P-Laplacians on Directed Graphs
Zeina Abu-Aisheh, Sébastien Bougleux, Olivier Lezoray

To cite this version:
Zeina Abu-Aisheh, Sébastien Bougleux, Olivier Lezoray. P-Laplacians on Directed Graphs. Graph Signal Processing Workshop, Jun 2018, Lausanne, Switzerland. hal-01878995
\textbf{p-Laplacians on Directed Graphs}

Zeina Abu-Aisheh, Sébastien Bougleux and Olivier Lézoray
Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, FRANCE

I. INTRODUCTION AND NOTATIONS

The graph Laplacian plays an important role in describing the structure of a graph signal from weights that measure the similarity between the vertices of the graph. In the literature, three definitions of the graph Laplacian have been considered for undirected graphs: the combinatorial, the normalized and the random-walk Laplacians. Moreover, a nonlinear extension of the Laplacian, called the p-Laplacian, has been put forward for undirected graphs \cite{1}, \cite{2}. In this paper, we propose several formulations for p-Laplacians on directed graphs directly inspired from the Laplacians on undirected graphs. Then, we consider the problem of p-Laplacian regularization of graph signals. Finally, we provide experimental results to illustrate the effect of the proposed p-laplacians on two different types of graph signals (images and colored meshes).

A graph represents a set of elements and a set of pairwise relationships between them. The elements are called vertices and the relationships are called edges. Formally, a graph G is defined by the sets $G = (\mathcal{V}, \mathcal{E})$ in which $\mathcal{V} \subseteq \mathbb{V} \times \mathbb{V}$. We denote the ith vertex as $v_i \in \mathcal{V}$. Since each edge is a subset of two vertices, we write $e_{i,j} = \{v_i, v_j\}$. A graph is directed when each edge $e_{i,j}$ contains an ordering of the vertices. A directed edge from v_j to v_i will be denoted $e_{i,j} \rightarrow v_i$. The edges of a graph can be weighted with a function denoted by $w: \mathcal{E} \rightarrow \mathbb{R}^+$. The out-degree of a node v_i, $d^+(v_i)$, is equal to $d^+(v_i) = \sum_{v_j \rightarrow v_i} w_{ij}$. The in-degree of a node v_i, $d^-(v_i)$, is equal to $d^-(v_i) = \sum_{v_i \rightarrow v_j} w_{ij}$. Note that in an undirected graph, $d^+(v_i) = d^-(v_i), \forall v_i \in \mathcal{V}$ is denoted $d(v_i).$ Let $\mathcal{H}(\mathcal{V})$ be the Hilbert space of real-valued functions defined on the vertices of a graph, a graph signal is a function $f: \mathcal{V} \rightarrow \mathbb{R}$ on a graph, G, is endowed with the usual inner product $\langle f, h \rangle_{\mathcal{H}(\mathcal{V})} = \sum_{v \in \mathcal{V}} f(v_i)h(v_i)$, where $f, h: \mathcal{V} \rightarrow \mathbb{R}$. Similarly, let $\mathcal{H}(\mathcal{E})$ be the space of real-valued functions defined on the edges of G. It is endowed with the inner product $\langle f, h \rangle_{\mathcal{H}(\mathcal{E})} = \sum_{e_{i,j} \in \mathcal{E}} f(e_{i,j})h(e_{i,j})$, where $F, H: \mathcal{E} \rightarrow \mathbb{R}$ are two functions of $\mathcal{H}(\mathcal{E})$.

The directed difference operator of a graph signal $f \in \mathcal{H}(\mathcal{V})$, called $d_w: \mathcal{H}(\mathcal{V}) \rightarrow \mathcal{H}(\mathcal{E})$, over a directed edge $v_i \rightarrow v_j$ is denoted by $(d_w f)(v_i, v_j)$. The adjoint operator $d^*_w: \mathcal{H}(\mathcal{E}) \rightarrow \mathcal{H}(\mathcal{V})$, of a function $h \in \mathcal{H}(\mathcal{E})$, can then be expressed at a vertex $v_i \in \mathcal{V}$ by using the definition of the inner products $\langle H, d_w f \rangle_{\mathcal{H}(\mathcal{E})} = \langle d^*_w H, f \rangle_{\mathcal{H}(\mathcal{V})}$. The gradient operator of a function $f \in \mathcal{H}(\mathcal{V})$, at vertex $v_i \in \mathcal{V}$, is the vector of all the weighted directed differences $(d_w f)(v_i, v_j)$, with respect to the set of outgoing edges $v_i \rightarrow v_j \in \mathcal{E}$ and thus its L_p norm is defined as follows: $\|d_w f(v_i)\|_p = \left(\sum_{v_i \rightarrow v_j \in \mathcal{E}} \left| (d_w f)(v_i, v_j) \right|^p \right)^{1/p}$ where $p \in (0, +\infty)$.

II. DIRECTED p-LAPLACIANS

In this paper, we propose three p-laplacians on directed graphs, based on three directed difference operators, similar to the ones that have been considered for the Laplacian on undirected graphs (proofs are not provided due to the lack of space):

- A combinatorial p-Laplacian, denoted by Δ^p_w and obtained from $(d_w f)(v_i, v_j) = w(v_i, v_j)(f(v_j) - f(v_i))$ and its adjoint $(d^*_w H)(v_i) = \sum_{v_j \rightarrow v_i} H(v_j, v_i)w(v_j, v_i) - \sum_{v_i \rightarrow v_j} H(v_i, v_j)w(v_i, v_j)$.

- A normalized p-Laplacian, denoted by Δ^p_w and obtained from $(d_w f)(v_i, v_j) = w(v_i, v_j)\left(\frac{f(v_j)}{d^+(v_j)} - \frac{f(v_i)}{d^-(v_i)} \right)$ and its adjoint $(d^*_w H)(v_i) = \sum_{v_j \rightarrow v_i} H(v_j, v_i)w(v_j, v_i) - \sum_{v_i \rightarrow v_j} H(v_i, v_j)w(v_i, v_j)$.

- A random-walk laplacian denoted by $\Delta^{p, rw}_w$ and obtained from $(d_w f)(v_i, v_j) = w(v_i, v_j)\frac{f(v_j)}{d^+(v_i)}$ and its adjoint $(d^*_w H)(v_i) = \sum_{v_j \rightarrow v_i} H(v_j, v_i)w(v_j, v_i) - \sum_{v_i \rightarrow v_j} H(v_i, v_j)w(v_i, v_j)$.

Then the p-Laplacian $\Delta^p_w f(v_i) = \frac{1}{2} \left(f(v_i) + \left(\sum_{v_j \rightarrow v_i} w(v_j, v_i)^2 \right)^{-p} \left(\sum_{v_j \rightarrow v_i} \frac{w(v_j, v_i)^2}{\phi(v_j, v_i)\|d_w f(v_i)\|_2^2} \right) \right.$

$- \left(\sum_{v_j \rightarrow v_i} w(v_j, v_i)^2 \phi(v_j, v_i)^{-p} f(v_j) + \sum_{v_i \rightarrow v_j} \frac{w(v_i, v_j)^2}{\gamma_1(v_j, v_i)\|d_w f(v_i)\|_2^2} \right)$

(1)

This work received funding from the Agence Nationale de la Recherche (ANR-14-CE27-0001 GRAPHSIP), and from the European Union FEDER/FSE 2014/2020 (GRAPHSIP project).
where \(\phi, \gamma_1 \) and \(\gamma_2 \) are defined as follows, depending on the chosen directed \(p \)-Laplacian \(\Delta^p_{w^*} \):

- \(\Delta^p_w : \phi(v_i, v_j) = \phi(v_j, v_i) = \gamma_1(v_i, v_j) = \gamma_2(v_i, v_j) = 1 \),
- \(\Delta^p_{w^*} : \phi(v_i, v_j) = \sqrt{d^-(v_j) d^+(v_i)}, \gamma_1(v_j, v_i) = d^-(v_i) \) and \(\gamma_2(v_i, v_j) = d^+(v_i) \),
- \(\Delta^p_{w^*} : \phi(v_i, v_j) = d^+(v_j), \phi(v_j, v_i) = d^+(v_j) \) and \(\gamma_1(v_j, v_i) = \gamma_2(v_i, v_j) = d^+(v_i) \).

With specific weights and \(p = 2 \), we can recover the classical Laplacians on undirected graphs and some formulations on directed graphs [3].

III. LAPLACIAN REGULARIZATION

We consider the following variational problem of \(p \)-Laplacian regularization on directed graphs:

\[
\begin{align*}
g & \approx \min \left\{ E^p_{w^*}(f, f^0, \lambda) = \frac{1}{p} R^p_{w^*}(f) + \frac{\lambda}{2} \left\| f - f^0 \right\|_2^2 \right\},
\end{align*}
\]

where the regularization functional \(R^p_{w^*} \) can be induced from one of the proposed \(p \)-Laplacians on directed graphs, such that \(R^p_{w^*}(f) = \langle \Delta^p_{w^*} f, f \rangle_{\mathcal{H}(\mathcal{V})} = \langle d_{w^*} f, d_{w^*} f \rangle_{\mathcal{H}(\mathcal{E})} = \sum_{e \in \mathcal{E}} \left\| (\nabla_w f)(e) \right\|_2^2. \) When \(p \geq 1 \), the energy \(E^p_{w^*} \) is a convex functional of functions of \(\mathcal{H}(\mathcal{V}) \).

For the \(p \)-Laplacians we propose (i.e., \(\Delta^p_w, \Delta^p_{w^*} \) and \(\Delta^p_{w^*} \)), it can be proven that \(\frac{\partial R^p_{w^*}}{\partial f(v_i)} = 2\Delta^p_{w^*} f(v_i) \), and solving Equation (2) then amounts to solve \(2\Delta^p_{w^*} f(v_i) + \lambda (f(v_i) - f^0(v_i)) = 0 \). By substituting the expression of \(\Delta^p_{w^*} f(v_i) \) with one of the proposed \(p \)-Laplacians (\(\Delta^p_w, \Delta^p_{w^*} \) or \(\Delta^p_{w^*} \)), the system of equations can then be solved using a linearized Gauss-Jacobi iterative method. Let \(t \) be an iteration step, and \(f^{(t)} \) be the solution at step \(t \), the following iterative algorithm is obtained for each of the proposed \(p \)-Laplacians on directed graphs:

\[
f^{t+1}(v_i) = \frac{\lambda f^0(v_i) + \sum_{v_j \rightarrow v_i} \frac{w(v_j, v_i)}{\gamma_1(v_i)} \left(\sum_{v_j \rightarrow v_i} \frac{1}{\gamma_1(v_i)} \right) f_i(v_j)}{\lambda + \sum_{v_j \rightarrow v_i} \frac{w(v_j, v_i)}{\gamma_1(v_i)} + \sum_{v_j \rightarrow v_i} \frac{w(v_j, v_i)}{\gamma_2(v_i)}}
\]

To shortly illustrate the behavior of these \(p \)-Laplacians on directed graphs, we show sample results for the filtering of colored graph signals. First an image corrupted by Gaussian noise is filtered on a 8-adjacency directed grid graph. Second a colored mesh is filtered on a triangular directed mesh graph augmented with additional directed edges obtained from a 5-nearest neighbor graph within a 3-hop. We have experimentally observed that the filtering behavior is better with the directed random walk \(p \)-Laplacian \(\Delta^p_{w^*} \).

![Corrupted image](image1.png) 26.47dB 28.79dB 29.33dB

Fig. 1. \(p \)-Laplacian regularization of an image (corrupted by Gaussian noise with \(\sigma = 15 \)) on a 8-adjacency directed grid graph (\(\lambda = 0.05 \) and \(p = 1 \)) with from left to right: \(\Delta^p_w, \Delta^p_{w^*} \).

![3D colored mesh](image2.png)

Fig. 2. \(p \)-Laplacian regularization of a colored mesh using \(\Delta^p_{w^*} \) with \(\lambda = 0.05 \).

REFERENCES