M. Knudsen, Eine Revision der Gleichgewichtsbedingung der Gase. Thermische Molekularströmung, Annalen der Physik, vol.336, issue.1, pp.205-229, 1909.
DOI : 10.1002/andp.19093360110

N. K. Gupta, S. An, and Y. B. Gianchandani, A Si-micromachined 48-stage Knudsen pump for on-chip vacuum, Journal of Micromechanics and Microengineering, vol.22, issue.10, p.105026, 2012.
DOI : 10.1088/0960-1317/22/10/105026

R. M. Young, Analysis of a micromachine based vacuum pump on a chip actuated by the thermal transpiration effect, Journal of Vacuum Science &amp

, Technology B, vol.17, issue.2, pp.280-287, 1999.

S. Mcnamara and Y. B. Gianchandani, On-Chip Vacuum Generated by a Micromachined Knudsen Pump, Microelectromechanical Systems, Journal, vol.14, issue.4, pp.741-746, 2005.

Y. Han, E. Phillip-muntz, A. Alexeenko, and M. Young, Experimental and Computational Studies of Temperature Gradient-Driven Molecular Transport in Gas Flows through Nano/Microscale Channels, Nanoscale and Microscale Thermophysical Engineering, vol.11, issue.1-2, pp.151-175, 2007.

N. K. Gupta and Y. B. Gianchandani, Porous ceramics for multistage Knudsen micropumpsmodeling approach and experimental evaluation, Journal of Micromechanics and Microengineering, vol.21, issue.9, p.95029, 2011.

K. Aoki, P. Degond, and L. Mieussens, Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect, Communications in Computational Physics, vol.6, issue.5, pp.911-954, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00997030

K. Aoki, P. Degond, L. Mieussens, S. Takata, and H. Yoshida, A Diffusion Model for Rarefied Flows in Curved Channels, Multiscale Modeling & Simulation, vol.6, issue.4, pp.1281-1316, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00353321

V. Leontidis, J. Chen, L. Baldas, and S. Colin, Numerical design of a Knudsen pump with curved channels operating in the slip flow regime, pp.1-16, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01881269

D. M. Bond, V. Wheatley, and M. Goldsworthy, Numerical investigation into the performance of alternative Knudsen pump designs, Int. J. Heat Mass Transf, vol.93, pp.1038-1058, 2016.

H. Sugimoto and Y. Sone, Vacuum pump without a moving part driven by thermal edge flow, Rarefied Gas Dynamics: 24th International Symposium on Rarefied Gas Dynamics, pp.168-173, 2005.

A. A. Donkov, S. Tiwari, T. Liang, S. Hardt, A. Klar et al., Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures, Physical Review E, vol.84, issue.1, p.16304, 2011.

A. Würger, Leidenfrost Gas Ratchets Driven by Thermal Creep, Physical Review Letters, vol.107, issue.16, p.164502, 2011.

J. Chen, L. Baldas, and S. Colin, Numerical study of thermal creep flow between two ratchet surfaces, Vacuum, vol.109, issue.0, pp.294-301, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01881267

W. Zhang, G. Meng, and X. Wei, A review on slip models for gas microflows, Microfluid Nanofluid, vol.13, pp.845-882, 2012.

G. Bird, Monte Carlo simulation of gas flows, Annual Review of Fluid Mechanics, vol.10, pp.11-31, 1978.

G. A. Bird, Molecular gas dynamics and the direct simulation of gas flows, 1994.

M. Vargas, G. Tatsios, D. Valougeorgis, and S. Stefanov, Rarefied gas flow in a rectangular enclosure induced by non-isothermal walls, Physics of Fluids, vol.26, issue.5, p.57101, 1994.

N. K. Kulakarni, K. Shterev, and S. K. Stefanov, Effects of finite distance between a pair of opposite transversal dimensions in microchannel configurations: DSMC analysis in transitional regime, Int. J. Heat Mass Transf, vol.85, pp.568-576, 2015.

S. Stefanov, R. Barber, M. Ota, and D. Emerson, Comparison between Navier-Stokes and DSMC calculations for low Reynolds number slip flow past a confined microsphere, 2005.
DOI : 10.1063/1.1941617

URL : http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA446004&Location=U2&doc=GetTRDoc.pdf

F. Sharipov, Data on the Velocity Slip and Temperature Jump on a Gas-Solid Interface, vol.40, p.23101, 2011.
DOI : 10.1063/1.3580290

M. Bergoglio, D. Mari, J. Chen, H. Si-hadj-mohand, S. Colin et al., Experimental and computational study of gas flow delivered by a rectangular microchannels leak, Measurement, vol.73, pp.551-562, 2015.
DOI : 10.1016/j.measurement.2015.06.011

URL : https://hal.archives-ouvertes.fr/hal-01878098

M. Rojas-cardenas, I. Graur, P. Perrier, and J. G. Meolans, Thermal transpiration flow: A circular cross-section microtube submitted to a temperature gradient, Physics of Fluids, vol.23, issue.3, p.31702, 1994.
URL : https://hal.archives-ouvertes.fr/hal-01835757

M. Rojas-cárdenas, I. Graur, P. Perrier, and J. G. Méolans, Time-dependent experimental analysis of a thermal transpiration rarefied gas flow, Physics of Fluids, issue.7, p.72001, 1994.

F. Sharipov, Application of the Cercignani-Lampis scattering kernel to calculations of rarefied gas flows. II. Slip and jump coefficients, European Journal of Mechanics-B/Fluids, vol.22, issue.2, pp.133-143, 2003.

J. B. Young, Calculation of Knudsen layers and jump conditions using the linearised G13 and R13 moment methods, Int. J. Heat Mass Transf, vol.54, pp.2902-2912, 2011.
DOI : 10.1016/j.ijheatmasstransfer.2011.03.009

M. Rojas-cárdenas, I. Graur, P. Perrier, and J. G. Méolans, A new method to measure the thermal slip coefficient, Int. J. Heat Mass Transf, vol.88, pp.766-774, 2015.