A Combined Simulation & Machine Learning Approach for Image-based Force Classification during Robotized Intravitreal Injections

Abstract : Intravitreal injection is one of the most common treatment strategies for chronic ophthalmic diseases. The last decade has seen the number of intravitreal injections dramatically increase, and with it, adverse effects and limitations. To overcome these issues, medical assistive devices for robotized injections have been proposed and are projected to improve delivery mechanisms for new generation of pharmacological solutions. In our work, we propose a method aimed at improving the safety features of such envisioned robotic systems. Our vision-based method uses a combination of 2D OCT data, numerical simulation and machine learning to estimate the range of the force applied by an injection needle on the sclera. We build a Neural Network (NN) to predict force ranges from Optical Coherence Tomography (OCT) images of the sclera directly. To avoid the need of large training data sets, the NN is trained on images of simulated deformed sclera. We validate our approach on real OCT images collected on five ex vivo porcine eyes using a robotically-controlled needle. Results show that the applied force range can be predicted with 94% accuracy. Being real-time, this solution can be integrated in the control loop of the system, allowing for in-time withdrawal of the needle.
Type de document :
Communication dans un congrès
MICCAI 2018 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2018, Granada, Spain
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01878682
Contributeur : Andrea Mendizabal <>
Soumis le : vendredi 21 septembre 2018 - 12:45:36
Dernière modification le : vendredi 12 octobre 2018 - 09:08:08
Document(s) archivé(s) le : samedi 22 décembre 2018 - 14:50:59

Fichier

combined-simulation-machine.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01878682, version 1

Collections

Citation

Andrea Mendizabal, Tatiana Fountoukidou, Jan Hermann, Raphael Sznitman, Stéphane Cotin. A Combined Simulation & Machine Learning Approach for Image-based Force Classification during Robotized Intravitreal Injections. MICCAI 2018 - 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2018, Granada, Spain. 〈hal-01878682〉

Partager

Métriques

Consultations de la notice

239

Téléchargements de fichiers

142