used to simulate and compare our networks, adjusting
neurons weights to have the most appropriate configuration. After the simulation on Matlab, we
have implemented the neural network functions as Actuator Library using a C Wrapper.

4.1.3. Mobile device and OS
The experiments have been carried out on an Ultrabook running Windows 8.1 with a 2.50

GHz Intel dual-core i7-u3667U processor and 4GB of RAM. The ultrabook is an Intel reference
design 2 in 1 which can be used as tablet or ultrabook. Power measurement has been done using
the Yokogawa WT210 power analyzer. Table 3 below presents our mobile device hardware
features.

Table 3: Intel 2in1 Ultrabook Features

Analyzed Plateform 2in1 Intel Ultrabook
Average Battery Life (Hours) 8 Hours

Maximal Power Consumption (W) 23 W
Minimal Powe Consumption (W) 11.5 W
Average Power Consumption (W) 16 W

Number Of Cores 2
Number Of Threads 4

Processor Base Frequency 2.00 GHz
Max Turbo Frequency 3.20 GHz

Cache 4 MB SmartCache
RAM 4 GB

The ENOrMOUS principle is usable in almost all mobile systems but will require some ad-
justments and modifications depending on the platform. The main reason why the Ultrabook
has been chosen to demonstrate the feasibility of our approach is because of the simplicity to
connect it to our measurement device, the Yokogawa WT210 [9]. Other works like [10] pro-
pose a time energy model (TEM), which is a regression model to estimate the application energy
consumption on real mobile devices. For more accuracy, in our work, we are using the Intel En-
ergy Checker SDK and the Yokogawa WT 210 to measure the energy consumption of the whole
process. This mobile device also contains a port for GSM Cards as well as a touch screen. In
addition to these hardware features, with the Windows store, we have access to many metro style
applications [11] such as Facebook, Viber, Shazam, Instagram and so on. These applications

17



will be used as an entire application and will not be used thru a web browser. In addition, these
applications are widely used both on smartphones and tablets. These characteristics makes our
solution useful for other mobiles devices.

4.1.4. Users population in the experiments
For our experiments mentioned in section 4.2, we selected six real users with the several

aforementioned probes and we collected the required information over two weeks. These six
users correspond to six Master students with different profiles and habits. We also simulate six
synthetic users to give more details about our power management solution. In total we have a
population of 12 users.

4.2. ENOrMOUS power management results

In this section, we measure the gain obtained in power consumption with the use of our so-
lution. To demonstrate our solution efficiency, we made tests in different scenarios with different
real user contexts. Recall that the classification output is an appropriate frequency for the CPU,
a range of values for the sound and the brightness and one state among three for the Wi-Fi.

The optimizer actuator decreases screen brightness and sound level gradually by delta units
every lambda seconds to the smallest value that satisfies the user. Delta and lambda have been
fixed experimentally to 3% and 4 seconds respectively to not impact the user satisfaction and to
converge as quickly as possible to the optimal value.

For the CPU frequency, the Optimizer Actuator decreases the frequency through the Win-
dows API. Finally for the Wi-Fi, the interface is directly configured to the appropriate state (on,
disconnected or off).

Table 4 presents a users contexts snapshot. This table gives an instantaneous user context
information for our six users, we have four sets of information, we recall that each set corre-
sponds to one of the four neural networks. We also give the foreground application name in
addition to its needs in terms of the four resources. These information represent a sample for one
specified context, when the foreground application will change, the context will be different and
obviously the results presented in Table 5 will also change. For each resource, Table 5 gives the
corresponding classification results.

18



Table 4: Users Context Classification Snapshot

Context data User 1 User 2 User 3 User 4 User 5 User6
CPU Freq 1750 1250 1250 1750 800 800

# Apps 5 3 2 4 1 2
App CPU CAT M L L L L L
Ambient Noise 35 57 76 15 42 0
Sound user pref 50 60 80 40 53 90

App Sound Need L M H L M H
Ambient Luminosity 25 58 85 35 65 47

Bright user pref 48 47 70 41 52 65
App Bright Need M M M H M H
Download (KB) 17 27 1.7 4.2 7.7 78

Upload (KB) 18 0.0 4.3 3.2 19.2 2.4
Wi-Fi App Cat OFF ON OFF OFF ON ON

Mobility Low High Medium High Low Low

Application 2048 Facebook VLC
Foxit

Reader OneNote Skype

Table 5: Classification Results

Classes User 1 User 2 User 3 User 4 User 5 User 6
CPU freq (MHz) 1250 800 800 1250 800 800
Sound level (%) [0;25] [25;50] [50;75] [0;25] [25;50] [75;100]

Brightness level (%) [0;25] [25;50] [50;75] [25;50] [25;50] [50;75]
Wi-Fi state Discon Discon OFF OFF Discon Connec

We notice from the two tables above that:

• The CPU frequency allowed by ENOrMOUS is always lower or equal to the CPU fre-
quency set by the OS.

• The Wi-Fi classification is highly correlated with the foreground application connectivity
need and the user mobility. For example user 2 is running Facebook, however the classifi-
cation’s result is Wi-Fi disconnected which is due to the user mobility.

• We can have a similar classification results for a different user contexts for example, user
4 and user 5 have the same classification results for sound [25%-50%] but their context
information are different. The same information is noticed for the brightness classification
regarding user 2 and user 5.

ENOrMOUS may determine a different configuration to the one we have in Table 4. If the user
mobility changes for example, the Wi-Fi configuration will be different than what is presented
in Table 5. Recall that the outputs of the classifiers indicate the power policies. The Optimizer
Actuator retrieves these outputs and consult the Current State Module. Then, it applies the corre-
sponding power policy on the appropriate power knob. Figures 8, 10 and 9 represent respectively
the results from the OS vs. the ENOrMOUS configurations for CPU, sound and brightness.

19



0 

200 

400 

600 

800 

1000 

1200 

1400 

1600 

1800 

2000 

User 1  User 2 User 3 User 4 User 5 User 6 

CPU Freq (MHz) OS DFS (MHz) ENOrMOUS DFS (MHz) 

Figure 8: OS DFS configuration VS ENOrMOUS DFS configuration

0

10

20

30

40

50

60

70

80

90

User	1	 User	2 User	3 User	4 User	5 User	6

Bright	Level (%)

OS	Bright	(%) ENOrMOUS	Bright	(%)

Figure 9: OS brightness Vs ENOrMOUS management

0

10

20

30

40

50

60

70

80

90

100

User	1	 User	2 User	3 User	4 User	5 User	6

Sound	Level	(%)

OS	Sound	(%) ENOrMOUS	Sound	(%)

Figure 10: OS sound Vs ENOrMOUS management

Table 6 represents the ENOrMOUS Wi-Fi management in comparison with the default OS
Wi-Fi management for the specified user context 4. These results correspond to the classification
results of the specified user context in the tables above.

Table 6: OS Wi-Fi Vs ENOrMOUS Wi-Fi management

Users OS Wi-Fi Management ENOrMOUS Wi-Fi Management
User 1 Connected Disconnected
User 2 Connected Connected
User 3 OFF OFF
User 4 Connected OFF
User 5 Connected Disconnected
User 6 Connected Connected

Figure 11 shows the whole system power consumption gains obtained with ENOrMOUS for
the specified user context 4. The measurement tests have been done 10 times, then the average

20



has been calculated.

0
2
4
6
8

10
12
14
16
18

User	1	 User	2 User	3 User	4 User	5 User	6

Power	(W) OS	Power	(W)	 ENOrMOUS	POWER	(W)	

11.79 % 10.4 % 23.11 % 13.21	% 3.58	%23.32	%

Figure 11: OS vs. ENOrMOUS power consumption (gain in %)

By analyzing the results, we notice:

• The total power reduction obtained by managing the CPU is relative to the running appli-
cations requirement, the user behaviors and the interaction manner as shown previously.
Decreasing the frequency by 450 - 500 MHz corresponds to an average gain of 7% of the
whole system power consumption.

• The power consumption reduction gains by decreasing the sound level is very small and
corresponds to 4% of the whole power consumption for 100 % units of the volume.

• The gain in terms of power by managing the screen luminosity is linearly correlated with
the screen brightness level. We made tests with no running applications in order to have
an accurate measurement. 3% of screen brightness level represents approximately 0.155W
for the Ultrabook power consumption.

• The power consumption gain by switching OFF the Wi-Fi interface is 1.6 W, which cor-
responds to 7% of the total power consumption. By disconnecting the Wi-Fi interface the
gain is estimated at 3%.

4.3. Power reduction with application sequences
In this section, we carried out additional tests with six synthetic usage scenarios. For theses

tests, we set up user utilization scenarios illustrated in Figure 12. For each synthetic user, we
present widely used applications and a specified context. As mentioned previously, these usage
scenarios are synthetic but based on the six real users’ data presented in Table 4: the synthetic
users have been simulated by combining the collected information from our 6 master students
and their answers to some questions about their satisfaction. Then, for each user, we simulate the
specified scenario by executing the corresponding applications. We simulate each application for
10 minutes, then an average of the power consumption has been calculated.

We have chosen to use synthetic users to save time and propose a proof of concept concern-
ing ENOrMOUS. We had also limitations concerning the availability of the testing platform and
the wattmeter. The purpose of these results is to show how ENOrMOUS will act during a nor-
mal usage of the system and when the user is running applications sequences. The information
presented in Figure 12 have been obtained as follow:

21



• First, we choose arbitrarily six days and six time intervals for each day, these information
represent the temporal data.

• For each day, the applications sequences have been obtained by interviewing our six reel
users about their common application sequences. These applications represent widely used
application. The sequence application may be composed by one or two applications, the
first sequence is represented in blue and the second sequence in green. We also give the
background application which are represented in gray.

• The CPU frequency set by the OS, the screen brightness and the volume levels and the Wi-
Fi state are captured dynamically via the Current State Module (CSM) for each sequence.

• The user preferences in terms sound volume and screen brightness are those of our 6 real
users. Recall that the user’s preferences may vary depending on the foreground application
and the temporal data.

• The environment information such ambient light, the ambient noise and the time intervals
are also captured by the CSM during the experiments.

Figure 12 represents the user context for the 6 synthetic users.

Facebook Instagram Youtube 

Spotify 

Spotify 

Instagram 

CPU freq Brightness  Vol Mobility Noise Lux Wi-Fi 

1750  82 % 50 % High Quite Dark ON 

1250 81 % 67 % High Quite  Bright ON 

Tuesday 18H – 19H35    User 1 

User 2 

Word 

Skype 

Photoshop 

Power point 
Bank App 

Monday   8h30 – 11H 

CPU Freq Brightne  Vol Mobility Noise Lux Wi-Fi 

1250  69 % 95 % OFF Noisy Bright  OFF 

1750 72 % 87 % OFF Quite Bright ON 

Amazon 

Music 

Messenger 

Excel 

2048 

CPU Freq Bright Vol Mobility Noise Lux Wi-Fi 

1250 67% 82% OFF Quite Bright  ON 

1250 53 % 52 % High Noisy Indoor OFF 

User 3 Thursday   12h35 – 12H55 

PDF Reader 2048 VLC 

Sudoku 

CPU freq Bright Vol Mobility Noise Lux Wi-Fi 

1750 88% 84% OFF Noisy Dark ON 

1750 88% 84% ON Noisy Indoor ON 

Sunday 15 H – 16 H User 4 

User 5 

Uber 

Messenger 

Facebook 

Viber 

Tinder 

Saturday 1H – 2H30 

CPU Freq Bright Vol Mobility Noise Lux Wi-Fi 

1250 64% 61% Medium Quite Bright ON 

1250 62% 57% Low Noisy Indoor OFF 

Facebook 

Need For Speed 

Sudoku 
Music 

Photoshop 

Friday 7H – 7H30 

OS Freq Bright Vol Mobility Noise Lux Wi-Fi 

1750 63% 79% High Noisy indoor ON 

1750 63% 82% Medium Quite Dark ON 

User 6 

2048 

Instagram 

2048 

Figure 12: Utilization scenarios for the six synthetic users

The classification results for the users 1,2 and 3 are shown in Table 7.

22



Table 7: ENOrMOUS Classification results for users 1,2 and 3

Users Sequences CPU freq Sound Bright Wi-Fi state

User 1 1st 1250 66 % 52 % Discon

2nd / / / OFF

User 2 1st / 65 % 60 % /

2nd / / / OFF

User 3 1st / 52 % 53 % /

2nd / / 43% /

Figure 13 and 14 represent respectively the power consumption for the 6 users.

0

10

20

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Po
w
er
	(W

)

Time	(min)

OS		Vs	Enormous for	User	2

13
14
15
16
17

5 10 15 20 25 30 35

Po
w
er
	(W

)

Time	(min)

OS		Vs	Enormous for	User	3

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105

Po
w
er
	(W

)

Time	(min)

OS		Vs	Enormous for	User	1 OS	Power Enormous	Power

Figure 13: Power consumption for users 1,2 and 3

We notice for:

1. User 1: for the first sequence with Facebook and Instagram, the CPU frequency has been
decreased from 1750 MHz to 1200 MHz. The screen brightness and the volume have
been decreased respectively to 66% and 52% of the maximum. Finally, the Wi-Fi interface
is disconnected. When the user launches Youtube and Spotify, for this second sequence,
ENOrMOUS manages only the Wi-Fi by disabling the interface. The rest of the hardware
components are not changed because of the context classification. By analyzing the results
shown in Figure 13, we notice that the difference between the OS and ENOrMOUS is
minor after the 65th minute which corresponds to Spotify launch. We conclude that we
have more opportunities to save power when the user is launching several applications and
requiring high hardware resources.

23



2. User 2: the effect of ENOrMOUS on the power consumption is relatively small in this case.
However, the power consumption with the deployment of ENOrMOUS is always below
the power consumption of the OS. For the first sequence with the Bank App, Word, and
Skype in background, ENOrMOUS decreases the sound volume to 65% and the screen
brightness to 60%. When the user launches Photoshop and PowerPoint in background,
ENOrMOUS manages only the Wi-Fi interface, even though the user is not in motion,
ENOrMOUS disables the Wi-Fi because the application does not require any connectivity.

3. User 3: this user is the only one whose power consumption does not exceed 17 W. When
user 3 is executing 2048, Amazon and the Music Player in background, the CPU frequency
and Wi-Fi interface state are not changed. ENOrMOUS reduces the volume and the screen
brightness respectively to 52% and 53%. For the second sequence, ENOrMOUS decreases
again the screen brightness to 43%. The volume has not been modified by ENOrMOUS
because no application requires it.
The classification results for the users 4,5 and 6 are shown in Table 8.

Table 8: ENOrMOUS Classification results for users 4, 5 and 6

Users Sequences CPU freq Sound Bright Wi-Fi state

User 4 1st 800 / 38 % OFF

2nd / / / OFF

User 5 1st / / / Discon

2nd / / 43 % /

User 6 1st / / / Discon

2nd 800 38 % 37 % ————

0

10

20

5 10 15 20 25 30 35 40 45 50 55 60

Po
w
er
	(W

)

Time	(min)

OS		Vs	Enormous for	User	6

0

10

20

5 10 15 20 25 30 35 40 45 50 55 60

Po
w
er
	(W

)

Time	(min)

OS		Vs	Enormous for	User	4 OS	Power Enormous	Power

0

10

20

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105

Po
w
er
	(W

)

Time	(min)

OS		Vs	Enormous for	User	5

Figure 14: Power consumption for users 4,5 and 6

24



1. User 4: this user is the one with the most power reduction opportunities. For the first se-
quence, the CPU frequency has been decreased to 800 MHz, the Wi-Fi has been disabled
and the screen brightness has been decreased to 38%. For the second sequence, ENOr-
MOUS keeps the same configurations in addition to sound volume decreasing, the reason
is the running of the media application VLC.

2. User 5: the power reduction obtained with ENOrMOUS is relatively small. It is due
mainly to the user context and especially the used application needs that do not offer power
reduction opportunities. For the first sequence, the Wi-Fi is disconnected without being
disabled because of the user mobility. For the second sequence, the screen brightness is
decreased by 9%.

3. User 6: For this user, ENOrMOUS is very efficient. For the first sequence, ENOrMOUS
disconnects the system without configuring the other hardware components. For the sec-
ond sequence, the Wi-Fi interface is disabled, the sound volume has been decreased to
38% and the screen brightness to 37%. Finally, the CPU frequency has been decreased to
its minimal value (800 MHz).

From these experiments, we can make the following remarks:

• The power reduction opportunities vary from a user to another depending on many factors
such as the foreground application needs and the user mobility. All the information that
form the context are likely to impact the power consumption.

• Users that require higher hardware resources offer more energy reduction opportunities.

• In all the scenarios, ENOrMOUS was able to decrease at least one resource among the
four targeted resources.

Figure 15 shows the obtained results for our 6 users.

0 

5 

10 

15 

20 

25 

30 

35 

40 

User 1 User2 User3 User4 User5 User6 

En
er

gy
 S

av
in

g 
(%

) 

Total Energy Saving 1st Seq Energy Saving 2nd Seq Energy Saving 

Figure 15: Energy saving results comparison

By analyzing the figure, we notice that the most important energy reduction is obtained with
user 4. ENOrMOUS reduces the energy consumption by 25.9% for the first sequence and 35.10%
for the second one. The energy reduction for the whole scenario reaches 32%. This user is the one
who consumes the most energy and paradoxically, it represents the user for whom NOrMOUS
has been the most efficient. This information confirms that the users that require higher hardware
resources offer more energy reduction opportunities.

25



For user 6, the hardware configuration used by ENOrMOUS offers a gain of 17.68% for the
whole scenario. For this user, the obtained energy saving with the first sequence is very small and
is 4.75%. However, for the second sequence, ENOrMOUS reduces the energy consumption by
29.1%. These reductions confirm our main hypothesis that the user context impacts the energy
consumption. Indeed, for the same user, we have different energy consumption depending on the
context.

For user 1, the energy reduction is about 13.29% for the whole scenario. For users 2, 3 and
5, the energy consumption has been reduced respectively by 6%, 4.60% and 6.28%. With these
three users, the opportunities of energy reduction are rare because of the executed applications
and the required resources.

4.4. ENOrMOUS Overhead Costs

Performing energy saving actions comes with a cost. In this section, we discuss the whole
cost of ENOrMOUS in terms of resources consumption, power overheads and latency. We re-
mind that we have three main phases: data collection, data processing and power policies appli-
cation. We will present the cost of the ENOrMOUS components and modules.

The DCM is the first module used in ENOrMOUS. As mentioned previously, the data col-
lection lasts for two weeks continuously for each user. The probes are implemented as Input
Libraries and the collected data is stored in XML files. Figure 16 shows the DCM input libraries
power consumption.

0 2,000 4,000 6,000 8,000

14

16

18

20

22

24

26

Time (ms)

W
A

T
T

(W
)

DCM Input Lib. Power Consumption

Figure 16: DCM power consumption cost over time

We notice that the deployment of the DCM causes a power overhead of 10 Watts during 3
seconds. These three seconds correspond to the probes interfacing with the different sensors.
After the interfacing phase, the power consumption is stabilized. This power overhead occurs
only when the framework is deployed and is common to all the users. The size of the collected
data is relatively small and does not impact the user satisfaction. This size varies according to
each user behavior and utilization time. Over the two weeks, the volume of collected data varies

26



between 22 MB and 34 MB. As mentioned previously the data collection is done once and is
then redone depending on the power policies accuracy results. When the user is not satisfied by
the proposed HW configurations, we readjust dynamically the CPU frequency, the luminosity
level, the volume level and the Wi-Fi interface depending on his feedbacks. In addition, the user
feedbacks will be considered as the desired output of each specified context, improving implicitly
their satisfaction.

To measure the data processing cost, we measured ANNs training costs. ANNs learning
represents the most greedy phase in terms of resources. The training is carried out for the first
time at the end of the two weeks of data collection. Then, a new training phase is launched
every time the dataset is modified when the plateform battery is charging. The overheads are
measured in terms of CPU usage, memory usage and power consumption. Table 9 shows the
classifiers average training cost for each user with 200 samples. For every user, we calculated
the training duration, the CPU utilization, the RAM and the power consumption overheads. We
notice that no training took more than 10 seconds, the overheads in terms of CPU utilization,
RAM consumption and power occur only during this period of time. Even if these values seem
high, it does not seem to have affected the QoS because it occurred only once.

Table 9: Classifiers training cost measurements for our six real users

User
Avg learning

time (Sec)

Avg CPU
utilization

overhead (%)

AVG RAM
overhead (MB)

AVG power
overhead (W)

User 1 4.2 sec 45 % 120 MB 11 W
User 2 8 sec 39 % 109 MB 10.8 W
User 3 7 sec 43 % 112 MB 11.3 W
User 4 3.7 sec 37 % 104 MB 9.9 W
User 5 6.2 sec 44 % 117 MB 11.7 W
User 6 9.7 sec 49 % 131 MB 10.4 W

These features allow us to embed the whole power optimizer in the frond-end, i.e. the mobile
device. However, when the size of the user context data becomes large, this operation will not
be possible. Indeed, when these data increases, the classification phase will last longer and will
consume more hardware resources. For this reason, we are currently exploring the utilization of
cloud computing for ANNs learning to find a trade-off between power consumption reduction,
latency and overheads.

5. Related Works

Recently extensive works and projects have been developed for energy consumption opti-
mization in mobile devices. However, very few of them take into account the dynamic aspect of
user/application needs in the control of different resources. In this section, we summarize some
of the existing works in energy consumption optimization for mobile systems at the application
level. We mainly focus on the approaches based on user behavior and experience. Finally, we
highlight the main differences with our approach.

One of the first works in this area is [12]. The authors demonstrated the benefit to study real
user activities to characterize power consumption and to control the development of power opti-
mization. Their experiments on an HTC ARM based mobile phone show important differences

27



between users behaviors. They also demonstrated that CPU and screen are the most demanding
components in terms of energy. For the screen, the total utilization time is dominated by a small
number of long intervals, with a duration of about 100 s.

Many works show the importance of considering the user’s activities and behaviors to opti-
mize power consumption in mobile systems. In [13], the authors proposed an approach which
takes into account the user experience to apply different power optimization techniques. They
developed a new cpufreq governor. Their dynamic clock scaling approach provides a mechanism
to change the clock speed of the CPUs at run-time. Their proposed cpufreq governor analyzes
the user perceived response time of the applications at runtime. Then this information is used to
control the CPU frequency. The CPU energy consumption is reduced by up to 65.5% over the
Android’s default on-demand [14] cpufreq governor. The authors also exploited the characteris-
tics of the interactions between the user and the system to minimize energy consumption. They
used the elapsed time between two consecutive interactions to decrease the screen brightness
during this interval in order to have a gain in terms of the whole system energy consumption.
Authors in [15] and [16] proposed user activities and context information-based techniques and
several management policies for each hardware component have been developed. In their ap-
proach the CPU frequency was adjusted dynamically depending on the workload. They also
proposed to reduce background process life time depending on the obtained patterns. An energy
consumption reduction of up to 20% in comparison with commercial solutions like Juice De-
fender [17] has been obtained. However their solution is not completely automatic and requires
modifications in the running application source code.

Some of the existing works use machine learning techniques to classify the running applica-
tions or user activities. Targeting the Wi-Fi consumption, the approach proposed in [18] makes
a selection among the applications to give priority to those with the highest network interactivity
level. The applications are classified as high or low priority according to network traffic data with
the help of a SVM (Support Vector Machine) classifier. On this basis, only the traffic from high
priority applications is allowed in order to save energy. In [16], the authors proposed a classifica-
tion of user activities in terms of screen brightness needs and they correlated these data with the
current context information. Then, they used machine learning techniques to predict the required
luminosity. CAPED [19] improves the average satisfaction by 23.5% compared to the default
scheme. In [20], the authors presented the power monitor which is a client-server architecture
developed to collect usage logs from Android powered devices. Based on the utilization patterns,
power saving profiles are generated and personalized to match the needs of each device in the
system. The experimental results show that the power monitor can increase the battery life by
almost 90%. However this solution has some privacy issues which are due to the exploitation of
usage pattern generation. The survey section in [21] provides a useful list of studies that take into
account human activities to save the energy of embedded and wearable sensing systems. Most
of the listed studies use machine learning techniques, a large panel of different techniques such
as Bayesian classifier, support vector machine and so on. However very few of the studies, allow
to predict future users requirements to allow energy consumption minimization.

Approaches like [22], [23] and [24] focused on offloading computing to extend the battery
life of the mobile devices. In [22], the authors proposed FMOCO, a framework which takes into
account the offloading requests submitted by users during a specific period of time and proposed
the best possible offloading strategy based on each individual user’s computing power, band-
width, as well as available cloud resources. In [23], the authors proposed a scheduling algorithm
that adapts offloading decisions in fine granularity in dynamic wireless network conditions and
verify its effectiveness through trace-driven simulations. In this paper, we focus on the neural

28



networks implementation in the device. However, we are currently working on a method to
offload the classification process in a remote server to optimize the cost of our solution.

In [25] we proposed a software component based on application sequences prediction and
offline application classification to improve software power management scheme. In [26], we
propose to use a software agent whose goal is to save the energy of mobile devices with the
lowest effect on QoS.

Compared to previous works, ENOrMOUS presents the following main new features:

• The user context is defined and classified by taking into account several sources of in-
formation. This classification leads to an efficient control of the resources such as CPU
frequency, sound level, screen brightness and Wi-Fi.

• In our approach, one of the most important parameter is user satisfaction. By taking this
parameter into account, ENOrMOUS is able to propose a customized power management
solution. This approach has been rarely used in current commercial solutions.

• For screen brightness, ENOrMOUS differs from [27] and [28] in terms of objectives. Our
work aims to improve OS policies independently from the screen hardware characteristics.
In this sense, our approach is more applicable in real systems and will be more efficient in
existing platforms.

• Finally, ENOrMOUS is modular due to the utilization of the Intel Input Libraries (ILs)
and Actuator Libraries (ALs) [8]. This modularity along with the utilization of the Intel
Energy Checker SDK, makes our solution flexible. Enhancing the optimizer by new data
from a new sensor or adding a new actuator for managing a new hardware component is
relatively easy by the use of these ILs and ALs.

6. Conclusion

In this paper, a new technique for energy consumption reduction in mobile systems has been
proposed. Our approach is based on machine learning techniques. We also used the Intel En-
ergy Server tool which allows the definition of new Input Libraries (ILs) for collecting data and
Actuators Libraries (AL) for controlling hardware components such as screen brightness and
CPU frequency. Compared with existing methods, where the users needs and behaviors are
rarely taken into account, in our approach, we not only consider these elements but, we also
take into account information from context and environment. In this paper we focus on CPU
frequency, sound level, screen brightness and Wi-Fi classification. However, the proposed solu-
tion is generic and could be applied for any hardware component such the GPS, GPU utilization
and so on. In comparison to the advanced energy management provided by Windows OS, for
some situations the gain offered by our approach reaches 35% depending on the user’s needs and
habits.

This work will be extended at several levels:

• Considering more possible user patterns by adding information such as geographical po-
sition, battery level usage curve. We are also extending the set of tested applications. and
and more applications.

• Exploring the correlation between the user satisfaction, the training cost and the accuracy
of power policies application.

29



• Adding a classifier for cellular data, which could take as input the application used, the
applications in background, the mobility of the user and the use of Wi-Fi. The output of
this classifier can determine the desired signal quality 2 G, 3 G, 4 G or a total deactivation
of mobile connection.

• As long term perspective, we plan to realize a similar tool for low power mobile sys-
tems, such those based on ARM processors Finally, some applications have varying HW
resource needs at different runtime phases. For this reason, it could be interesting not
to consider the needs as constant for the whole application execution time but also the
variable needs at different execution phases of the application.

Acknowledgment

The Authors would like to thank Intel Corporation and es- pecially the Intel Research Council
for the support given to the project and the tools.

References

[1] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems, International Journal of Ad Hoc and
Ubiquitous Computing 2 (4) (2007) 263–277.

[2] A. K. Dey, Understanding and using context, in: Personal Ubiquitous Computing, Vol. 5, Springer-Verlag, London,
UK, UK, 2001, pp. 4–7.

[3] A. Pit, Ambient luminosity for screen brightness (2015).
URL http://www.androidpit.fr/comment-controler-luminosite-ecran-optimiser-batterie

[4] S. Kotsiantis, Supervised machine learning: A review of classification techniques, in: Informatica (Ljubljana),
Vol. 31, 2007.

[5] D. Badde, A. Gupta, V. K. Patki, Cascade and feed forward back propagation artificial neural network models for
prediction of compressive strength of ready mix concrete, IOSR Journal of Mechanical and Civil Engineering 3 (1).

[6] D. J. Simons, D. T. Levin, Change blindness, in: Trends in cognitive sciences, Vol. 1, Elsevier, 1997, pp. 261–267.
[7] Z.-G. Che, T.-A. Chiang, Z.-H. Che, et al., Feed-forward neural networks training: a comparison between genetic

algorithm and back-propagation learning algorithm, International Journal of Innovative Computing, Information
and Control 7 (10) (2011) 5839–5850.

[8] I. Corp, Intel energy checker software development kit userguide (2011).
URL https://software.intel.com/en-us/articles/intel-energy-checker-sdk

[9] N. Hirofumi, N. Naoya, T. Katsuya, Wt210/wt230 digital power meters, Yokogawa Technical Report 35.
[10] L.-T. Duan, B. Guo, Y. Shen, Y. Wang, W.-L. Zhang, Energy analysis and prediction for applications on smart-

phones, Vol. 59, Elsevier, 2013, pp. 1375–1382.
[11] A. Asthana, R. Asthana, ios 5, android 4.0 and windows 8–a review, in: IEEE Code of Ethics, 2012.
[12] A. Shye, B. Scholbrock, G. Memik, P. A. Dinda, Characterizing and modeling user activity on smartphones: Sum-

mary, in: Proceed. of the ACM SIGMETRICS Int. Conf. on Measurement and Modeling of Computer Systems,
SIGMETRICS ’10, ACM, New York, NY, USA, 2010, pp. 375–376.

[13] W. Song, N. Sung, B.-G. Chun, J. Kim, Reducing energy consumption of smartphones using user-perceived re-
sponse time analysis, in: Proceed. of the 15th Workshop on Mobile Computing Systems and Applications, HotMo-
bile ’14, ACM, New York, NY, USA, 2014, pp. 20:1–20:6.

[14] V. Pallipadi, A. Starikovskiy, The ondemand governor, in: Proceedings of the Linux Symposium, Vol. 2, 2006, pp.
215–230.

[15] S. Datta, C. Bonnet, N. Nikaein, Power monitor v2: Novel power saving android application, in: Consumer Elec-
tronics (ISCE), 2013 IEEE 17th International Symposium on, 2013, pp. 253–254. doi:10.1109/ISCE.2013.

6570213.
[16] M. Schuchhardt, S. Jha, R. Ayoub, M. Kishinevsky, G. Memik, Caped: Context-aware personalized display bright-

ness for mobile devices, in: Proceedings of the 2014 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, CASES ’14, ACM, USA, 2014, pp. 19:1–19:10.

[17] Laterdroid, Juice defender (2013).
URL http://www.juicedefender.com/

30

http://www.androidpit.fr/comment-controler-luminosite-ecran-optimiser-batterie
http://www.androidpit.fr/comment-controler-luminosite-ecran-optimiser-batterie
https://software.intel.com/en-us/articles/intel-energy-checker-sdk
https://software.intel.com/en-us/articles/intel-energy-checker-sdk
http://dx.doi.org/10.1109/ISCE.2013.6570213
http://dx.doi.org/10.1109/ISCE.2013.6570213
http://www.juicedefender.com/
http://www.juicedefender.com/


[18] A. Pyles, X. Qi, G. Zhou, M. Keally, X. Liu, Sapsm: Smart adaptive 802.11 psm for smartphones, in: Proceed. of
the 12th int. conf. on ubiquitous computing (UbiComp’12), 2012, pp. 11–20.

[19] M. Schuchhardt, S. Jha, R. Ayoub, M. Kishinevsky, G. Memik, Caped: Context-aware personalized display bright-
ness for mobile devices, in: Proceedings of the 2014 International Conference on Compilers, Architecture and
Synthesis for Embedded Systems, ACM, 2014, p. 19.

[20] S. Datta, C. Bonnet, N. Nikaein, Personalized power saving profiles generation analyzing smart device usage
patterns, in: Wireless and Mobile Networking Conference (WMNC), 2014 7th IFIP, 2014, pp. 1–8. doi:10.

1109/WMNC.2014.6878858.
[21] D. Gordon, J. Czerny, M. Beigl, Activity recognition for creatures of habit, Personal and Ubiquitous Computing

18 (1) (2014) 205–221.
[22] W. Liu, W. Gong, W. Du, C. Zou, Computation offloading strategy for multi user mobile data streaming applica-

tions, in: Advanced Communication Technology (ICACT), 2017 19th International Conference on, IEEE, 2017,
pp. 111–120.

[23] L. Zhang, D. Fu, J. Liu, E. C.-H. Ngai, W. Zhu, On energy-efficient offloading in mobile cloud for real-time video
applications, IEEE Transactions on Circuits and Systems for Video Technology 27 (1) (2017) 170–181.

[24] A. Ahmed, A. A. Hanan, K. Omprakash, M. Usman, O. Syed, Mobile cloud computing energy-aware task of-
floading (mcc: Eto), in: Communication and Computing Systems: Proceedings of the International Conference on
Communication and Computing Systems (ICCCS 2016), Gurgaon, India, 9-11 September, 2016, CRC Press, 2017,
p. 359.

[25] I. C. Draa, S. Niar, J. Tayeb, E. Grislin, M. Desertot, Sensing user context and habits for run-time energy optimiza-
tion, EURASIP Journal on Embedded Systems 2017 (1) (2017) 4.

[26] I. C. Draa, E. Grislin-Le Strugeon, S. Niar, An energy-aware learning agent for power management in mobile
devices, in: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent
Systems, Springer, 2017, pp. 242–245.

[27] D. Shin, Y. Kim, N. Chang, M. Pedram, Dynamic voltage scaling of oled displays, in: Design Automation Confer-
ence (DAC), IEEE, 2011, pp. 53–58.

[28] X. Chen, Y. Chen, Z. Ma, F. C. Fernandes, How is energy consumed in smartphone display applications?, in:
Proceedings of the 14th Workshop on Mobile Computing Systems and Applications, ACM, 2013, p. 3.

31

http://dx.doi.org/10.1109/WMNC.2014.6878858
http://dx.doi.org/10.1109/WMNC.2014.6878858

	Introduction
	ENOrMOUS functional architecture
	User Context Classification for Power Reduction 
	ENOrMOUS Resources Classifiers
	CPU Classification
	Sound Classification
	Brightness Classifier
	Wi-Fi Classification
	Application categories

	Creation of the predictive models
	Training dataset
	Network architecture


	Experimental Results
	Tools and Experimental Environments
	Measure and control tool
	Development of the neural networks
	Mobile device and OS
	Users population in the experiments

	ENOrMOUS power management results
	Power reduction with application sequences
	ENOrMOUS Overhead Costs

	Related Works
	Conclusion

