C. C. Aggarwal, Outlier Analysis, 2013.

S. Agrawal and J. Agrawal, Survey on anomaly detection using data mining techniques, 19th International Conference in Knowledge Based and Intelligent Information and Engineering Systems KES, vol.60, pp.708-713, 2015.

M. E. Azami, C. Lartizien, C. , and S. , Robust outlier detection with L0-SVDD, 22th Eu Symposium on Artificial Neural Net. (ESANN), 2014.
URL : https://hal.archives-ouvertes.fr/hal-00956468

R. Barandela, J. S. Sánchez, V. García, and E. Rangel, Strategies for learning in class imbalance problems, Pattern Recognition, vol.36, issue.3, pp.849-851, 2003.

A. Bellet, A. Habrard, and M. Sebban, A survey on metric learning for feature vectors and structured data, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01666935

A. Bellet, A. Habrard, and M. Sebban, Metric Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121733

M. E. Boujnouni, M. Jedra, Z. , and N. , New decision function for support vector data description, Snd Int. Conf. on Innovative Computing Technology, pp.305-310, 2012.

O. Bousquet and A. Elisseeff, Stability and generalization, Journal of Machine Learning Research, vol.2, pp.499-526, 2002.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A survey, ACM Comput. Surv, vol.41, issue.3, p.58, 2009.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, Smote: Synthetic minority over-sampling technique, J. Artif. Int. Res, vol.16, issue.1, pp.321-357, 2002.

J. Frery, M. Sebban, A. Habrard, O. Caelen, G. et al., Efficient top rank optimization with gradient boosting for supervised anomaly detection, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613561

M. Goldstein and S. Uchida, A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data, PloS one, vol.11, issue.4, p.152173, 2016.

K. A. Heller, K. M. Svore, A. D. Keromytis, and S. J. Stolfo, One class support vector machines for detecting anomalous windows registry accesses, ICDM work. on Data Min. for Computer Security, 2003.

M. Khalilia, S. Chakraborty, and M. Popescu, Predicting disease risks from highly imbalanced data using random forest, BMC Medical Informatics and Decision Making, vol.11, issue.1, p.51, 2011.

T. Le, D. Tran, M. , and W. , Fuzzy multi-sphere support vector data description, 17th Pacific-Asia Conference (PAKDD), Part II, pp.570-581, 2013.

Y. Liu and Y. Zheng, Minimum enclosing and maximum excluding machine for pattern description and discrimination, 18th IEEE International Conference on Pattern Recognition (ICPR06), 2006.

E. J. Pauwels and O. Ambekar, One class classification for anomaly detection: Support vector data description revisited, Industrial Conference on Data Mining, pp.25-39, 2011.

M. Perrot and A. Habrard, Regressive virtual metric learning, NIPS, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01220665

J. R. Quinlan, C4.5: Programs for Machine Learning, 1993.

Y. Shi, A. Bellet, S. , and F. , Sparse compositional metric learning, Proc. of AAAI Conference on Artificial Intelligence, pp.2078-2084, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01430847

D. M. Tax and R. P. Duin, Support vector data description, Machine Learning Journal, vol.54, issue.1, pp.45-66, 2004.

Z. Wang, D. Gao, and Z. Pan, An effective support vector data description with relevant metric learning, 7th International Symposium on Neural Networks (ISNN), Part II, pp.42-51, 2010.