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Solutions to the Landau-Lifshitz-Bloch Equation

Kamel Hamdache ∗, Djamila Hamroun †

Abstract

In this work we discuss existence of solutions of the Landau-Lifshitz-Bloch equation de-
scribing the dynamics of the magnetization for the whole range of the temperature. By using
energy method we prove global existence of strong solutions for given initial data, existence of
time-periodic solutions as well as existence of steady state solutions of the equation.

Keywords: Landau-Lifshitz-Bloch equation, magnetization, anisotropic energy, magnetostatic equa-
tion, regularization method, Galerkin approximation, fixed point thorems.
AMS subject classifications : 76N10,35Q35, 76D05.

A macroscopic description of the dynamics of the magnetization of ferromagnets at low temperature
as well as at elevated temperature is described by the Landau-Lifshitz-Bloch (LLB) equation. This
equation interpolates between the Landau-Lifshitz (LL) equation which is valid for temperatures
below the Curie point θc and the Bloch equation when the temperatures exceed θc. (LLB) equation
involves the longitudinal variation of the magnetization so the magnetization length is not conserved
as in (LL) equation. The (LLB) model first introduced in [8] has been discussed from the physical
point of view in many recent papers see [13, 17] for example, this growing interest is sparked by
the many applications of the model which concern among others, the magnetic write head and the
recording medium.
To state the equations of this model, we consider an open bounded domain D ⊂ R3 which is simply
connected and regular with boundary Γ and we denote ν the unit outward normal to Γ. Let T > 0
be a fixed final time, we set DT = (0, T )×D and ΓT = (0, T )× Γ.
The (LLB) equation satisfied by the magnetization m = (m1,m2,m3) takes the form

∂tm = −γ
(
m×Hllb + αtr ω(m)× (ω(m)×Hllb)− αl (ω(m) · Hllb)ω(m)

)
in DT , (1)

where the effective magnetic field Hllb is given, see [8] for example, by

Hllb = a∆m+H − m̂

χtr
− ζ(m) (2)

and ω(m) = m
|m| . Of course equation (1) makes sense as long as m 6= 0. The demagnetizing field

H = (H1, H2, H3) satisfies the magnetostatic equations

div (H +m) = F, H = ∇ϕ in DT , (3)
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m̂ = (m1,m2, 0) is related to the anisotropic energy and ζ(m) is the internal exchange term defined
according to the temperature θ ∈ R+ by

ζ(m) =


ζ1(m) :=

1

2χl
(
|m|2

m2
e

− 1)m, for 0 ≤ θ < θc,

ζ2(m) :=
1

χl
(µ |m|2 + 1)m, for θ ≥ θc.

(4)

Equations (1) and (3) are completed with the following boundary and initial conditions

∇m · ν = 0, (H +m) · ν = 0 on ΓT , (5)

m(0) = m0 in D. (6)

Problem (1)-(3)-(5)-(6) will be labeled (P), without distinction between the cases below or above
the Curie temperature θc. In this problem, |.| and × denote respectively the Euclidean norm and the
cross product in R3, ϕ is the magnetic potential and γ > 0 is the gyromagnetic parameter. Without
loss of generality we set in the sequel γ = 1 and other physical parameters which are not relevant

to our work are also equated to 1 like a and me. The significant parameters are µ =
3θ

5(θ − θc)
,

χtr, χl > 0 together to the transverse and longitudinal damping parameters αtr and αl given for
fixed temperature by the laws see [8]

αtr = λχ(θ) (1− θ

3θc
) + λ (1− χ(θ))

2θ

3θc
, αl = λ

2θ

3θc
, (7)

where λ > 0 is a physical parameter that we take equal to 1 and χ is the characteristic function of
the interval [0, θc[ that is χ(θ) = 1 if 0 ≤ θ < θc and χ(θ) = 0 if θ ≥ θc. This means that

αtr =(1− θ

3θc
), αl =

2θ

3θc
, if 0 ≤ θ < θc,

αtr = αl =
2θ

3θc
, if θ ≥ θc.

We define the parameter β by

β = αtr − αl, (8)

so that

β = (1− θ

θc
) > 0, for 0 ≤ θ < θc, and β = 0, for θ ≥ θc. (9)

Using the relation

Hllb = (Hllb · ω(m))ω(m)− ω(m)× (ω(m)×Hllb), (10)

the magnetization equation (1) can be rewritten as

∂tm− αtrHllb = −m×Hllb − β (Hllb · ω(m))ω(m) (11)

or equivalently as follows

∂tm− αtr ∆m+m×∆m+ αlζ(m) + β(ω(m) ·∆m)ω(m) =

αtr (H − m̂

χtr
)−m× (H − m̂

χtr
)− β

(
ω(m) · (H − m̂

χtr
)
)
ω(m), (12)
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observing that (ω(m) · ζ(m))ω(m) = ζ(m). We notice that for θ ≥ θc, since β = 0 the (LLB)
equation reduces to

∂tm− αtr ∆m+m×∆m+ αlζ(m) = αtr (H − m̂

χtr
)−m× (H − m̂

χtr
), (13)

which is well defined even if m = 0. Moreover this equation contains the term m × ∆m which
appears in the (LL) equation and the terms m×H and ∆m which are in the Bloch-Torrey equation
used in the theory of ferrofluid flows see [13, 14] for example.

The (LL) equation is well understood since the pioneering work by Alouges-Soyeur [1] where the
global existence of weak solutions is proved as well as nonuniqueness of the solutions. Regularity
results on the solutions were obtained by Carbou [2] and Carbou-Fabrie [3] and recently by Feischt
and Tran [6]. A generalization called Landau-Lifshitz-Maxwell equation was discussed in Ding-Guo-
Lin-Zeng [4] and Dumas-Sueur [5]. Finally Hubert [10] proved in particular the existence of time
periodic solutions to (LL) equation. We also quote the book of Guo-Ding [9] for useful presentation
and results on the (LL) equation.

The study of (LLB) equation in its deterministic form is very recent, so the literature on this subject
is not abundant. In [12], the author considered the model (13) in the absence of both the magnetic
field H and the anisotropy field 1

χtr
m̂. She proved by using Galerkin approximation, existence of

global weak solutions.

An interesting question that arises is the following. Since the (LLB) equation is built by interpolating
between the (LL) equation and the Bloch equation, what should be the asymptotic behaviors of the
(LLB) equation when θ → 0 and when θ → +∞. It is expected to get (LL) equation when θ → 0
and Bloch equation when θ → +∞ see [18, 19], the rigorous proofs being open.

To conclude this paragraph, we mention that we will consider also the existence of time-periodic
solutions as well as the existence of steady state solutions, assuming the source term F first time-
periodic then time independent. The periodic problem named (Pper) is defined by the equations
(1)-(3)-(5) with the periodicity condition

m(0) = m(T ), (14)

and the stationary problem (S) is stated as follows

−αtrHllb + m×Hllb + β (Hllb · ω(m))ω(m) = 0 in D, ∇m · ν = 0 on Γ,

div (H +m) = F, H = ∇ϕ in D, (H +m) · ν = 0 on Γ. (15)

1 Main results

To start, let us precise the functional framework and the notations used along this work.
We will employ the standard notations for the Lebesgue spaces Lp(D) and Sobolev spacesHs(D),W s,p(D)
of real valued functions and we introduce the notations Lp(D) = (Lp(D))3, Hs(D) = (Hs(D))3 and
Ws,p(D) = (W s,p(D))3 for vectorial fields functional spaces. ‖ · ‖ and ( ; ) denote respectively the
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norm and scalar product of L2(D) and L2(D) whereas ‖ · ‖p denotes the norm in the other Lp(D)
and Lp(D) spaces. To deal with the magnetostatic equation, we define the spaces

L2
] (D) = {ψ ∈ L2(D);

∫
D

ψ(x) dx = 0},

H1
] (D) = H1(D) ∩ L2

] (D),

where L2
] (D) is equipped with the L2- norm and H1

] (D) with the L2- norm of the gradient, since by
Poincaré-Wirtinger inequality, there exists C > 0 depending on D such that

‖ψ‖ ≤ C ‖∇ψ‖, ∀ψ ∈ H1
] (D). (16)

More generally, if V is a Banach space, we denote its norm by ‖ · ‖V and the bracket notation
〈·; ·〉V ′×V (or simply 〈·; ·〉 if no confusion arises) will be reserved for pairings between V and its dual
V ′.

In the sequel C > 0 denotes various constants which depend on the domain D and the physical
parameters appearing in the equations. Sometimes we denote by CT or C(T, ..) positive constants
depending in addition on the terms indicated as subscripts or arguments.

To simplify the presentation of our results, we introduce further notations. Let the nonlinear partial
differential operator Aβ be defined by

Aβ = A+ β P,

A(m) = −αtr ∆m+m×∆m+ αlζ(m),

P (m) = (ω(m) ·∆m)ω(m), (17)

and we set

Lβ = L− βK,

L(m,H) = αtr (H − m̂

χtr
)−m× (H − m̂

χtr
),

K(m,H) =
(
ω(m) · (H − m̂

χtr
)
)
ω(m), (18)

so that the magnetization equation (12) writes as

∂tm+Aβ(m) = Lβ(m,H) in DT . (19)

The superscript is relative to the parameter β of the equation so that A0 = A and L0 = L correspond
to the elevated temperature case θ ≥ θc.
Let m ∈ H1(D) be such that ∆m ∈ L2(D) and ∇m ·ν = 0 on Γ then for all Φ ∈ H1(D) we can write∫

D

Aβ(m) · Φ dx = 〈Bβ(m),Φ〉, (20)

where operator Bβ(m) is defined by

〈Bβ(m),Φ〉 = αtr

∫
D

∇m · ∇Φ dx+

∫
D

(
m×∆m+ αlζ(m) + β P (m)

)
· Φ dx. (21)
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Note that the linear form Bβ(m) is well defined and continuous on H1(D) because of the Sobolev
embedding H1(D) ⊂ L6(D), that is to say Bβ(m) ∈ (H1(D))′.

Finally to express the energy estimates satisfied by any solution of our problem, we set E := E(m,H)
with

E(m,H) =


‖∇m‖2 +

1

2
‖H‖2 +

1

χtr
‖m̂‖2 +

1

2χl
(‖m‖2 + ‖ |m|2 − 1‖2), if θ < θc,

‖∇m‖2 +
1

2
‖H‖2 +

1

χtr
‖m̂‖2 +

1

χl
(‖m‖2 + µ‖m‖44), if θ ≥ θc.

(22)

As already mentioned, the magnetization m may vanish, so the meaning of the magnetization equa-
tion should be clarified. It actually makes sense when θ ≥ θc since in this case β = 0 so the terms
involving the undefined function ω(m) disappear and the equation simplifies into equation (13).
However when θ < θc, in order to avoid the indetermination when |m(t, x)| = 0, we will replace the
magnetization equation by the following one

|m|2
(
∂tm+A(m)

)
+ β (m ·∆m)m = |m|2 L(m,H)− β m · (H − m̂

χtr
)m in DT , (23)

see (17) and (18) for the definitions of A(m) and L(m,H). This equation will be completed in case
of problem (P) by the following boundary and initial conditions

|m|2∇m · ν = 0 on ΓT , |m(0)|2m(0) = |m0|2m0 in D, (24)

and we notice that the problem at hand is equivalent to the initial one as long as |m(t, x)| 6= 0. Of
course the same transformation will be operated in case of time periodic and steady problems.

Now we are in the position to give the definition of a solution of problem (P) and formulate the
main results of this paper.

Definition 1 We say that (m,H) is a global solution of problem (P) if for all T > 0,

m ∈ C([0, T ];H1(D))∩L2(0, T ;H2(D)), ∂tm ∈ L2(0, T ;L3/2(D)),

H ∈ C([0, T ];H1(D)), (25)

and (m,H) satisfies almost everywhere the equations (13)-(3)-(5)-(6) for θ ≥ θc and (23)-(3)-(24)
for 0 < θ < θc.

This definition would be adapted to the time-periodic as well as for the stationary problems.

Theorem 1 Let θ > 0, assume that m0 ∈ H1(D) and F ∈ C([0, T ];L2
] (D)). Then problem (P)

admits a global in time solution (m,H). Moreover there exists C > 0 such that for all t ∈ [0, T ], the
following estimates hold

‖m(t)‖2 + 2αl

∫ t

0

E(s) ds ≤ ‖m0‖2 + C(χ(θ)T + ‖F‖2L2(DT )),

‖∇m(t)‖2 + ‖H(t)‖2H1(D) + αl

∫ t

0

‖∆m(s)‖2 ds ≤

C(χ(θ)T + ‖m0‖2H1(D) + ‖F‖2L2(DT )),

the energy E being defined by (22).
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Theorem 2 Let θ > 0, assume that F is time-periodic with period T > 0 and F ∈ C([0, T ];L2
] (D)).

Then there exists a time-periodic solution (m,H) with period T of problem (Pper) satisfying the
regularity (25). Moreover there exists C,CT > 0 such that

‖m(t)‖2 + ‖H(t)‖2 ≤ CTC(χ(θ)T + ‖F‖2L2(DT )), ∀t ∈ [0, T ],∫ T

0

(E(t) + ‖∆m(t)‖2 + ‖H(t)‖2H1(D)) dt ≤ C(χ(θ)T + ‖F‖2L2(DT )),

where CT = (2− e−
αl
χl
T

)(1− e−
αl
χl
T

)−1.

Theorem 3 Let θ > 0 and F ∈ L2
] (D). There exists a solution (m,H) ∈ H2(D) × H1(D) of the

stationary problem (S) satisfying

‖m‖2H1(D) + ‖H‖2H1(D) + ‖∆m‖2L2(D) ≤ C(χ(θ) + ‖F‖2). (26)

We observe that all the estimates of the solutions simplify in the case θ ≥ θc since χ(θ) = 0. Moreover
if F ∈ L2(R+;L2(D)), then the global solutions of the initial boundary value problem (P) remain
bounded for all time by the norms of the data m0 and F .

Theorem 1 extends the results obtained in [12] for the case θ ≥ θc, since in solving the problem, we
have taken into account the magnetic field H as well as the contribution of the anisotropic field m̂.
Moreover we have improved the solution’s regularity. The question of existence of periodic solutions
has been discussed for the problem of (LL), see for instance the work already mentioned [10] in
which the author considered that the ferromagnetic particles are small and by using operator theory
and spectral analysis. But, to the best of our knowledge, there is no result available in the literature
for the problem of (LLB), so we provide an answer to this question by proving Theorem 2. The
methods used to prove Theorems 1 and 2 allow also to establish the existence of stationary solutions
for problem (S).

The rest of the paper is organized as follows. In section 2, we prove some preliminary results and
the formal energy estimates for the problems. In section 3, we prove the global existence of solutions
(m,H) of problem (P) at any temperature. The proof is based on the energy method, regularization
and approximations and regarding to the difficulties of the problem, it will be done in several steps,
all being clearly justified. In section 4, we are interested in the existence of periodic solutions. We
rely on the Galerkin approximation obtained previously and using Brouwer’s fixed point theorem, we
get approximated time-periodic solutions. Then we conclude following globally the same procedure
as in the proof of Theorem 1, so we will avoid the fastidious details. Section 5 is devoted to the
stationary problem (S), existence of solutions is proved applying energy method and a fixed point
theorem.

2 Preliminary results and formal energy estimates

We give some results that will be needed later. We start by review some properties satisfied by the
solution of the magnetostatic equations.
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2.1 The magnetostatic equations.

Let F ∈ L2
] (D) and m ∈ H1(D) be fixed and let ϕ ∈ H1

] (D) ∩H2(D) be the unique solution of the
problem

∇ϕ = H, div (H +m) = F in D, (H +m) · ν = 0 on Γ. (27)

Multiplying this equation by ϕ and integrating by parts, we get the identity

‖H‖2 = −
∫
D

H ·mdx−
∫
D

F ϕdx, (28)

and since Poincaré-Wirtinger inequality (16) leads to

|
∫
D

F ϕdx| ≤ C‖H‖ ‖F‖, (29)

we easily get the estimate

‖H‖ ≤ C (‖m‖+ ‖F‖). (30)

We observe that using Young inequality, we deduce from (29) the following bound of
∫
D
F ϕdx

which will be useful later

|
∫
D

F ϕdx| ≤ 1

d
‖H‖2 + C(d) ‖F‖2, (31)

taking any arbitrary constant d > 0. Next we write the equation (27) in the form

∆ϕ = −divm+ F in D, ∇ϕ · ν = −m · ν on Γ, (32)

and apply elliptic regularity results. Since divm ∈ L2(D) and m · ν ∈ H1/2(Γ), then ϕ ∈ H2(D)
and

‖ϕ‖H2(D) ≤ C (‖m‖H1(D) + ‖F‖),
which means that

‖H‖H1(D) ≤ C (‖m‖H1(D) + ‖F‖). (33)

In particular the linear mapping

H : (m,F ) 7−→ H (34)

is continuous from L2(D)× L2
] (D) to L2(D) and from H1(D)× L2

] (D) to H1(D).

Similarly if m ∈ C([0, T ];H1(D)) and F ∈ C([0, T ];L2
] (D)), then there exists a unique solution

ϕ ∈ C([0, T ];H1
] (D) ∩H2(D)) satisfying

div (∇ϕ+m) = F in DT , (∇ϕ+m) · ν = 0 on ΓT . (35)

Furthermore H = ∇ϕ fulfills for p = 2 and p =∞ the following estimates

‖H‖Lp(0,T ;L2(D)) ≤ C (‖m‖Lp(0,T ;L2(D)) + ‖F‖Lp(0,T ;L2(D))), (36)

‖H‖Lp(0,T ;H1(D)) ≤ C (‖m‖Lp(0,T ;H1(D)) + ‖F‖Lp(0,T ;L2(D))), (37)

and the mappingH is continuous from L2(0, T ;L2(D)×L2
] (D)) into L2(DT ) and from L2(0, T ;H1(D)×

L2
] (D)) into L2(0, T ;H1(D)).
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2.2 The magnetization equation.

Let F ∈ L2
] (D), m be a regular function such that ω(m) is well defined and H = ∇ϕ the solution of

problem (27). We consider the operator Lβ(m,H) defined by (18). We easily see that the following
estimate holds true

‖Lβ(m,H) +m×H‖2 ≤ C(‖H‖2 + ‖m̂‖2 + ‖m‖44), (38)

and using (28) to express the term
∫
D
H ·mdx, we get the identity∫

D

Lβ(m,H) ·mdx = −αl(
1

χtr
‖m̂‖2 + ‖H‖2 +

∫
D

F ϕdx). (39)

Next we assume also that ∇m ·ν = 0 on Γ and we consider operator Bβ defined by (21). The identity
(ω(m) ·∆m) ·m = ∆m ·m allows to write

〈Bβ(m),m〉 = αtr‖∇m‖2 − αl
∫
D

ζ(m) ·mdx− β
∫
D

∆m ·mdx,

and using Green formula in the last integral, we arrive at

〈Bβ(m),m〉 = αl(‖∇m‖2 +

∫
D

ζ(m) ·mdx), (40)

with ∫
D

ζ(m) ·mdx =
1

2χl
(‖|m|2 − 1‖2 + ‖m‖2 − |D|), if 0 ≤ θ < θc,∫

D

ζ(m) ·mdx =
1

χl
(µ ‖m‖44 + ‖m‖2), if θ ≥ θc, (41)

|D| being the Lebesgue measure of D. Moreover since

−〈Bβ(m),∆m〉 = αtr‖∆m‖2 − αl
∫
D

ζ(m) ·∆mdx− β
∫
D

(ω(m) ·∆m)2 dx,

and |ω(m)| ≤ 1, we deduce the inequality below

−〈Bβ(m),∆m〉 ≥ αl(‖∆m‖2 −
∫
D

ζ(m) ·∆mdx), (42)

with

−
∫
D

ζ(m) ·∆mdx =
1

2χl

∫
D

(|m|2 |∇m|2 dx+ 2(m · ∇m)2 − |∇m|2) dx, if 0 ≤ θ < θc,

−
∫
D

ζ(m) ·∆mdx =
1

χl

∫
D

(µ |m|2 + 1) |∇m|2 + 2µ (m · ∇m)2) dx, if θ ≥ θc. (43)

Similarly an integration by parts leads to

|
∫
D

∆m ·m×H dx| = |
∫
D

∇m ·m×∇H dx|,

and we get by Young inequality the bound

|
∫
D

∆m ·m×H dx| ≤ d′
∫
D

|m|2|∇m|2 dx+ C(d′)‖∇H‖2, (44)

for an arbitrary constant d′ > 0.
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2.3 Formal energy estimates.

We will establish some useful estimates satisfied by the solutions (m,H) of problem (P) by using
the results of the previous subsections.

Proposition 1 Under hypotheses of Theorem 1, any strong solution (m,H) of problem (P) satisfies
the estimates

‖m(t)‖2 + 2αl

∫ t

0

E(s) ds ≤ ‖m0‖2 + C(χ(θ)T + ‖F‖2L2(DT )), t ∈ [0, T ], (45)

‖m‖4L4(DT ) ≤ C (χ(θ)T + ‖m0‖2 + ‖F‖2L2(DT )), (46)

‖∇m(t)‖2 + αl

∫ t

0

‖∆m(s)‖2 ds ≤ ‖∇m0‖2 + C (χ(θ)T + ‖m0‖2 + ‖F‖2L2(DT )). (47)

Therefore

‖H‖2L∞(0,T ;H1(D)) ≤ C (χ(θ)T + ‖m0‖2H1(D) + ‖F‖2L2(DT )). (48)

Proof
We multiply the magnetization equation (19) by m and integrate over D to write

1

2

d

dt
‖m‖2 + 〈Bβ(m),m〉 =

∫
D

Lβ(m,H) ·m dx. (49)

Therefore using (39), (40), (41) and inequality (31), we get

1

2

d

dt
‖m(t)‖2 + αl E(t) ≤ C(χ(θ) + ‖F (t)‖2), (50)

where the energy E is defined in (22). Hence we obtain the first estimate (45) and we deduce directly

inequality (46) for θ ≥ θc since in this case ‖m‖4L4(DT ) ≤ C
∫ T

0
E(t) dt. In the case θ < θc, we get a

similar inequality using the relation |m|4 ≤ 2 ((|m|2 − 1)2 + |m|2).
Now we multiply equation (19) by −∆m and integrate by parts to get

1

2

d

dt
‖∇m‖2 − 〈Bβ(m),∆m〉 = −

∫
D

Lβ(m,H) ·∆mdx. (51)

Using inequalities (38) and (44) together to the bounds (30) and (33) of H, we deduce that

|
∫
D

Lβ(m,H) ·∆mdx| ≤ αl
2
‖∆m‖2 + d′

∫
D

|m|2|∇m|2 dx

+C(d′) (‖F‖2 + ‖m‖2H1(D) + ‖m‖44). (52)

Therefore inequality (42) leads to

1

2

d

dt
‖∇m‖2 +

αl
2
‖∆m‖2 − αl

∫
D

ζ(m) ·∆mdx ≤ d′
∫
D

|m|2|∇m|2 dx+

C(d′) (‖F‖2 + ‖m‖2H1(D) + ‖m‖44). (53)

In view of the identity (43), we choose d′ = αl
4χl

in the case 0 < θ < θc and d′ = µαl
2χl

if θ ≥ θc to get
for all temperatures the following inequality

d

dt
‖∇m‖2 + αl‖∆m‖2 ≤ C (‖F‖2 + ‖m‖2H1(D) + ‖m‖44). (54)
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Integrating (54) with respect to time and using the previous results, we get estimate (47) and we
deduce (48) using the bound (37) and estimate (45).

Hence we see that the estimates given in Theorem 1 are fulfilled. It is easy to deduce from the
previous calculations that the smooth solutions (m,H) of the periodic problem (Pper) satisfy the
following estimates∫ T

0

(E(t) + ‖∆m‖2 + ‖H‖2H1(D)) dt ≤ C (χ(θ)T + ‖F‖2L2(DT )), t ∈ [0, T ]. (55)

In the same way, any strong solution (m,H) of the stationary problem (S) satisfies the bound given
in Theorem 3.

3 Solving problem (P)
The resolution of problem (P) involves several stages. First, in order to overcome some difficulties
related to the unit magnetization vector ω(m), we define a regularized problem named (Pδ) depend-
ing on a small parameter δ > 0. Secondly, we introduce the Galerkin approximations of problem
(Pδ) and look for solutions (mn, Hn) of the approximated problem (Pnδ ). To end up to a solution of
our problem, we will perform the limit in the approximated solutions. First, for each fixed δ, letting
n→∞ in (mn, Hn), we get at the limit solutions (mδ, Hδ), then letting δ → 0 in (mδ, Hδ) evolves
a solution of (P). This is not easy to do and requires uniform estimations on the approximated
solutions together to some compactness results to deal with the nonlinear terms and the difficulties
inherent to the unit magnetization vector ω(m). Before going on, we recall that the terms containing
ω(m) in problem (P) are all factored by β and then vanish when θ ≥ θc rendering the first step
unnecessary in this case.

3.1 The regularized problem (Pδ).
Let δ > 0 be a small parameter, we introduce the regularized vectorial field

ωδ(m) =
m√

|m|2 + δ2
, m ∈ R3,

having the features of being infinitely differentiable on R3 and verifying

|ωδ(m)| ≤ 1, m ∈ R3 and lim
δ→0

ωδ(m) = ω(m), ∀m ∈ R3\{0}.

In addition, for all V ∈ R3, the following properties are satisfied

(ωδ(m) · V ) (ωδ(m) ·m) =
|m|2

|m|2 + δ2
m · V = m · V − δ2

|m|2 + δ2
m · V, (56)

(ωδ(m) · V )2 =
1

|m|2 + δ2
(m · V )2. (57)

Now we consider the magnetization equation (19) and modify it both by replacing ω(m) by ωδ(m)

and by adding the term β δ2

|m|2+δ2 ∆m which will be useful to our purpose. The transformed equation

reads as

∂tm+Aβδ (m) = Lβδ (m,H) in DT , (58)

10



where we set

Aβδ = A+ β Pδ, Lβδ = L− βKδ,

Pδ(m) =
(
ωδ(m) ·∆m

)
ωδ(m) +

δ2

|m|2 + δ2
∆m,

Kδ(m,H) =
(
ωδ(m) · (H − m̂

χtr
)
)
ωδ(m), (59)

A and L being defined in (17) and (18) and we observe that formally P0 = P and K0 = K. The
regularized problem (Pδ) is given by the set of equations (58)-(3)-(5)-(6). Before going on, we define

on H1(D) the linear form Bβδ (m) associated to Aβδ (m) as we did for Bβ in (21). If m ∈ H1(D),
∆m ∈ L2(D) and ∇m · ν = 0 on Γ, we have the identity∫

D

Aβδ (m) · Φ dx = 〈Bβδ (m),Φ〉, ∀Φ ∈ H1(D), (60)

with

〈Bβδ (m),Φ〉 = αtr

∫
D

∇m · ∇Φ dx+

∫
D

(
m×∆m+ αlζ(m) + β Pδ(m)

)
· Φ dx, (61)

for all Φ ∈ H1(D). Therefore we observe that by adding the term β δ2

|m|2+δ2 ∆m to the equation,

property (56) leads to

〈Bβδ (m),m〉 = 〈Bβ(m),m〉, (62)

for all δ > 0. Moreover by properties (56) and (57) we get the identity

Lβδ (m,H) ·m = Lβ(m,H) ·m+ β
δ2

|m|2 + δ2
m · (H − m̂

χtr
), (63)

together to the inequality

Pδ(m) ·∆m =
(m ·∆m)2 − |m|2|∆m|2

|m|2 + δ2
+ |∆m|2 ≤ |∆m|2. (64)

Consequently, one can easily establish the results given below, see subsection 2.2 under the same
assumptions ∫

D

Lβδ (m,H) ·mdx = −αl(
1

χtr
‖m̂‖2 + ‖H‖2 +

∫
D

F ϕdx)

+β

∫
D

δ2

|m|2 + δ2
(m ·H − |m̂|

2

χtr
) dx, (65)

‖Lβδ (m,H) +m×H‖2 ≤ C(‖H‖2 + ‖m̂‖2 + ‖m‖44), (66)

〈Bβδ (m),m〉 = αl(‖∇m‖2 +

∫
D

ζ(m) ·mdx), (67)

−〈Bβδ (m),∆m〉 ≥ αl(‖∆m‖2 −
∫
D

ζ(m) ·∆mdx). (68)

We shall prove the following result
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Theorem 4 Let δ > 0 be fixed. Under the hypotheses of Theorem 1, there exists a global solu-
tion (mδ, Hδ) of problem (Pδ) such that mδ ∈ L∞(0, T ;H1(D)) ∩ L2(0, T ;H2(D)), Hδ = ∇ϕδ ∈
L∞(0, T ;H1(D)) and (mδ, Hδ) satisfies the estimates given in Theorem 1. Therefore mδ and Hδ

are uniformly bounded in L∞(0, T ;H1(D))∩L2(0, T ;H2(D)) and L∞(0, T ;H1(D)) respectively with
respect to δ. Moreover ∂tm

δ is uniformly bounded in L2(0, T ;L3/2(D)).

The next two subsections are devoted to the proof of this theorem.

3.2 Approximate solutions for (Pδ).
Let (Φk)k≥1 be the Hilbert basis of H1(D) defined by

−∆Φk + Φk = λk Φk in D, ∇Φk · ν = 0 on Γ, (69)

then (Φk) ⊂ H2(D) and we will assume this basis to be orthonormal in L2(D). For n ∈ N?, we set
Vn := span{Φ1,Φ2, · · · ,Φn}. Let mn

0 the approximations of the initial data m0 with

mn
0 (x) =

n∑
k=1

an0kΦk(x),

mn
0 → m0 strongly in H1(D) as n→ +∞, (70)

‖mn
0‖ ≤ ‖m0‖, ‖∇mn

0‖ ≤ C‖∇m0‖, ∀n ≥ 1, (71)

where C > 0 is independent of n.
We seek for approximated solutions (mn, Hn)n where mn ∈ Vn is of the form

mn(t, x) =

n∑
k=1

ank (t) Φk(x), (72)

and Hn is related to mn through the magnetostatic equations see (34), by

Hn = ∇ϕn = H(mn, F ). (73)

For each n ≥ 1, mn has to satisfy the system labeled (Pnδ ) given below

d

dt

∫
D

mn · Φk dx+ 〈Bβδ (m),Φk〉 =

∫
D

Lβδ (mn, Hn) · Φk dx, t ∈]0, T [, (74)

for all k = 1, · · · , n with the initial condition

mn(0) = mn
0 . (75)

We set an = (an1 , a
n
2 , · · · , ann) and an0 = (an01, a

n
02, · · · , an0n). Then problem (Pnδ ) is a system of

ordinary differential equations satisfied by an of the following type

dan

dt
+M(t, an) = 0, t ∈]0, T [, (76)

an(0) = an0 . (77)

In solving this system, we get
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Proposition 2 Let assumptions of Theorem 1 to be hold, for all an0 ∈ Rn, system (76)-(77) admits a
unique solution an ∈ C([0, T ])∩C1(]0, T [). Therefore for all n ≥ 1 and mn

0 ∈ Vn, problem (Pnδ ) admits
a unique solution (mn, Hn) such that mn ∈ C1(]0, T [,Vn) ∩ C([0, T ],Vn), Hn ∈ C([0, T ],H1(D)).

Proof

Considering that the functions ∇mn,∆mn,
1

|mn|2 + δ2
, ωδ(m

m), ζ(mn) are all of class C1 with re-

spect to an and since the magnetic field Hn depends linearly on mn and F , we see that Lβδ (mn, Hn)
is continuous with respect to (t, an) and of class C1 with respect to an and so isM(t, an). By using
Cauchy-Lipschitz theorem, the system (76)− (77) admits a unique local solution an. In other words,
there exists a time Tn ∈ ]0, T ] such that an ∈ C1(]0, Tn[) ∩ C([0, Tn]) and (mn, Hn) defined by (72)
and (73) satisfies problem (Pnδ ) on (0, Tn). The following uniform bounds which are similar to those
of Proposition 1, will enable us to extend the solution until time T for all n and end the proof of
the proposition.

Lemma 1 There exists C > 0 independent of n and δ such that for all n ≥ 1 the approximated
solutions (mn, Hn) satisfy the bounds

‖mn(t)‖2 + 2αl

∫ t

0

En(s) ds ≤ ‖m0‖2 + C(χ(θ)T + ‖F‖2L2(DT )), t ∈ [0, Tn], (78)∫ Tn

0

‖mn(s)‖44 ds ≤ C(χ(θ)T + ‖m0‖2 + ‖F‖2L2(DT )), (79)

‖∇mn(t)‖2 + αl

∫ t

0

‖∆mn‖2 ds ≤ C(θ, T,m0, F ), t ∈ [0, Tn], (80)

‖mn‖2C([0,Tn];H1(D)) + ‖Hn‖2C([0,Tn];H1(D)) ≤ C(θ, T,m0, F ), (81)

where C(θ, T,m0, F ) = C
(
χ(θ)T + ‖m0‖2H1(D) + ‖F‖2L2(DT )

)
, En = E(mn, Hn) and the energy E is

defined by (22).

Proof
First Multiplying (74) by ank , integrating by parts and taking the sum over k = 1, · · · , n we arrive
at

1

2

d

dt
‖mn(t)‖2 + 〈Bβδ (mn),mn〉 =

∫
D

Lββ(mn, Hn) ·mn dx. (82)

To deal with the right hand side of this identity, we use relation (65) and the inequalities

− β

χtr

∫
D

δ2

|mn|2 + δ2
mn · m̂n dx ≤ 0,

β |
∫
D

δ2

|mn|2 + δ2
mn ·Hn dx| ≤ β δ

∫
D

|Hn| dx ≤ αl
4
‖Hn‖2 +

β2

αl
|D|,

for δ > 0 small. We observe that we can replace the term β2

αl
|D| of this inequality by Cχ(θ) in view

of the relations (9). Hence using (31) (with d = 4), we obtain the inequality∫
D

Lββ(mn, Hn) ·mn dx ≤ −αl
( ∫

D

1

χtr
‖m̂n‖2 +

1

2
‖Hn‖2

)
+ C αl ‖F‖2 + Cχ(θ),
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and (67) allows to get

1

2

d

dt
‖mn(t)‖2 + αl

(
‖∇mn‖2 +

∫
D

ζ(mn) ·mn dx+
1

χtr
‖m̂n‖2 +

1

2
‖Hn‖2

)
≤ C (χ(θ) + ‖F‖2). (83)

Upon substituting the expression of
∫
D
ζ(mn) · mn dx given in (41), we conclude that (mn, Hn)

satisfies for all t ∈ [0, Tn], the following bound

‖mn(t)‖2 + 2αl

∫ t

0

En(s) ds ≤ ‖mn
0‖2 + C (χ(θ)t+ C

∫ t

0

‖F (s)‖2 ds), (84)

which leads to (78) thanks to (71). The second estimate (79) is derived from the first one as in the
proof of Proposition 1.
To prove the next estimates, first we use Green formula to rewrite the term αtr

∫
D
∇mn · ∇Φk dx

of equation (74) as −αtr
∫
D

∆mn · Φk dx. Then multiplying the equation by (λk − 1)ank , using (69)
and taking the sum over k = 1, · · · , n we obtain

1

2

d

dt
‖∇mn‖2 − 〈Bβδ (mn),∆mn〉 = −

∫
D

Lβδ (mn, Hn) ·∆mn dx. (85)

Therefore thanks to the results given at the end of subsection 3.1, the proof of (47) remains valid so
with the help of the bounds (71) satisfied by mn

0 we get estimate (80). At last the bound of Hn in
L∞(0, Tn;H1(D)) is derived as for estimate (48) given in Proposition 1. This ends the proof of the
Lemma.

With the estimates given in Lemma 1, we may extend the solution (mn, Hn) over all the interval
[0, T ] and the uniform bounds given therein are satisfied for all t ∈ [0, T ]. We summarize these
results and complete them in the following proposition.

Proposition 3 The sequences (mn) and (Hn) are uniformly bounded with respect to n and δ in
L∞(0, T ;H1(D)) ∩ L2(0, T ;H2(D)) ∩W 1,1(0, T ;L2(D)) and in L∞(0, T ;H1(D)) respectively.

Proof
Since mn is uniformly bounded with respect to n and δ in L2(0, T ;H1(D)) and ∆mn is uniformly
bounded in L2(0, T ;L2(D)) with ∇mn · ν = 0 on ΓT , then we deduce that (mn) is bounded in
L2(0, T ;H2(D)). Now we deal with the uniform bound of ∂tm

n. We have for all k = 1, · · · , n∫
D

∂tm
n · Φk dx+

∫
D

Aβδ (mn) · Φk dx =

∫
D

Lβδ (mn, Hn) · Φk dx. (86)

Since ∂tm
n(t) ∈ Vn, the above equation leads to

‖∂tmn(t)‖2 =

∫
D

(
Aβδ (mn)− Lβδ (mn, Hn)

)
· ∂tmn dx ≤ ‖∂tmn‖ ‖Aβδ (mn)− Lβδ (mn, Hn)‖,

and therefore
‖∂tmn(t)‖ ≤ ‖Aβδ (mn(t))− Lβδ (mn(t), Hn(t))‖, t ∈]0, T [.
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We will estimate Lβδ (mn, Hn) and mn ×∆mn. First the inequality

‖mn ×Hn‖2 ≤ C(‖mn‖44 + ‖Hn‖44),

and the bound (66) allow to get the following inequality

‖Lβδ (mn, Hn)‖2 ≤ C (‖Hn‖2 + ‖m̂n‖2 + ‖mn‖44 + ‖Hn‖44), (87)

so we deduce that Lβδ (mn, Hn) is uniformly bounded in L2(0, T ;L2(D)) with respect to n. Using
the embedding H2(D) ⊂ L∞(D) and the inequality ‖mn × ∆mn‖ ≤ ‖mn‖∞ ‖∆mn‖, we get that
mn×∆mn is uniformly bounded in L1(0, T ;L2(D)) and we conclude that ∂tm

n is uniformly bounded
in L1(0, T ;L2(D)).

3.3 Convergence as n→ +∞.

In this paragraph, we aim to pass to the limit as n→∞ in problem (Pδn). In view of the estimates
obtained in Proposition 3, we infer that

Proposition 4 Let δ > 0 be fixed. There exists a subsequence still labeled (mn, Hn) and (mδ, Hδ)
such that mn ⇀mδ weakly-? in L∞(0, T ;H1(D)) and weakly in L2(0, T ;H2(D)) whereas Hn ⇀ Hδ

weakly-? in L∞(0, T ;H1(D)). Moreover, we have

mn → mδ strongly in L2(0, T ;Hs(D)), 0 ≤ s < 2, (88)

Hn → Hδ = H(mδ, F ) strongly in L2(0, T ;H1(D)), (89)

where H is the linear mapping defined in (34).

Proof
The weak convergences ensue directly from the bounds of Proposition 3 and the strong convergence
result (88) of mn is obtained using Aubin lemma (see [15] and [16]) and a Sobolev embedding.
Therefore, the continuity of operator H leads to (89).

To perform the limit in the magnetization equation of the problem as n → ∞, we need further
convergence results. Let us prove the following ones.

Lemma 2 Up to a subsequence, we have

Aβδ (mn) ⇀ Aβδ (mδ) weakly in L2(0, T ;L3/2(D)), (90)

Lβδ (mn, Hn)→ Lβδ (mδ, Hδ) strongly in L2(0, T ;L3/2(D)). (91)

Proof
We will examine the limit of each nonlinear term involved in Aβδ (mn) and Lβδ (mn, Hn). Let us prove
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the following convergences

mn ×∆mn ⇀mδ ×∆mδ weakly in L2(0, T ;L3/2(D)), (92)

mn ×Hn → mδ ×Hδ strongly in L2(0, T ;L3/2(D)), (93)

mn × m̂n → mδ × m̂δ strongly in L2(0, T ;L3/2(D)), (94)

ζ(mn) ⇀ ζ(mδ) weakly in L2(0, T ;L2(D)), (95)

(ωδ(m
n) ·∆mn)ωδ(m

n) ⇀ (ωδ(m
δ) ·∆mδ)ωδ(m

δ) weakly in L2(0, T ;L2(D)), (96)

(ωδ(m
n) ·Hn)ωδ(m

n)→ (ωδ(m
δ) ·Hδ)ωδ(m

δ) strongly in L2(0, T ;L2(D)), (97)

(ωδ(m
n) · m̂n)ωδ(m

n)→ (ωδ(m
δ) · m̂δ)ωδ(m

δ) strongly in L2(0, T ;L2(D)), (98)

δ2

|mn|2 + δ2
∆mn ⇀

δ2

|mδ|2 + δ2
∆mδ weakly in L2(0, T ;L2(D)). (99)

Proof of (92). Using Proposition 3, Sobolev embeddings and writing

‖mn ×∆mn‖L2(0,T ;L3/2(D)) ≤ ‖mn‖L∞(0,T ;L6(D))‖∆mn‖L2(0,T ;L2(D))

≤ C‖mn‖L∞(0,T ;H1(D))‖∆mn‖L2(0,T ;L2(D)),

we see that mn × ∆mn is uniformly bounded in L2(0, T ;L3/2(D)). It follows that there exists a
subsequence and Λδ such that

mn ×∆mn ⇀ Λδ weakly in L2(0, T ;L3/2(D)).

Since mn → mδ strongly in L2(0, T ;H1(D)) and ∆mn ⇀ ∆mδ weakly in L2(0, T ;L2(D)) then
mn ×∆mn ⇀mδ ×∆mδ at least in the sense of distributions. Hence Λδ = mδ ×∆mδ.
Proof of (93) and (94). We write

‖mn ×Hn −mδ ×Hδ‖L2(0,T ;L3/2(D)) ≤ ‖(mn −mδ)×Hn‖L2(0,T ;L3/2(D))

+‖mδ × (Hn −Hδ)‖L2(0,T ;L3/2(D)),

with

‖(mn −mδ)×Hn‖L2(0,T ;L3/2(D)) ≤ ‖Hn‖L∞(0,T ;L2(D)) ‖(mn −mδ)‖L2(0,T ;L6(D)),

‖mδ × (Hn −Hδ)‖L2(0,T ;L3/2(D)) ≤ ‖mδ‖L∞(0,T ;L2(D)) ‖(Hn −Hδ)‖L2(0,T ;L6(D)),

so using (88) and (89) we get the convergence stated in (93). The same argument holds true to
prove (94).
Proof of (95). We start with the inequality

|ζ(mn)| ≤ C(|mn|3 + |mn|) a.e. in DT ,

where C > 0 is independent of n so we see that (ζ(mn)) is uniformly bounded in L2(0, T ;L2(D)).
Therefore there exists a subsequence weakly convergent in this space and since ζ(mn)→ ζ(mδ) a.e.
in DT , we conclude that the limit is ζ(mδ).
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Proof of (96), (97) and (98). Let us first prove a strong convergence of (ωδ(m
n)). We know

that ωδ(m
n) → ωδ(m

δ) a.e. in DT and since |ωδ(mn)| ≤ 1 a.e. in DT then, by means of Lebesgue
convergence theorem, there exists a subsequence labeled (ωδ(m

n)) such that

ωδ(m
n)→ ωδ(m

δ) strongly in Lp(0, T ;Lq(D)), 1 ≤ p, q < +∞.

Similarly ωδ(m
n)⊗ωδ(mn)→ ωδ(m

δ)⊗ωδ(mδ) strongly in Lp(0, T ;Lq(D)) for 1 ≤ p, q < +∞ where
the symbol ⊗ denotes the tensorial product of vectors ie (v ⊗ v)ij = vivj , 1 ≤ i, j ≤ 3, v ∈ R3. So
we have

(ωδ(m
n) · ∆mn)ωδ(m

n)→ (ωδ(m
δ) ·∆mδ)ωδ(m

δ)

at least in the sense of distributions. As this sequence is uniformly bounded in L2(0, T ;L2(D)), we
conclude that (ωδ(m

n) ·∆mn)ωδ(m
n) ⇀ (ωδ(m

δ) ·∆mδ)ωδ(m
δ) weakly in L2(0, T ;L2(D)). In the

same way, the strong convergence of Hn and m̂n in L2(0, T ;L2(D)) leads to (97) and (98).
Proof of (99). We proceed as above, observing that

δ2

|mn|2 + δ2
→ δ2

|mδ|2 + δ2
strongly in Lp(0, T ;Lq(D)), 1 ≤ p, q < +∞.

This ends the proof of the lemma.
Now we are in position to perform the limit as n→∞ in problem (Pnδ ) for δ > 0 fixed and achieve
the proof of Theorem 4.

Proposition 5 Let (mδ, Hδ) be the functions provided by Proposition 4 for δ > 0. Then (mδ, Hδ)
solves problem (Pδ) and satisfies the properties given in Theorem 4.

Proof
First (89) means that the magnetostatic equation of problem (Pδ) is satisfied. Next inasmuch as
the estimates satisfied by the sequence (mn, Hn) are not only uniform with respect to n but also
with respect to δ, we deduce the bounds of (mδ, Hδ). Let us pass to the limit in the magnetization
equation.

Let ψ = ψ(t) ∈ D([0, T [), Φ = Φ(x) ∈ H1(D) and let Φn =

n∑
k=1

αnkΦk ∈ Vn such that Φn → Φ

strongly in H1(D). Considering the weak formulation (74), we have for each n ≥ 1

−
∫
DT

mn · Φn ψ′ dxdt− ψ(0)

∫
D

mn
0 · Φn dx+

∫ T

0

〈Bβδ (mn),Φn〉ψ(t)dt

=

∫
DT

Lβδ (mn, Hn) · Φn ψ dxdt. (100)

Writing ∫ T

0

〈Bβδ (mn),Φn〉ψ(t)dt =

∫
DT

(Aβδ (mn) + αtr∆m
n)Φnψ(t)dt

+αtr

∫
DT

∇mn · ∇Φn ψ dxdt,

and using the previous lemmas, we deduce that as n→∞ the limit of the right hand side is∫
DT

(Aβδ (mδ) + αtr∆m
δ)Φψ(t)dt+ αtr

∫
DT

∇mδ · ∇Φψ dxdt
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which is nothing else than

∫ T

0

〈Bβδ (mδ),Φ〉ψ(t)dt, therefore

lim
n→∞

∫ T

0

〈Bβδ (mn),Φn〉ψ(t)dt =

∫ T

0

〈Bβδ (mδ),Φ〉ψ(t)dt.

Consequently we infer that the limit (mδ, Hδ) satisfies the equation

−
∫
DT

mδ · Φψ′ dxdt− ψ(0)

∫
D

m0 · Φ dx+

∫ T

0

〈Bβδ (mδ),Φ〉ψ(t)dt =∫
DT

Lβδ (mδ, Hδ) · Φψ dxdt, (101)

for all Φ ∈ H1(D) and ψ ∈ D([0, T [). In particular we get in D′(]0, T [) the equation

d

dt

∫
D

mδ · Φ dx+ 〈Bβδ (mδ),Φ〉 =

∫
D

Lβδ (mδ, Hδ) · Φ dx, (102)

for all Φ ∈ H1(D) which leads to

∂tm
δ = −Aβδ (mδ) + Lβδ (mδ, Hδ) in DT , ∇mδ · ν = 0, on ΓT . (103)

Hence we deduce that ∂tm
δ ∈ L2(0, T ;L3/2(D)) ⊂ L2(0, T ; (H2(D))′) so mδ ∈ C([0, T ];H1(D)) and

then the trace mδ(0) is well defined in H1(D). Multiplying equation (102) by ψ ∈ D([0, T [) and
integrating by parts, we derive using (101) that mδ(0) = m0.
It remains to verify the bound of ∂tm

δ. We consider equation (103), we easily see that each term of
the right hand side is uniformly bounded in L2(0, T ;L3/2(D)) with respect to δ, the bound of the
term mδ ×∆mδ being a consequence of the inequality

‖mδ ×∆mδ‖L2(0,T ;L3/2(D)) ≤ ‖mδ‖L∞(0,T ;L6(D)) ‖∆mδ‖L2(0,T ;L2(D)).

This ends proofs of Proposition 5 and Theorem 4.

3.4 End of proof of Theorem 1.

From Proposition 5, we easily deduce the following convergence results.

Corollary 1 There exists a subsequence still denoted (mδ, Hδ) and (m,H) such that as δ → 0, we
have the following weak convergences

mδ ⇀m weakly -? in L∞(0, T ;H1(D)) and weakly in L2(0, T ;H2(D)),

∂tm
δ ⇀ ∂tm weakly in L2(0, T ;L3/2(D)), Hδ ⇀ H weakly- ? in L∞(0, T ;H1(D)),

as well as the strong convergences stated below

mδ → m strongly in L2(0, T ;Hs(D)), 0 ≤ s < 2,

Hδ → H strongly in L2(0, T ;H1(D)), H = H(m,F ),

where H is defined in (34).
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In the sequel, we will prove that the limit (m,H) provided by Corollary 1 is a solution of problem
(P) according to Theorem 1. Clearly, the magnetostatic equation is satisfied and to pass to the limit
as δ → 0 in the magnetization equation of problem (Pδ), we may distinguish two cases according to
whether θ ≥ θc or θ < θc.

The case θ ≥ θc. It means that β = 0 and we can easily pass to the limit as δ → 0 in equation
(101) and proceeding as for the proof of Proposition 5, we get that the limit (m,H) satisfies almost
everywhere the equations (19)-(3) with the boundary and initial conditions (5)-(6).

The case θ < θc. This case is more complicated. To proceed with, it is useful to introduce the
notation

pδ(v) = |v|2 + δ2, v ∈ R3,

and to rewrite equation (103) in the equivalent form

pδ(mδ)
(
∂tm

δ +A(mδ)
)

+ β(mδ ·∆mδ)mδ + βδ2∆mδ =

pδ(mδ)L(mδ, Hδ)− β
(
mδ · (Hδ − m̂δ

χtr
)
)
mδ. (104)

Further results are needed to be able to pass to the limit as δ → 0 in this new formulation. Let us
prove that

Lemma 3 The sequence (pδ(mδ)) is uniformly bounded in L2(0, T ;W 2,3/2(D)) and in H1(0, T ;L6/5(D))
and up to a subsequence, the following convergences hold

pδ(mδ) ⇀ |m|2 weakly in L2(0, T ;W 2,3/2(D)) ∩H1(0, T ;L6/5(D)), (105)

pδ(mδ)→ |m|2 strongly in L2(0, T ;W 1,3(D)), (106)

pδ(mδ)mδ → |m|2m strongly in L2(0, T ;L2(D)). (107)

Proof
The uniform estimates are a consequence of the bounds of mδ in L∞(0, T ;H1(D))∩L2(0, T ; H2(D))∩
H1(0, T ;L3/2(D)) and the Sobolev embeddings. Indeedmδ being uniformly bounded in L∞(0, T ;L6(D))
means that pδ(mδ) is uniformly bounded in L∞(0, T ;L3(D)) and so in L2(0, T ; L3(D)). Moreover the
uniform bounds of mδ, ∇mδ and ∂tm

δ in L∞(0, T ;L6(D)), L2(0, T ;L6(D)) and L2(0, T ;L3/2(D))
respectively imply that the first derivatives ∇pδ(mδ) and ∂tp

δ(mδ) of pδ(mδ) are uniformly bounded
in L2(0, T ;L3(D)) and L2(0, T ;L6/5(D)) respectively.
It remains to estimate the second derivatives ∂2

ijp
δ(mδ) for 1 ≤ i, j ≤ 3. We have ∂2

ijp
δ(mδ) =

2[∂2
ijm

δ.mδ+∂im
δ.∂jm

δ] so it is uniformly bounded in L2(0, T ;L3/2(D)) due to the uniform bounds

of mδ, ∂2
ijm

δ and ∂im
δ in L∞(0, T ;L6(D)), L2(0, T ;L2(D)) and L∞(0, T ;L2(D)) ∩ L2(0, T ;L6(D))

respectively.
Therefore the weak convergence (105) follows, the limit being |m|2 since pδ(mδ) → |m|2 a.e. in
DT . To obtain the strong convergence (106), we apply Aubin compactness lemma and use the com-
pact embedding W 2,3/2(D) ⊂W 1,3(D). Note that this implies the strong convergence of pδ(mδ) in
L2(0, T ;Lp(D)) for all 1 ≤ p < ∞. The last convergence (107) results from the previous ones and
the inequality below∥∥∥pδ(mδ)mδ − |m|2m

∥∥∥
L2(0,T ;L2(D))

≤ ‖pδ(mδ)− |m|2‖L2(0,T ;L3(D))‖mδ‖L∞(0,T ;L6(D))

+‖m‖2L∞(0,T ;L6(D))‖m
δ −m‖L2(0,T ;L6(D)).
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Let Φ and ψ be test functions in (D(D))3 and D([0, T [) respectively. We write the weak formulation
of equation (104) as follows∫

DT

pδ(mδ)
(
∂tm

δ +A(mδ)
)
· Φψ dxdt+

β

∫
DT

(mδ ·∆mδ) (mδ · Φ)ψ dxdt+ βδ2

∫
DT

∆mδ · Φψ dxdt

=

∫
DT

(
pδ(mδ)L(mδ, Hδ)− β (mδ · (Hδ − m̂δ

χtr
))mδ

)
· Φψ dxdt. (108)

We pass to the limit as δ → 0 in each integral of (108) by means of the weak-strong convergence
principle, using the convergence results of (mδ, Hδ) given in Corollary 1 and the strong convergences
of pδ(mδ) and pδ(mδ)mδ provided by Lemma 3. Henceforh we arrive at∫

DT

|m|2(∂tm+A(m)) · Φψ dxdt+ β

∫
DT

(m ·∆m) (m · Φ)ψ dxdt =∫
DT

(
|m|2L(m,H)− β (m · (H − m̂

χtr
))m

)
· Φψ dxdt. (109)

Therefore the magnetization equation given in (23) is satisfied almost everywhere in DT .
It remains to verify the initial and boundary conditions. An integration by parts with respect to
the variable t leads to∫

DT

pδ(mδ)∂tm
δ · Φψ dxdt = −

∫
DT

pδ(mδ)mδ · Φψ′ dxdt

−
∫
DT

∂tp
δ(mδ)mδ · Φψ dxdt− ψ(0)

∫
D

pδ(m0)m0 · Φ dx, (110)

and as δ → 0, exploiting the results of Lemma 3 we get∫
DT

|m|2∂tm · Φψ dxds = −
∫
DT

|m|2m · Φψ′ dxdt

−
∫
DT

∂t|m|2m · Φψ dxdt− ψ(0)

∫
D

|m0|2m0 · Φ dx. (111)

Therefore integrating again by parts the left hand side of this equality, we conclude that

ψ(0)

∫
D

|m(0)|2m(0) · Φ dx = ψ(0)

∫
D

|m0|2m0 · Φ dx,

so |m(0)|2m(0) = |m0|2m0 almost everywhere in D. Similarly the equality

−
∫
DT

pδ(mδ) ∆mδ · Φψ dxdt =

∫
DT

∇(pδ(mδ))⊗ Φ · ∇mδ ψ dxdt

+

∫
DT

pδ(mδ)∇mδ · ∇Φψ dxdt
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leads to

−
∫
DT

|m|2 ∆m · Φψ dxdt =

∫
DT

∇(|m|2)⊗ Φ · ∇mψ dxdt

+

∫
DT

|m|2∇m · ∇Φψ dxdt =

∫
DT

∇(|m|2)⊗ Φ · ∇mψ dxdt

+

∫
DT

|m|2∇m · ∇Φψ dxdt−
∫

ΓT

|m|2∇m · ν Φψ dΓdt,

which means that |m|2∇m · ν = 0 on ΓT .
Finally letting δ → 0 in the estimates satisfied by (mδ, Hδ) we deduce that (m,H) verifies them too,
achieving the proof of Theorem 1. �

4 The time-periodic problem (Pper)
In this section we are interested with the existence of time periodic solutions of (LLB) when F is
assumed to be time-periodic with period T > 0. This problem labeled problem (Pper) is defined by
the set of equations (1)-(3)-(5)-(14) and we aim to prove Theorem 2.
We will proceed along the lines of proof of Theorem 1 and, to avoid repetitions we summarize below
the most important steps.
First, we introduce problem (Pδper) defined by replacing in problem (Pδ) the initial condition with
the periodic one

mδ(0) = mδ(T ). (112)

We will prove the existence result stated below, following in some sense, the proof of the existence
of time periodic solutions to the compressible Navier-Stokes equation given in [7, 11, 16].

Theorem 5 Let δ > 0 be fixed. Under hypotheses of Theorem 2, there exists a time-periodic so-
lution (mδ, Hδ) of problem (Pδper) such that mδ ∈ L∞(0, T ;L2(D)) ∩ L2(0, T ;H2(D)) and Hδ ∈
L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)) with Hδ = H(mδ, F ). Moreover (Mδ, Hδ) satisfies (uniformly
with respect to δ) the bounds given in Theorem 2.

To prove Theorem 5, we use the Galerkin method so we consider the basis (Φk)k≥1 introduced in
(69) and look for approximated solutions (mn, Hn) of the form (72)-(73) and satisfying system (74)
with the periodicity condition

mn(0) = mn(T ). (113)

This problem named (Pn,δper) will be solved by resolving the system of ode (76) subjected to the
condition

an(0) = an(T ). (114)

To this purpose, we rely on the results of section 3 and use a fixed point procedure, as specified
hereafter.
For an0 = (an01, a

n
02, · · · , an0n) ∈ Rn and mn

0 =
∑n
j=1 a

n
0j Φj ∈ Vn, let an = an(t) = (an1 , a

n
2 , ..., a

n
n) ∈

C([0, T ]) ∩ C1(]0, T [) be the solution of (76)-(77) provided by Proposition 2 and let (mn, Hn) ∈
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(C1(]0, T [,Vn)∩C([0, T ],Vn))×C([0, T ],H1(D)) be the corresponding solution of problem (Pnδ ) with
the initial data mn

0 , given in section 3, that is to say that

mn =

n∑
j=1

anj (t) Φj , Hn = ∇ϕn = H(mn, F ). (115)

Now we define the mapping

S : Rn −→ Rn; S(an0 ) = an(T ), (116)

with the aim to prove that it admits a fixed point an0 so that an0 = an(T ). In this case, the
corresponding solution mn satisfies the condition (113) giving rise to a time-periodic solution to
problem (Pδ,nper). From there it will only remain to pass to the limit as n → ∞ to get a solution

(mδ, Hδ) of problem (Pδper) and then let δ → 0 to obtain a solution (m,H) of problem (Pper).

4.1 Solution of problem (Pδ,nper).
We will use the Brouwer fixed point theorem so the starting point is to find a closed ball of Rn which
is left stable by the mapping S.

Lemma 4 Assume F to be time-periodic with period T and F ∈ C([0, T ];L2
] (D)). Let (mn, Hn) be

the solution of (Pnδ ) with initial data mn
0 ∈ Vn given by (115). For δ > 0 small enough, we have for

all t ∈ [0, T ]

‖mn(t)‖2 ≤ e−
αl
χl
t ‖mn

0‖2 + C (χ(θ) t+

∫ t

0

‖F (s)‖2 ds), (117)

where C > 0 is independent of n, δ and T . Therefore the closed ball B(0, κ) ⊂ Rn centered at 0 is
stable by the mapping S, the radius κ = κ(T, F ) > 0 being defined by

κ2 = (1− e−
αl
χl
T

)−1 C(χ(θ)T + ‖F‖2L2(DT )). (118)

Proof
We start with the estimate (83) satisfied by (mn, Hn) which results in the following inequality

1

2

d

dt
‖mn(t)‖2 + αlEn(t) ≤ C(χ(θ) + ‖F (t)‖2), (119)

where En = E(mn, Hn), E being defined by (22) and C > 0 is independent of n, δ and T . In
particular

1

2

d

dt
‖mn(t)‖2 +

αl
2χl
‖mn(t)‖2 ≤ C(χ(θ) + ‖F (t)‖2), (120)

which leads to (117). Consequently

‖mn(T )‖2 ≤ e−
αl
χl
T ‖mn

0‖2 + C (χ(θ)T + ‖F‖2L2(DT )). (121)

Therefore assuming ‖mn
0‖2 ≤ κ2, we get ‖mn(T )‖2 ≤ e−

αl
χl
T
κ2 + C (χ(θ)T + ‖F‖2L2(DT )) so that

‖mn(T )‖2 ≤ C
( e

−αlχl T

1− e−
αl
χl
T

+ 1
)

(χ(θ)T + ‖F‖2L2(DT )) = κ2.
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Since the basis (Φk)k≥1 is orthonormal in L2(D), this result means that if |an0 |2 ≤ κ2 then |an|2 =
|S(an0 )|2 ≤ κ2 or in other words S(B(0, κ)) ⊂ B(0, κ).

Lemma 4 enables us to get a solution of problem (Pδ,nper).

Proposition 6 Under the hypothesis of Lemma 4, the mapping S defined by (116) has a fixed
point an0 in B(0, κ). Therefore for all δ > 0 small enough and all n ≥ 1, problem (Pδ,nper) admits a
time-periodic solution (mn, Hn) of period T satisfying the following bounds

‖mn(t)‖2 ≤ CT C(θ, T, F ), ∀t ∈ [0, T ], (122)∫ T

0

En(t) dt+ ‖mn‖4L4(DT ) + ‖∆mn‖2L2(DT ) ≤ C(θ, T, F ), (123)

‖Hn(t)‖2 ≤ CT C(θ, T, F ), ∀t ∈ [0, T ], (124)

‖Hn(t)‖2L2(0,T ;H1(D)) ≤ C(θ, T, F ), (125)

with C(θ, T, F ) = C(χ(θ)T + ‖F‖2L2(DT )), C > 0 independent of n and δ and CT =
2− e−

αl
χl
T

1− e−
αl
χl
T

.

Therefore the sequence (mn, Hn)n is uniformly bounded in L2(0, T ;H2(D)×H1(D))∩L∞(0, T ;L2(D)×
L2(D)) with respect to n and δ and (∂tm

n)n so is in L1(0, T ;L2(D)).

Proof
Using the dependence results of the solution of an ode upon the initial data, it is easy to conclude
that the application S is continuous over Rn. According to Brouwer’s fixed point theorem the
map S admits a fixed point an0 ∈ B(0, κ) which means that an0 = S(an0 ) = an(T ) and therefore
mn(t) =

∑n
j=1 a

n
j (t)Φj solves system (74)-(113). The magnetic field Hn = H(mn, F ) is also time-

periodic with period T so the coupling (mn, Hn) is a solution of problem (Pδ,nper).
Furthermore from (117), we see that ‖mn(t)‖2 ≤ κ2(1 + e

−αlχl t − e−
αl
χl
T

) so mn satisfies estimate
(122) for all t ∈ [0, T ] and integrating (119) between 0 and T , since mn(T ) = mn(0) we get the

bound of
∫ T

0
En(t) dt. Therefore we deduce using the results (30) and (33) the estimates of Hn. The

L4-estimate of mn is derived as we have done in the proof of Proposition 1, and to prove the bound
of ∆mn, we rely on the results of section 3 see (54), to get

αl

∫ T

0

‖∆mn‖2dt ≤ C
∫ T

0

(‖F (t)‖2 + ‖m(t)‖2H1(D) + ‖m(t)‖44) dt,

so using the previous bounds, we obtain the result. Finally proceeding as in proof of Proposition 3,
we deduce that ∂tm

n is uniformly bounded in L1(0, T ;L2(D)).

4.2 Solution to problem (Pδper).
We aim to perform the limit when n→ +∞. Using Proposition 6, we will prove that

Proposition 7 Let δ > 0 be fixed, there exists a subsequence still labeled (mn, Hn) and (mδ, Hδ)

23



which is time-periodic with period T such that the following convergence results hold true

(mn, Hn) ⇀ (mδ, Hδ) weakly-? in L∞(0, T ;L2(D)× L2(D)),

mn ⇀mδ weakly in L2(0, T ;H2(D)),

(mn, Hn)→ (mδ, Hδ) strongly in L2(0, T ;Hs(D)×H1(D)), 0 ≤ s < 2.

In addition Hδ = H(mδ, F ), (mδ, Hδ) is a solution of problem (Pδper) and the sequences (mδ) and

(Hδ) are uniformly bounded with respect to δ in L∞(0, T ;L2(D)) ∩ L2(0, T ;H2(D)) ∩ L4(DT ) and
L∞(0, T ;L2(D)) ∩ L2(0, T ;H1(D)) respectively.

Proof
We will pass to the limit as n→ +∞ in the weak formulation of problem (Pδ,nper) as we have done in
section 3, this time we use test functions Φ ∈ H1(D) and ψ ∈ Dper where

Dper =
{
v ∈ D([0, T ]); v(T ) = v(0)

}
.

We point out that presently mn and Hn are not bounded in L∞(0, T ;H1(D)). Nevertheless except
of the convergence (92) of mn × ∆mn, all the other convergences given in the proof of Lemma
2 remain valid in the present context because they derive from the boundedness of mn and Hn in
L∞(0, T ;L2(D))∩L2(0, T ;H1(D)). For the sequence mn×∆mn, we prove that up to a subsequence,
we have

mn ×∆mn ⇀mδ ×∆mδ weakly in L4/3(0, T ;L4/3(D)). (126)

Indeed we come back to the proof given in Lemma 2 and use the boundedness ofmn in L∞(0, T ;L2(D))∩
L4(DT ) instead of that in L∞(0, T ;L6(D)) to get

‖mn ×∆mn‖L4/3(0,T ;L4/3(D)) ≤ ‖mn‖L4(0,T ;L4(D))‖∆mn‖L2(0,T ;L2(D)).

Hence we get all the convergences stated in Proposition 7 and the uniform bounds of Proposition 6
satisfied by (mn, Hn) allow to deduce the same ones for (mδ, Hδ).
Now we are in position to achieve the limit as n→∞ and we get

−
∫
DT

mδ · Φψ′ dxdt+

∫ T

0

〈Bβδ (mδ),Φ〉ψ(t)dt =

∫
DT

Lβδ (mδ, Hδ) · Φψ dxdt, (127)

for all Φ ∈ H1(D) and ψ ∈ Dper. Therefore taking ψ ∈ D(]0, T [) we obtain that for all Φ ∈ H1(D)

d

dt

∫
D

mδ · Φ dx+ 〈Bβδ (mδ),Φ〉 =

∫
D

Lβδ (mδ, Hδ) · Φ dx, (128)

first in the sense of distributions then almost everywhere in (0, T ). Then we see that mδ satisfies
the regularized magnetization equation (58) and it is not difficult to show that Hδ verifies the
magnetostatic equation. Next we derive that ∂tm

δ ∈ L4/3(DT ) so mδ ∈ C([0, T ];H1(D)). It
remains to verify that mδ(0) = mδ(T ). Let Φ ∈ H1(D), we multiply (128) by ψ ∈ Dper, integrating
par parts and using the periodicity of mn, we get

ψ(0)

∫
D

(mδ(T )−mδ(0)) · Φ dx = 0, (129)

which shows that mδ(T ) = mδ(0) and this implies that Hδ(0) = Hδ(T ). This ends the proofs of
Proposition 7 and Theorem 5. �
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4.3 End of proof of Theorem 2.

Additional estimates on (mδ, Hδ) are needed to perform the limit as δ → 0 in problem (Pδper). Let
us prove the following results.

Proposition 8 (mδ, Hδ) satisfies the uniform estimate

‖mδ‖L∞(0,T ;H1(D)) + ‖Hδ‖L∞(0,T ;H1(D)) + ‖∂tmδ‖L2(0,T ;L3/2(D)) ≤ C(θ, T, F ), (130)

where C(θ, T, F ) > 0 is independent of δ.

Proof
We have to prove the bounds of mδ and ∂tm

δ then we derive the estimate of Hδ using (37). We
begin by establishing the following bound of the time derivative ∂tm

δ

‖∂tmδ‖L2(0,T ;(H2(D))′) ≤ C(θ, T, F ). (131)

We write ∂tm
δ = −Aβδ (mδ)+Lβδ (mδ, Hδ) in DT , then using the bounds of Theorem 5, the embedding

H2(D) ⊂ L∞(D) and the following inequalities

‖mδ × m̂δ‖2L2(0,T ;L2(D)) ≤ ‖m
δ‖4L4(DT ),

‖mδ ×Hδ‖L2(0,T ;L2(D)) ≤ ‖mδ‖L2(0,T ;L∞(D)) ‖Hδ‖L∞(0,T ;L2(D)),

we see that all the terms defining Aβδ (mδ) and Lβδ (mδ, Hδ) are bounded uniformly with respect to δ
in L2(0, T ;L2(D)) except for mδ×∆mδ and ζ(mδ) which are uniformly bounded in L2(0, T ;L1(D)).
Indeed we have

‖mδ ×∆mδ‖L2(0,T ;L1(D)) ≤ ‖mδ‖L∞(0,T ;L2(D)) ‖∆mδ‖L2(0,T ;L2(D)) ≤ C(θ, T, F ),

and the bound of ζ(mδ) is a consequence of the inequality∥∥|mδ(t)|3
∥∥
L1(D)

≤ ‖mδ‖L∞(0,T ;L2(D))‖mδ(t)‖24,

which holds a.e. t ∈ (0, T ) and implies that∥∥|mδ|3
∥∥
L2(0,T ;L1(D))

≤ ‖mδ‖L∞(0,T ;L2(D))‖mδ‖2L4(DT ) ≤ C(θ, T, F ).

So one concludes that ‖∂tmδ‖L2(0,T ;L1(D)) ≤ C(θ, T, F ) and since L1(D) ⊂ (H2(D))′ we obtain the

intermediary result (131). To end up to the bound of mδ stated in (130), we introduce the following
notations. We set V = H2(D) and H = H1(D), by identifying H and H′, we get V ⊂ H ⊂ V′. We

have proved that (mδ) is uniformly bounded in the space W = {v ∈ L2(0, T ;V);
dv

dt
∈ L2(0, T ;V′)}

and since W is continuously embedded in C([0, T ];H), we conclude that (mδ) is uniformly bounded
in C([0, T ];H1(D)). To get the bound of ∂tm

δ, it is enough to see that the following inequalities are
satisfied

‖mδ ×∆mδ‖L2(0,T ;L3/2(D)) ≤ ‖mδ‖L∞(0,T ;L6(D)) ‖∆mδ‖L2(0,T ;L2(D)) ≤ C(θ, T, F ),∥∥|mδ|3
∥∥
L2(0,T ;L3/2(D))

≤ ‖mδ‖L∞(0,T ;L6(D)) ‖mδ‖2L4(DT ) ≤ C(θ, T, F ).
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The estimates of Theorem 5 and Proposition 8 show that the solutions (mδ, Hδ) satisfy the same
uniform bounds as the solutions of problem (Pδ), see Theorem 4, therefore the convergence results
given in Corollary 1 and Lemma 3 given in section 3 remain valid in this case. Then we may pass to
the limit as δ → 0 in problem (Pδper) as we have done to end the proof of Theorem 1 and we obtain

a solution of problem (Pper). Once again, the estimates satisfied by (mδ, Hδ) hold true for (m,H),
which ends the proof of Theorem 2. �

5 The stationary problem (S)
In this section we consider the problem (S) defined in (15). Our aim is to prove the existence result
stated in Theorem 3, following globally the same approach as for the unsteady case.

Let δ > 0, we define the regularized problem (Sδ) as for the unsteady case, more precisely problem
(Sδ) writes as

Aβδ (m)− Lβδ (m,H) = 0 in D, ∇m · ν = 0 on Γ,

div (H +m) = F, H = ∇ϕ in D, (H +m) · ν = 0 on Γ, (132)

where Aβδ and Lβδ are defined by (59). We will prove the following result

Theorem 6 Let δ > 0 be fixed. Under the hypothesis of Theorem 3, there exists a solution
(mδ, Hδ) ∈ H2(D)×H1(D) of (Sδ) verifying uniformly with respect to δ the following inequality

‖mδ‖2H1(D) + ‖∆mδ‖2 + ‖Hδ‖2H1(D) ≤ C(χ(θ) + ‖F‖2). (133)

To prove this result we use Galerkin method to construct approximated solutions (mn, Hn) then
we pass to the limit as n → +∞. In this context, we consider the Hilbert basis (Φk)k≥1 of H1(D)
used in the previous sections, assuming this time that the basis is orthonormal in H1(D). We set
mn(x) =

∑n
k=1 a

n
kΦk(x) ∈ Vn and Hn = ∇ϕn = H(mn, F ) and we look for an = (an1 , ..., a

n
n) ∈ Rn

satisfying the following equations for k = 1, · · · , n

〈Bβδ (m),Φk〉 −
∫
D

Lβδ (mn, Hn) · Φk dx = 0. (134)

System (134) is a nonlinear algebraic equation of the form F(an) = 0 where

F = (F1,F2, · · · ,Fn) : Rn → Rn

is defined by

∀a = (a1, a2, · · · , an) ∈ Rn, ∀k = 1, · · · , n,

Fk(a) = 〈Bβδ (m),Φk〉 −
∫
D

Lβδ (m,H) · Φk dx, (135)

where we set m =
∑n
k=1 akΦk and H = H(m,F ). Let us prove the following result.

Lemma 5 The map F is continuous on Rn and there exists C > 0 independent of δ and n such
that for δ > 0 small enough,

F(a) · a ≥ 0 for a ∈ Rn such that |a|2 = C (χ(θ) + ‖F‖2). (136)
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Proof
Based on the arguments already developed in section 3, we can conclude that F is continuous over
Rn. Let us verify (136). Let a ∈ Rn, multiplying each component Fk(a) in (135) by ak, integrating
by parts and summing up the results from k = 1, ..., n, we get following the computations of the
proof of Lemma 1 see (83), that for δ > 0 small enough

F(a) · a = 〈Bβδ (m),m〉 −
∫
D

Lβδ (m,H) ·mdx ≥

αl (‖∇m‖2 +

∫
D

ζ(m) ·mdx+
1

χtr
‖m̂‖2 +

1

2
‖H‖2)− C(χ(θ) + ‖F‖2), (137)

so using the expression of
∫
D
ζ(m) ·mdx given in (41), we get

F(a) · a ≥ αl(‖∇m‖2 +
1

2χl
‖m‖2)− C(χ(θ) + ‖F‖2). (138)

Since ‖m‖2H1(D) =
∑n
k=1 |ak|2 = |a|2, this inequality means that

F(a) · a ≥ αl min(1,
1

2χl
) |a|2 − C (χ(θ) + ‖F‖2), ∀a ∈ Rn, (139)

which ends the proof of the lemma.

According to Brouwer fixed point theorem (see Lemma 4.3 of [11]) one deduces that

Proposition 9 (Solutions to problem (134)) For δ > 0 small enough, there exists
an = (an1 , a

n
2 , ..., a

n
n) ∈ Rn such that

|an|2 ≤ C (χ(θ) + ‖F‖2) and F(an) = 0. (140)

Hence mn =

n∑
k=1

ankΦk satisfies (134).

Moreover (mn, Hn) fulfils the following uniform estimates.

Lemma 6 There exists a constant C > 0 independent of n and δ such that it holds

‖mn‖2H1(D) + ‖Hn‖2H1(D) ≤ C (χ(θ) + ‖F‖2), (141)

‖∆mn‖2 ≤ C (χ(θ) + ‖F‖2). (142)

Therefore (mn, Hn) is uniformly bounded in H2(D)×H1(D) with respect to n and δ.

Proof
From the inequality given in (140), we deduce that ‖mn‖2H1(D) ≤ C (χ(θ) + ‖F‖2) so we can derive

(141) by using (33). Next testing equation (134) by ∆Φk, we get estimate (142) observing the same
calculations as in proving (80) in Lemma 1 and the bound of mn in H2(D) follows since ∇mn ·ν = 0
on Γ.
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End of proof of Theorem 6. We let n→∞, for δ fixed. From the previous results we deduce,
see section 3 for the details, that if δ > 0 is small enough, then there exists a subsequence still
denoted (mn, Hn) and (mδ, Hδ) such that

mn ⇀mδ weakly in H2(D), mn → mδ strongly in Hs(D), 0 ≤ s < 2, (143)

Hn → Hδ = H(mδ, F ) strongly in H1(D), (144)

and (mδ, Hδ) is a solution of problem (Sδ). Moreover the estimates of Lemma 6 imply that the
sequence (mδ, Hδ) is bounded in H2(D)×H1(D) uniformly with respect to δ. �

End of proof of Theorem 3. From the previous results we deduce that there exists a subsequence
still denoted (mδ, Hδ) and (m,H) such that

mδ ⇀m weakly in H2(D) and mδ → m strongly in Hs(D), 0 ≤ s < 2, (145)

Hδ → H = H(m,F ) strongly in H1(D). (146)

This result allows one to perform the limit when δ → 0 in problem (Sδ) as it was done in the
unsteady cases and we conclude that the limit (m,H) satisfies the problem (S) according to the
result announced in Theorem 3. �
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