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ON THE SIMPSON INDEX FOR THE MORAN PROCESS
WITH RANDOM SELECTION AND IMMIGRATION

ARNAUD GUILLIN ♦ , FRANCK JABOT ♣ ,
AND ARNAUD PERSONNE ♦

♦ Université Clermont-Auvergne
♣ Irstea

Abstract. Moran or Wright-Fisher processes are probably the most
well known model to study the evolution of a population under various
effects. Our object of study will be the Simpson index which measures
the level of diversity of the population, one of the key parameter for
ecologists who study for example forest dynamics. Following ecologi-
cal motivations, we will consider here the case where there are various
species with fitness and immigration parameters being random processes
(and thus time evolving). To measure biodiversity, ecologists generally
use the Simpson index, who has no closed formula, except in the neutral
(no selection) case via a backward approach, and which is difficult to
evaluate even numerically when the population size is large. Our ap-
proach relies on the large population limit in the "weak" selection case,
and thus to give a procedure which enable us to approximate, with con-
trolled rate, the expectation of the Simpson index at fixed time. Our
approach will be forward and valid for all time, which is the main differ-
ence with the historical approach of Kingman, or Krone-Neuhauser. We
will also study the long time behaviour of the Wright-Fisher process in a
simplified setting, allowing us to get a full picture for the approximation
of the expectation of the Simpson index.

Key words : Simpson index, multidimensional Wright-Fisher process, ran-
dom selection, random immigration.
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1. Introduction

Community ecology has been deeply shaked by the book of Hubbell (2001)
[26] that elaborated on the idea that the dynamics of ecological communi-
ties might be mainly shaped by random processes. A number of predictions
made by this neutral theory of biodiversity have been indeed corroborated
by empirical evidence (Hubbell [26], Condit et al.[5], Jabot and Chave [27]).
This good performance of neutral models for reproducing empirical patterns
has stimulated the mathematical study of neutral ecological models (Etienne
[14], Fuk et al [19]), in connection with the rich body of work on evolutionary
neutral models (Volkov et al. [39], Ewens [16], Muirhead and Wakeley [32]).
More recent empirical evaluations of neutral predictions on tropical forest
data have focused on the temporal dynamics of individual populations and
have shown that the temporal variance of population sizes was actually larger
than the one typically predicted by neutral models (Chisholm et al. [4]).
These authors have suggested that this may be due to species-specific re-
sponses to the temporal variability of the environment. Subsequent mod-
elling studies have elaborated on this idea (Kalyuzhny et al. [29], Jabot and
Lohier [28], Krone and Neuhauser [30] and more mathematically-oriented
contributions on this topic have since been made ([25, 38, 9, 10, 7, 8, 20,
11, 23, 6]). All these studies share the same idea that community dynamics
is influenced by a species-specific selection coefficient and that this selection
coefficient is temporally varying, so that good and bad periods are subse-
quently experienced by all species within the community.
The aim of this contribution is to provide a comprehensive study of a simple
model encapsulating this kind of ideas within a weak selection framework.
Subsequent works within a strong selection framework will complement the
present study.
Indeed, the simplest model for the evolution of population is surely the
Moran model (or its cousin the discrete Wright-Fisher model), in which in
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a given population an individual is chosen to die (uniformly in the popula-
tion) and then a child chooses his parent proportionally to the abundance in
the previous population. One may also add immigration, i.e. a probability
that the child comes from another community, and selection so that some
species (or traits) have a selective advantage. Kalyuzhny et al [29], to bypass
the neutrality of the model, chosed to consider immigration and selection as
random processes (independent of the Moran system), but which preserves
neutrality "in mean". One of the main goal is of course to study the effect
of these models on biodiversity and its evolution. There are many ways to
measure biodiversity. We will focus here on the Simpson index [36], usu-
ally considered in neutral model [15]: it measures the probability that two
individuals uniformly chosen may be of the same species. More precisely
denoting Xi the number of individuals of species i, S the number of species
and J the toal size of the population, the Simpson index is given by

S =
S∑
i=1

Xi(Xi − 1)

J(J − 1)

thus varying (roughly) from 0 to 1, from maximal to minimal diversity. Us-
ing backward approach, and Kingman’s coalescent, an explicit formula may
be given for the (asymptotic in time) Simpson index in the neutral case with
immigration as 1−m

1+J−2m , as otherwise it is 1 as a particular specie will almost
surely invade all the population. Note that a closed formula (even for the
expectation) of the Simpson index at a given time, is usually not reachable.
We will consider in this paper this Moran model with immigration and selec-
tion as general random process. As said previously such models were recently
considered for example by Griffiths [24, 25], Kalyuznhy et al [29] for a simu-
lation study, but no theoretical framework towards the Simpson index. The
backward approach constitutes the works of Krone and Neuhauser [30, 34]
leading to new coalescent type processes which are however quite difficult to
study and may not give a closed formula for the Simpson index. A recent
work by Grieshammer [23] considers a forward in time approach but he does
not focus on the Simpson index. Our approach is only forward here. As
is often done in population genetics, we will consider the large population
approximation. Our first task is then to justify this asymptotic to a Wright-
Fisher diffusion process in random environment in the weak immigration
and selection case. As a flavour, with only two species, the evolution of the
proportion of one species is given by

dXt = mt(pt −Xt)dt+ stXt(1−Xt)dt+
√

2Xt(1−Xt)dBt

where mt is the immigration process, pt the probability that this species
is chosen, and st the selection advantage. It will be done by the usual
martingale method. Another quantitative approach will be considered in
[21]. The Simpson index is then a quadratic form involving the proportion of
each species, and by Itô’s formula it involves higher order term. The equation
for the expectation of the Simpson index is therefore not closed. We will
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then introduce a quantitative approximation procedure for the expectation
of the Simpson index, in the quenched case (corresponding to a given random
environment) and in some particular case in the annealed case for two or
more species. We will also study in some simple case (constant parameter)
the long time behaviour of the Simpson index. It is reminiscent with the
very recent work of Coron, Méléard and Villemonais [6] (discovered while
finishing this work). Very schematically our approach is the following

(1) approximate the true discrete process by a SDE, i.e. Wright-Fisher
process;

(2) approximate the expectation of the Simpson index for the Wright-
Fisher process by a deterministic ODE;

(3) approximate the infinite time expectation of the Simpson index by
the finite time, through evaluation of the speed of convergence to-
wards equilibrium of the Wright-Fisher process.

In Section 2, we introduce the Moran model in random environment and
prove its convergence in the large population limit. In Section 3, we focus
on the two species case where the approximation of the Simpson index is
studied in the quenched case as well as its long time behaviour. Section 4
generalizes to a large number of species and also considers the annealed case
when the selection parameter has a particular form (a variant of a Wright-
Fisher process). The last section contains technical proofs or recall some
known results for the Wright-Fisher process.

2. The Moran model in random environment and its
approximation in large population

2.1. Discrete model with selection and immigration.
In this section we describe in detail the discrete model, i.e. the Moran
process, which is the basic of our study. One may also consider here the
Wright-Fisher discrete process with adequat change. The Moran process is
an evolution of population model, in which a single event occurs at each time
step. More precisely each event corresponds to the death of an individual
and the birth of another who replaces it.
We consider a population, whose size is constant over time equal to J , com-
posed of S + 1 species . The proportion of the i species at the nth event is
denoted Xi

n, i ∈ S = {1, ..., S + 1}, n ∈ N.
As usual one we know (Xi

n)i=1,..,S , we deduce the proportion for the last

species, XS+1
n = 1−

S∑
i=1

Xi
n

We note Xn the species vector or abundance vector having for coordinate i,
Xi
n. The dynamics of evolution follows the following pattern at the step n:
(1) The individual designated to die is chosen uniformly among the com-

munity.
(2) The one which replaces it, chooses his parent in the community with

probability 1−mn (filiation) or a parent from the immigration process
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with probability mn (immigration). The quantity mn varies between
0 and 1, it can be random and time dependent.

(3) If there is immigration the chosen parent is from the species i, with
probability pin i ∈ S. The pin verify

∑
i∈S

pin = 1 and can be time de-

pendent and random. We note p for the vector having for coordinate
i, pin.

(4) In a filiation, the chosen parent is of the species i with probability
Xi

n(1+sin)

1+
S+1∑
k=1

Xkskn

.

The sin, i ∈ S are the selection parameters , they may be time depen-
dent and random. Furthermore, we assume sS+1

n = 0. Indeed, we
can obtain it from any configuration by changing all the coefficients
by sin = s̃in−s̃

S+1
n

1+s̃S+1
n

.

We will assume throughout this work that mn, pn, sn are autonomous, in
the sense that their evolution do not depend on (Xn)n≥0. We will further
assume that (mn, pn, sn)n≥0 is a Markov chain. Note also that mn, pn, sn
may also depend in some sense of the size of the population J , but we do
not add another superscript to get lighter notations.

This model therefore describes a Markovian dynamic in which selection and
immigration play an important role. Immigration already introduced by
Hubbell [26] avoids the definitive invasion of the community by a species.
Selection changes the dynamics of a species related to the neutral model(
[29]). The temporal evolution of the population could be simulated numer-
ically from the transition matrix of the Markov system. Let us describe
precisely these transition probabilities for the evolution of proportions. The
assumption for the dynamics for the immigration and selection will be given
later on.
Let x be the vector having for coordinate i, xi and suppose mn ,pn known.
Denote ∆ = 1

J , so for the i species:

Pxi+ = P(Xi
n+1 = x+ ∆|Xn = x)

= (1− xi)

mnp
i
n + (1−mn)

xi(1 + sin)

1 +
S+1∑
k=1

xkskn

 ,
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Pxi− = P(Xi
n+1 = x−∆|Xn = x))

= xi

mn(1− pin) + (1−mn)

1− xi(1 + sin)

1 +
S+1∑
k=1

xkskn


 ,

Pxi+xj− = P({Xi
n+1 = xi + ∆} ∩ {Xj

n+1 = xj −∆}|Xn = x)

= xj

mn(1− pin) + (1−mn)
xi(1 + sin)

1 +
s+1∑
k=1

xkskn

 .

With the dynamics of (mn, pn, sn) given, one may of course simulate exactly
the vector of proportionXn and thus evaluate the expectation of the Simpson
index, which is what we will do to validate our approximation procedure, but
when the population size J is very large, it may be computationally too costly
(and even impossible). Thus we will approach the dynamics of this model
by a stochastic differential system continuous in time.

2.2. To a limit in large population.
In this section, we explain how approaching the dynamics of the preceding
model by a diffusion, and associated process for the immigration and selec-
tion processes, when J goes to infinity.

We need to define a J dependent time scale. Indeed, when J goes to infinity,
the time scale has to change, expectation and variance are about 1

J and 1
J2 ,

and goes to 0 when J goes to infinity. It corresponds to considering a large
number of event for the Markov chain, to obtain a non-trivial convergence
of our discrete process towards a limit process, i.e. not look at the event-by-
event evolution as we did before but in packets of several events.
Several choices for scales are possible, each one leads to study a different
process. We choose to study a continuous multidimensional diffusion in time.

2.2.1. Diffusion approximation.
In a general framework, the limiting process we obtain is characterized by
the first moment and the covariance matrix of the infinitesimal variation of
abundance.
More precisely if we note ∆t the infinitesimal variation in time (which de-
pends on the scale ) and ∆Xt = Xt+∆t − Xt the infinitesimal variation of
abundance, the diffusion process is characterized by the quantities:

b(x) = lim
∆t⇒0

E[∆Xt|Xt = x]

∆t
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σi,j(x) = lim
∆t⇒0

Cov[∆Xt+∆t(i),∆Xt+∆t(j)|Xt = x]

∆t
i, j ∈ S

The following property characterizes the order (relative to J) of the expecta-
tion, variance, and covariance of the abundance variation of a species during
an event:

Proposition 1. (1) E[Xi
n+1 −Xi

n|Xn = x] = ∆(Pxi+ − Pxi−)

(2) Var[Xi
n+1 −Xi

n|Xn = x] = ∆2((Pxi+ + Pxi−)− (Pxi+ − Pxi−)2)

The proof is standard calculus and thus omitted. The last property shows
that the expectation is of the order of 1

J whereas the variance is of the or-
der of 1

J2 . The choice we make to preserve a stochastic part in our limit
equation is to consider the infinitesimal time variation is of the order of 1

J2

.Other choices would have led to a Piecewise Deterministic Markov process
in which only the parameters s, m, p brings randomness. It will be left for
further study.

A scale in 1
J2 and the weak selection and immigration.

Let ∆t = 1
J2 et n = tJ2.

In this case, E[Xt+∆t − x|Xt = x] = O(J) and the limit would be infinite.
To hope for a finite term and thus to observe the influence of s and m in
our limit DSE, we must assume that s and m are inversely proportional to
J . We now assume that migration and speciation are weak.

Proposition 2. Let ∆t = 1
J2 and n = tJ2, note m′(t) = m(t) × J and

s′(t) = s(t)× J . So when J goes to infinity:

(1) E[Xi
t+∆t

− xi|Xt = x] =

(
m′t(p

i
t − xi) + xi(s′it −

∑
k∈S

xks′kt )

)
×∆t +

o(∆t)
(2) Var[Xi

t+∆t
− xi|Xt = x] = 2xi(1− xi)∆t + o(∆t)

(3) Cov[Xi
t+∆t

, X l
t+∆t
|Xt = x] = −2xixl∆t + o(∆t) ∀i 6= l.

We will now introduce notations and assumptions. Remark that a very
recent work by Bansaye et al [3] considered a very general framework for
population model convergence in random environment, but in their work
the environment is usually i.i.d. whereas we are in a Markovian setting. To
get shorter statement and proofs, we will make considerable simplifications
for our main assumption.
Assumption (A).

• the process (pn) is assumed to be constant, which corresponds to a
non evolving pool of immigration;
• the process (mJ) is an autonomous Markov chain, and consider its
rescaled piecewise linear extension m̃J

t = J mJ
btJ2c, which is assumed

to take values in a finite set Em and uniformly bounded (in J). Let
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denote PmJ (m,m′, t) its transition probabilities and assume for all
m 6= m′,

lim
J→∞

PmJ

(
m,m′,

1

J2

)
× J2 = Q(m,m′)

is well defined;
• the process (sJ) is an autonomous Markov chain, and consider its
rescaled piecewise linear extension s̃Jt = J sJbtJ2c, which is assumed
to take values in a finite set Es and uniformly bounded (in J). Let
denote PsJ (s, s′, t) its transition probabilities and assume for all s 6=
s′,

lim
J→∞

PsJ

(
s, s′,

1

J2

)
× J2 = Qs(s, s′)

is well defined.
• The processes (mn) and (sn) are supposed to be independent.

These assumptions about the limits of transitions probabilities are intended
to ensure the convergence in law of s and m towards Markovian jump pro-
cesses when J goes to infinity.

Denote again UJt =

XJ
t

sJt
mJ
t

 taking values in E = Ex × Es × Em a compact

set of R2S+1 and for Γ ∈ E, we define for k ∈ N, t ∈ [ k
J2 ,

k+1
J2 [ , πJ(Ut,Γ) =

πJ(U k
J2
,Γ) = P(UJk+1

J2

∈ Γ|UJk
J2

).

We are now in position to state our diffusion approximation result.

Theorem 3. Assume (A) then when J goes to infinity the sequence of pro-
cesses (XJ

t ) converges in law to the process (Xt) whose coordinates are solu-
tions of the following stochastic differential equation

dX
1
t

...
dXS

t

 =


mt × (p1

t −X1
t ) +X1

t

(
s1
t −

∑
k∈S

Xkskt

)
...

mt × (pSt −XS
t ) +XS

t

(
sSt −

∑
k∈S

Xkskt

)
 dt+ σ(Xt)dBt (1)

where σ is such that σ.σ∗ = a with ai,j = −2xixj if i 6= j and ai,i = 2xi(1−xi)
and where st = lim sJt J and mt = limmJ

t J are the Markovian jump pro-
cesses with generators Qs and Qm and for initial conditions s0 = lim JsJ0
and m0 = limJmJ

0 .

Proof. The proof is in Section 5.1 and relies on the usual Martingale Problem
Method. �

Let us give some remarks
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(1) We may also consider the proportions pi random but their law would
be J dependent (through the change of time) and it is in disharmony
with the biological model which assumes the pool independent of the
community size.

(2) Other types of processes for s would have led to similar results, for
example we could take a diffusion, with obvious modifications.

(3) It is possible to give an upper bound of the error made by performing
the diffusion approximation, by a direct approach not relying on the
martingale problem method. It will be the purpose of [21].

2.2.2. Simpson index.
Our main object to quantify the biodiversity will be the Simpson index :

St =
S+1∑
i=1

(xit)
2 (2)

with xS+1
t = 1−

S∑
i=1

xit.

Notice that this expression is the limits of the discrete Simpson index when
J goes to the infinity. Its dynamic is given by a non autonomous stochastic
differential equation.

Proposition 4. Denote as usual pS+1
t = 1 −

S∑
i=1

pit, and XS+1
t = 1 −

S∑
i=1

Xi
t .

So the Simpson index is solution of the following equation :

dSt = 2(1−St)− 2

S∑
i=1

sitX
i
t(St −Xi

t) + 2mt

(
S+1∑
i=1

piXi
t −St

)
dt+ dMt

where Mt is a martingale.
The drift is composed of three terms, the first is the drift in the neutral case
without immigration (autonomous equation), the second is a term due to the
presence of selection only and the third to the presence of immigration.

This proposition follows from Itô’s calculus and details may be found in
Section 5. As we will consider mainly the evolution of the expectation of the
Simpson index, we do not describe the martingale term.
Now that the large limit SDE is established, we may consider the approx-
imation of the Simpson index. We will first consider a simplified case, but
which contains all the main difficulties: the two species case.
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3. Approximation of the Simpson index in the quenched or
deterministic case: the two species case.

In this part, we study a population of only two species. The equations ob-
tained are in dimension one and the quantities are easier to calculate. It is
a basic example to understand the dynamic in greater dimension.
In all this section we will suppose that the selection and immigration pro-
cesses are deterministic, which also amounts to consider the quenched case,
i.e. we fix the random environment (immigration and selection), as our goal
will be to give a numerical method to approximate E[St] at a lower cost. We
will see in the next section how to consider the annealed case for a very par-
ticular case of selection and immigration. In a second part, we will look for
constant selection and immigration the behaviour of the process in long time.

The one dimensional Simpson index is

St = X2
t + (1−Xt)

2

Following the result of the previous section we are thus interested in the case
where Xt and St dynamics are given by

dXt = mt(pt −Xt)dt+ stXt(1−Xt)dt+
√

2Xt(1−XtdBt (3)

dSt =4Xt(1−Xt)×
(

1 + st(Xt −
1

2
)

)
+ 2mt(pt −Xt)(2Xt − 1)dt

+ 2(2Xt − 1)
√

2Xt(1−Xt)dBt (4)

where mt and st are the rescaled limit immigration and selection processes.

Comment 1. There is a first interesting feature when analysing the in-
stantaneous behaviour of the dynamic of St in the case where there is no
immigration (and thus the Simpson index will tend to 1): when |st| < 2, the
drift of St is always positive so that a even variability if the selection is small
does not change the trend to non diversity. At the opposite, if the selection is
sufficiently strong it may change locally the behaviour of the Simpson index,
and we may thus imagine that change of fitness may lead to oscillation of
the Simpson index. We will illustrate this phenomenon numerically.

We will now concentrate on a method to approximate all the moments of
Xt, and thus an approximation of E[St].

3.1. Approximation of the moments of Xt.

3.1.1. The approximation theorem.
As remarked earlier the momentum of St can not be calculated directly,
as the equation of E[St] is not autonomous(3). However we only need to
evaluate the first two moments ofXt. We will see that it will be more difficult
than planned. Indeed, taking expectation in (4) (recalling that mt and st
are considered deterministic), we get:
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dE[Xt] = mtpt −mtE[Xt] + st
(
E[Xt]− E[X2

t ]
)
dt (5)

By analyzing (5), we cannot express the first momentum of Xt without the
second moment and when considering the second moment, the third will ap-
pear and so on. It is thus impossible to express the momentum of Xt as the
solution of an autonomous equation (except for the trivial case where st = 0)
Nevertheless, the following theorem gives a way of obtaining an approxima-
tion of the first moments of Xt by solving a differential system whose size is
all the greater that one wishes to be precise.

Theorem 5. Denote Ãnt the tridiagonal matrix whose coefficients are given
by ãi+1,i = (i+ ptmt)(i+ 1), ãi,i = i(st − i+ 1−mt), ãi,i+1 = −ist for i in
{1, ..., n− 1} and ãn,n = −n(n− 1 +mt)
Let consider the following system of ordinary differential equations

dM̃t = Ãnt × M̃tdt+ Ctdt

where Ct = (mtpt, 0, ..., 0)t.

So for j fixed, the jth coordinate of the solution M̃t converges when n (the
size of the differential system) tends to infinity towards jth momentum of
Xt. The error committed is at most

√
n‖s‖n−1

∞
(n− 1)!

.

As seen from the upper bound, the convergence is quite fast and even enable
to approximate the Laplace transform of Xt quite efficiently. It is mainly
due to the fact that we have only two species here. We will see in the next
section what happens for three species and will explain how it deteriorates
with the number of species.

3.1.2. Proof of the theorem. We will begin by considering the error between
the solution of our approaching system and the real solution. For practical
reasons, each coordinate of the error is multiplied by a coefficient independent
of the system size. Let us begin by giving the (non autonomous) system of
ordinary differential equations verified by the moments of Xt

Proposition 6. Let Mt being the vector having for coordinate i the E[Xi
t ]

(up to nth moment). Mt is solution of

dMt = Ãnt ×Mtdt+ Ctdt+Btdt

where Bt = (0, ..., 0, nstE[Xn
t (1−Xt)])

T

Proof.
It is of course a simple consequence of Itô’s Formula Xi

t :

dXi
t =iXi−1

t ((mt(pt −Xt) + stXt(1−Xt))× (i− 1)(1−Xt)) dt+ dMt

=− istXi+1
t + i (st − (i− 1)−mt)X

i
t + i(i− 1 +mtpt)X

i−1
t dt+ dM tt
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where M is a martingale and by taking the expectation

dE[Xi
t ] = −istE[Xi+1

t ] + i(st− (i− 1)−mt)E[Xi
t ] + i(i− 1 +mtpt)E[Xi−1

t ]dt

to recover the coefficients of the matrix Ãnt .
�

We define the vector of errors ∆n
t by

∆n
t (i) = (st)

i−1 × M i
t − M̃t

i

(i− 1)!
,

and we introduce also µ̃nt = (0, ..., 0, µnt )T with

µnt =
(st)

n−1

(n− 1)!
× nstE[Xn

t (1−Xt)].

Note that when we multiply, for i fixed, the differenceM i
t−M̃ i

t by a coefficient
independent of n, the speed of convergence of the ith coordinate of the error
change but not the fact that this quantity tends towards 0. On the other
hand, it forces the dependent coordinates of n to tend to 0. So we just need
to prove that ‖∆n

t ‖ goes to 0, which is not the case for M i
t − M̃ i

t .

Proposition 7. ∆n
t is the solution of the following differential system:{

d∆n
t = Ant ×∆n

t dt+ µ̃nt dt

∆n
0 = 0

(6)

and

Ant =


a1
t b1t (0)
c1
t a2

t b2t
. . . . . . . . .

cn−2
t an−1

t bn−1
t

(0) cn−1
t ant


with

ait = i
(
st − (i− 1)−mt

)
, i < n

ant = −n
(
(n− 1) +mt

)
bit = −i2 i < n

cit = sti(1−
mtpt)

i− 1
) i < n

Proof.
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Indeed, by substraction,

d(Mn
t − M̃n

t ) = Ãnt × (Mn
t − M̃n

t ) +


0
...
0

stnE[(Xt)
n(1−Xt)]

 .

This involves for all k < n

d(Mk
t − M̃k

t ) = k(k − 1 + ptmt)(M
k−1
t − M̃k−1

t )

+ k(st − (k − 1)−mt)(M
k
t − M̃k

t )− kst(Mk+1
t − M̃k+1

t ).

Next, we multiply by (st)k−1

(k−1)! ,

d(∆k,n
t ) =

(Mk−1
t − M̃k−1

t )sk−2
t

(k − 2)!

stk(k − 1 + ptmt)

k − 1

+
ksk−1

t

(k − 1)!

(
st − (k − 1)−mt)(M

k
t − M̃k

t

)
− skt (M

k+1
t − M̃k+1

t )

(k)!
k2

= kst
(
1− mtpt)

k − 1

)
∆k−1,n
t + k(st − (k − 1)−mt)∆

k,n
t − k2∆k+1,n

t .

Now if k=n,

d∆n,n
t = n

[
st

(
1− mtpt

n− 1

)
∆n−1,n
t − (mt + n− 1)∆n,n

t

+
si−1
t

(n− 1)!
stE[Xn

t (1−Xt)]

]
We thus find the coefficients of the previous equation system. �

We may now provide the solution to the system of equation for the error.

Proposition 8. The solution of (6) can be written

∆n
t =

∫ t

0
exp

(∫ t

q
Anu

)
µ̃nq dq

Proof. First, the solution of (6) can be written as the solution of the homo-
geneous system and a particular solution.

∆n
t = K exp

(∫ t

q
Anudu

)
+ exp

(∫ t

0
Anudu

)∫ t

0
exp

(
−
∫ q

0
Anudu

)
µ̃nt (q)dq

As ∆n
0 = 0 necessarily K = 0 and ∆n

t =
∫ t

0 exp
(∫ t

q A
n
udu

)
µ̃nt (q)dq. �
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We will now show that, for a fixed time interval, ‖∆n
t ‖2 is uniformly bounded

by a quantity which goes to 0 when n goes to infinity. In the following,
‖.‖F stands for the Frobenius norm. Thanks to the formula of the previous
proposition:

‖∆n
t (t)‖22 =

∥∥∥∥∫ t

0
exp

(∫ t

q
Anudu

)
µ̃nq dq

∥∥∥∥2

2

=

n∑
k=1

(∫ t

0
(exp

(∫ t

q
Anudu

)
µ̃nq )dq

)2

k

6 t×
n∑
k=1

∫ t

0

(
exp

(∫ t

q
Anudu

)
µ̃nq

)2

k

dq

6 t
∫ t

0

∥∥∥∥exp

(∫ t

q
Anudu

)
µ̃nq

∥∥∥∥2

2

dq

6 t
∫ t

0

∥∥∥∥exp

(∫ t

q
Anudu

)∥∥∥∥2

F

‖µ̃nq ‖22dq

6 t2 × sup
x∈[0,t]

∥∥∥∥exp

(∫ t

x
Anudu

)∥∥∥∥2

F

× sup
x∈[0,t]

|µnx|2

The following easy lemma gives us an upper bound for the two previous
norms:

Lemma 9.
If X ∈ [0, 1] then sXn(1−X) = O( 1

n) and there is a constant c1 independent
of n such that sup

x∈[0,t]
|µnx| 6 sup

x
∈ [0, t]sn−1

x
c1

(n−1)!

Proof. The maximum of Xn(1−X) on [0, 1] is achieved in n
n+1 and it’s worth

(1− 1
n+1)n × 1

n+1 .
This quantity is of the order of 1

n when n goes to infinity.
The upper bound of µnx follow. �

Next,∥∥∥∥exp

(∫ t

x
Anudu

)∥∥∥∥2

F

=Tr

(
exp

(∫ t

x
Anudu

)T
× exp

(∫ t

x
Anudu

))

=Tr

(
exp

(∫ t

x
Anu + (Anu)Tdu

))
=
∑
λi

exp (λxi )

6n× max
i∈{1...n}

( exp(λxi ))
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where the λxi are the eigenvalues of
∫ t
x A

n
u + (Anu)Tdu .

Then if max
i∈{1...n}

exp(λxi ) is independent of n, there is a constant c2 indepen-

dent of n verifying

sup
x∈[0,t]

∥∥∥∥exp(

∫ t

x
Anudu)

∥∥∥∥
F

6
√
n× c2

And then there exist a constant C such as

‖∆n
t (t)‖2 6

√
nc2 ×

c1‖s‖n−1
∞

(n− 1)!
6
C
√
n‖s‖n−1

∞
(n− 1)!

It remains to show that the eigenvalues of
∫ t
x A

n
u + (Anu)Tdu (which are real)

have an upper bound independent of n.

Proposition 10. Let Ant + (Ant )T =


a1
t b1t
b1t a2

t b2t
. . . . . . . . .

bn−2
t an−1

t bn−1
t

bn−1
t ant

 with

ait = 2i
(
st − (i− 1)−mt

)
, i < n

ant = −n
(
(n− 1) +mt

)
bit = sti(1−

mtpt)

i− 1
)− (i− 1)2

then the eigenvalues of
∫ t
x(Anu)T +Anudu are uniformly bounded in n .

Proof. To prove this result we need to use Gershgorin’s disk. The eigenvalues
of
∫ t
x(Anu)T + Anudu are included in the union of the disk Di whose centers

are the ith term on the diagonal (
∫ t
x a

i
udu) and for radius the sums of the

coefficients norms on the ith line except the diagonal term(|
∫ t
x b

i−1
u du| +

|
∫ t
x b

i
udu|). It is important to consider the forms of the discs in our case. As

we have to show that the eigenvalues have a upper bound independently of
n. We just need to look at the shape of the discs for i and n big enough.
From the matrix if i < n, their centers are

2i

(∫ t

x
sudu− (i− 1)(t− x)−

∫ t

x
mudu

)
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and their radius are equal to∣∣∣∣∫ t

x
bi−1
u du

∣∣∣∣+

∣∣∣∣∫ t

x
biu

∣∣∣∣ =

∣∣∣∣∫ t

x
sui

(
1− mupu

i− 1

)
− (i− 1)2du

∣∣∣∣
+

∣∣∣∣∫ t

x
su(i+ 1)

(
1− mupu

i

)
− i2du

∣∣∣∣
=

∣∣∣∣i∫ t

x
sudu− (i2 − 2i)(t− x) + i

∫ t

x
mudu

∣∣∣∣
+

∣∣∣∣i∫ t

x
sudu− i2(t− x)− i

∫ t

x
mudu

∣∣∣∣+O(1)

= 2i

(
(i− 1)(t− x)−

∫ t

x
sudu+

∫ t

x
mudu

)
+O(1).

So the maximum value for an eigenvalue of
∫ t
x(Anu)T +Anudu belonging to Di

is ∫ t

x
aiudu+

∣∣∣∣∫ t

x
bi−1
u du

∣∣∣∣+

∣∣∣∣∫ t

x
biudu

∣∣∣∣
= 2i

(∫ t

x
sudu− (i− 1)(t− x)−

∫ t

x
mudu

)
+ 2i

(
(i− 1)(t− x)−

∫ t

x
sudu+

∫ t

x
mudu

)
+O(1)

= O(1)

as soon as i is big enough. If i = n the same reasoning is still working. So
the eigenvalues of (An)T +An have an upper bound independent of n. �

This property concludes the proof and we get the following upper bound

‖∆n
t (t)‖∞ 6 ‖∆n

t (t)‖2 6
C
√
n‖s‖n−1

∞
(n− 1)!

The constant C depends on time (exponentially) and therefore this algo-
rithm will be less accurate if we look at the behavior of the process in long
time. This result gives a satisfactory approximation of the St’s moment.
Convergence is very fast, and the algorithm boils down to solving a linear
differential system. To ensure the interest of this method we can compare
the expectation of Simpson’s index obtained by a Monte Carlo method from
the discrete model to that obtained with this approximation. The Figure 1
presents such an approximation.

3.2. Numerical applications.
The simulations presented in this part are obtained from the previous theo-
rem. The values of s,m, p are those of the large population approximation
and not that of the discrete model. The size of the approaching system will
be usually between 80 and 144 depending on the needed precision.
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Figure 1. Are plotted the approximate values of E[St] and
E[Xt] by the precedent method from the approximation in
large population and by MC method from the discreet model.
The number of simulated trajectories for MC mean is 500
(red and blue), J = 1000,m = 2,p = 0.5,X0 = 0.2, s switches
between 2 and −2 at regular time intervals, the size of the
approaching linear system is 100.

3.2.1. Influence of s on Simpson Index.
In this part, p = 0.5. Now we know how to approximate the expectation of
St, so we can check the influence of s on this quantity. Let us make precise
a statement enounced when deriving St.

Proposition 11.
If ‖s‖∞ is smaller than 2 and if m = 0, E[St] is increasing.

Proof.
If we refer to the equation of dE[St] (cf (4)), we see that if ‖s‖∞ < 2,
the quantity 4Xt(1−Xt)×

(
1 + st(Xt − 1

2)
)
is positive whatever the initial

condition, so Simpson’s index mean is always growing . �

In other words, selection alone can not bring about a renewal of biodiversity.
On the other hand if for some t, st > 2, E[St] can decrease. In this case the
more the selection is important, more the decay is pronounced. We will see
in the last part that this phenomenon can be generalized to a larger number
of species. Figure 2 present these different behaviours with respect to s and
Figure 3 the combination of initial parameters and selection under which the
Simpson’s index is decreasing.

3.2.2. Approximation of T1, T0, T1,0.
In the special case wheremt = 0, a species inevitably invaded the community
in a finite time. We define by T1, (respectively T0), the smallest time from
which the process Xt reaches 1 (respectively 0) and T1,0 = min(T1, T0).
Thanks to the approximation of moments we can obtain an approximation
of the T1 distribution function . In fact we know Xn

t for n big enough and
so since lim

n→∞
E[(Xt)

n] = 1 × P(T1 < t) we obtain P (T1 < t). The same
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Figure 2. Several
trajectories of
E[St] are drawn
for different s.
X0 = 0.1, m=0.

Figure 3. The
colored area rep-
resents the pairs
(X, s) for which
the slope of the
Simpson’s index
will be negative.

way with 1 − Xt gives P(T0 < t). Figure 4 gives an approximation of the
distribution function of T1 when there is no immigration.

Figure 4. Distribution function of T1 for m=0,p=0.5,X0 =
0.2, s = 2. The size of the approaching linear system is 100

We can use the same method to obtain TSt the probability that St is equal
to 1 at time t.

3.3. Long time behavior.
Two cases are distinguished in this part, the case m = 0 and the case m 6= 0.
In this first case there is no immigration and necessarily a species invade
the community. Invasion times and the probability that the species with a
selective advantage will invade the community are calculated. In the second
case the system admits an invariant measure, we explain it and we specify
the speeds of convergence towards this measure. More details about the
behavior of stochastic processes in long time can be found in [33] and [22].



SIMPSON INDEX FOR MORAN PROCESS IN RANDOM ENVIRONMENT 19

3.3.1. The case without immigration (m = 0): absorption.
The results in this section are partially well known and we include them only
to get a full picture of the behavior of the Simpson index.
Recall that St satisfies the equation

dSt = 4Xt(1−Xt)×
(
1 + st(Xt −

1

2
)
)
dt+ dMt. (7)

If there is no more immigration the states 0 and 1 are absorbing, and it is
then well known that the process reaches them in finite time almost surely.
For more details about this refer to [33]. Let T1 et T0 the hit times of 1 and
0 for the random variableXt et T1 ∧ T0 = T1,0.

Proposition 12. Suppose st = s ∈ R,

(1) T1,0 <∞ almost surely, for all initial condition X0.

(2) Let g be the solution of

x(1− x)g”(x) + sx(1− x)g′(x) = −1 et g(0) = g(1) = 0 (8)

then EX0 [T1,0] = g(X0).

(3) P (T1 < T0) = e−sX0−1
e−s−1

.

The proof is given in section 5.2
Let us consider some particular case which illustrates that the same behavior
may be obtained with varying selection. Suppose T > 0 and st is a constant
function on intervals [kT, (k+1)T ], k ∈ N which can take the values s0 or −s0

for s0 > 0, randomly. We will establish a result similar to the constant case.
Let us begin by the following lemma which asserts that without selection
one may reach the boundary at any time.

Lemma 13. Consider the following process

dXt =
√

2Xt(1−Xt)dBt (9)

Note T1 = inf{t,Xt = 1}, an initial condition x ∈]0, 1] and a time t .
Then Px(T1 < t) > 0, in other words, 1 is accessible for Xt from any non-zero
initial condition and in a as little time as one wants.

Proof. Assume that t0 = inf{t,Px(T1 < t) > 0} > 0.
t0 is well defined. Remark that E[Xt] is constant in time because Xt is a
bounded martingale. Then 0 < x = lim

t→∞
E[Xt] = 1 × Px(T1 < T0) + 0 as

Ex[T1,0] < ∞ and so Px(T1 < ∞) > 0. Then, let ∆t > 0 be such that
t0 − 2∆t > 0. We will show then that there is y such thatPy(T1 < ∆t) > 0.
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If that was not the case then ∀y ∈ [0, 1],Py(T1 < ∆t) = 0 and

Px(T1 < t0) =Ex[1T1<t0 ] = Ex[1T1<t0 × (1T1<∆t + 1T1>∆t)]

=Ex[1T1<∆t ] + Ex[1T1<t0 × 1T1>∆t ]

=Ex[1T1<t0 × 1T1>∆t ] = Ex[1T1>∆tE[1T1<t0 |X∆t ]]

=Ex[1T1>∆t × PX∆t
(T1 < t0 −∆t)]

=Ex[1T1>∆tEX∆t
[1T1>∆t · · ·EXn∆t

[1T1>∆t

× P(n+1)∆t
(T1 < t0 − (n+ 1)∆t)]]].

Let us choose n such that t0 − (n+ 1) < ∆t. Then 1T1>∆t × P(n+1)∆t
(T1 <

t0 − (n+ 1)∆t) 6 1T1>∆tP(n+1)∆t
(T1 < ∆t) = 0 and Px(T1 < t0) = 0 which

is contrary to the assumptions. Now, we show that Px(T1 < t0 −∆t) > 0:

Px(T1 < t0 −∆t) = Ex[1T1<t0−∆t × (1Ty<t0−2∆t + 1Ty>t0−2∆t)]

> Ex[1T1<t0−∆t × 1Ty<t0−2∆t ]

> Ex[1Ty<t0−2∆tE[1T1<t0−∆t |Ty]]
> Ex[1Ty<t0−2∆tPy(T1 < t0 −∆t − Ty)]
> Ex[1Ty<t0−2∆tPy(T1 < ∆t)]

> Px(Ty < t0 − 2∆t)× Py(T1 < ∆t).

But we know that Py(T1 < ∆t) > 0 by the previous calculation and the local
uniform ellipticity of diffusion also ensures us that Px(Ty < t0 − 2∆t) > 0.
So we obtain Px(T1 < t0−∆t) > 0 which is contrary to the fact that t0 > 0.
So ∀t > 0,Px(T1 < t) > 0 which concludes the proof of the lemma. �

Of course, this result may be adapted for the process dXt = sXt(1−Xt)dt+√
2Xt(1−Xt)dBt. Indeed if s > 0 the drift goes in the right direction. Else,

if s < 0, we obtain a symmetric result by replacing in the previous reasoning
T1 by T0.

Proposition 14.
Let s0 > 0, T > 0 and st a constant function on the intervals [kT, (k+ 1)T ],
k ∈ N which can take the values s0 or −s0 values randomly.
Let consider the process

dXt = stXt(1−Xt)dt+
√

2Xt(1−Xt)dBt (10)

Finally T1,0 = inf{t,Xt = 0 ou Xt = 1} then Px(T1,0 <∞) = 1.

Proof. The idea is to show that for each time interval of size T , the probabil-
ity of reaching 1 or 0 is non-zero and independent of the position where the
process is located. So we compare the probability that our process reaches
1 or 0 to a geometric law. So let us first show that ∀t ∈]0, T ],∃α > 0, such
that ∀x ∈ [0, 1],Px(T1,0 < t) > α. Suppose s > 0 on [0, T ] and denote
gi(x) = Px(Ti < t), i ∈ {0, 1}. Both functions are continuous, g0 is de-
creasing and g0(0) = 1, g0(1) = 0, whereas g1 is increasing and g1(1) = 1,
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g1(0) = 0. Then there exist a x0 ∈]0, 1[ such as g0(x0) = g1(x0) = α+. And
by the previous lemma since s does not vary on ]0, T ] we have that α+ > 0.
A symmetric reasoning for s < 0 guarantees us the existence of a α− > 0.
Let α = 2 min(α−, α+), α is then strictly positive and ∀x ∈ [0, 1], Px(T1,0 <
t) = Px(T1 < t) + Px(T0 < t) > α. Then, for t ∈ [nT, (n + 1)T ], using
previous inequality:

Px(T1,0 < t) >Px(T1,0 < nT )

>Ex[1T1,0<(n−1)T ] + Ex[1T1,0>(n−1)TPX(n−1)T
(T1,0 < T )]

>Px(T1,0 < (n− 1)T ) + α× Ex[1− 1T0,1<(n−1)T ]

>(1− α)× PX(n−1)T
(T1,0 < (n− 1)T ) + α

>α+ α(1− α) + ....+ α(1− α)n−1 > 1− (1− α)n

We obtain when n goes to infinity Px(T1,0 <∞) = 1. �

Even with frequent changes of fitness, a species always ends up invading the
community ifm is zero. We may then consider the process with immigration.
Note that while preparing this paper, comparable (and even more general)
results were obtained (in the multi-allelic case) by Coron et al [6].

3.3.2. The case with immigration (m 6= 0): invariant measure.
Assume now s, m and p are constants. The long time behavior for varying
selection and immigration is far more complicated and may lead to interest-
ing behavior that will be considered in another paper. We thus consider the
following process:

dXt = m(p−Xt) + sXt(1−Xt)dt+
√

2Xt(1−Xt)dBt

and will consider the long time behavior in a quantitative way, i.e. not using
Meyn-Tweedie’s theory, but rather via a Poincaré inequality.
Our process Xt is Markovian and evolves in a range bounded by 0 and
1. At first we will ask ourselves what is the behaviour of our process in
the neighbourhood of 0 and 1, by considering the criterion given by Feller
cf[17, 18]. According to the values of m, p and s, our process will have
different behaviours in the neighbourhood of 1 and 0. We have already seen
that if m = 0 then 0 and 1 are absorbing states reached by the process in a
finite time almost surely.(The same hold if m is non-zero and if p is 0 or 1.)
Now if m and p are not trivial, 0 and 1 are no longer absorbing. In other
words, immigration prevents the invasion of the community by a species.
Moreover, for some values of m and p these two states are not accessible, i.e
the process can not reach them in a finite time.

Proposition 15. The state 1 (respectively 0) is accessible by the process Xt

if and only if m(1− p) < 1 (respectively mp < 1) and regular otherwise.

The proof will be given in section 5.3. In the case of inaccessible or reflective
boundaries (which is our the case), the law of the process Xt admit a density
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and converge in long time to an invariant measure. This measure has a
density, denoted π. In addition π is a solution of the Fokker-Planck equation:

0 =
∂

∂t
π = −∂π

∂y

(
m(p− y) + sy(1− y)

)
+
∂2π

∂2y
y(1− y)

The solution of this equation is:

π(y) = c× ymp−1 × (1− y)m(1−p)−1 × exp(sy) (11)

The constant c is chosen so that
∫ 1

0 π(y)dy = 1.
The following Figures 5 and 6 show the influence of the parameters on the
expectation and the variance of Simpson’s equilibrium index.

Figure 5. Expectation and variance of the Simpson index
at equilibrium against m for several values of s, p=0.5

Figure 6. Here are plotted the variance and the expecta-
tion of the simpson index at equilibrium against s for several
values of m. p=0.5, size of linear approaching system is 100.
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Figure 7. Here are plotted the variance and the expecta-
tion of the Simpson index at equilibrium against p for several
values of s. m=2, size of linear approaching system is 100.

Let us now quantify the convergence to equilibrium. Recall at first that
the process Xt has for generator L and for invariant measure π. Denote
Ptf(x) = E[f(Xt)|f(0) = x] the associated semigroup. In fact, when s = 0,
the full spectrum is known, see for example Shimakura [35] which provides a
spectral gap valuem. It will imply an exponential convergence to equilibrium
in L2

π.

Proposition 16. Let us suppose that s > 0. The following Poincaré in-
equality is valid, i.e. for every smooth function f

Varπ(f) 6 min

(
es

m
,
8e(1−M)s

m

)∫ 1

0
f ′2(x)× x(1− x)dπ(x)

where M is a median of π. As a consequence πt converge to π in L2
π expo-

nentially:

Varπ(Ptf) 6 e
−2 max

(
es

m
, 8e

(1−M)s

m

)
Varπ(f).

Proof. Using usual Holley-Stroock’s perturbation argument we easily deduce,
that the Poincaré constant is at most es/m. We will now use Hardy’s type
condition (see for example [1]) for Poincaré condition, that we recall now

Lemma 17. Let π and ν be two measures and M the median of π.
Let

B+
M = sup

x>M

∫ 1

x
dπ

∫ x

M

1

ν(t)
dt, B−M = sup

x<M

∫ x

0
dπ

∫ M

x

1

ν(t)
dt.

If B−M et B+
M are bounded, then the following Poincaré inequality holds

Varπ(f) ≤ cP
∫
f ′2dν.

In addition, the optimal constant cP verifies
1

2
max(B+

M , B
−
M ) 6 cP 6 4 max(B+

M , B
−
M )
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.

We apply the lemma to π and ν = x(1−x)π using both sides of the estimates.
Denote π0 and ν0 the case where s = 0 and the Poincaré constant ism. Then

B+,s
M = sup

x>M

∫ 1

x
dπ

∫ x

M

1

ν(t)
dt

= sup
x>M

∫ 1

x
estdπ0(t)

∫ x

M

e−st

ν0(t)
dt

≤ e(1−M)sB+,0
M

The same reasoning shows that B−,sM ≤ B−,0M . �

Of course, one can do easily the same for s < 0 using a symmetric reasoning.
If the order is good with respect to the immigration parameter, as the case
s = 0 is optimal, it is an open question to look at the dependence with
respect to the selection parameter. We may also consider a convergence in
entropy, via the logarithmic Sobolev inequality without selection established
by Stannat [37] or Miclo [31] and the same line of proof using Holley-Stroock
perturbation argument or the Hardy type condition for logarithmic Sobolev
inequality (see again [1]). Note that the convergence in entropy entails a
convergence in total variation via Cszisar-Pinsker-Kullback inequality, but
the constant involved are less explicit so we omit the details.

This quantitative long time behaviour enables us to give an error while ap-
proximating the asymptotic Simpson index (being a smooth function of the
species). As usual, an L2 decay will enable us to consider long time behaviour
for initial measures whose density with respect to the invariant measure is
bounded, which in could prevent starting from a Dirac measure. However
due to regularization, and so waiting a time t0, enables (loosing on the con-
stants in the decay) to start from a Dirac measure. See for example [2].

4. Generalization to a larger number of species or in random
environment

In this section we provide extensions of the two species case to 1) finite
number of species, 2) two species case in a particular random environment,
namely Wright-Fisher diffusion environment.

4.1. Expectation approximation for three species.
In fact we will give the main ideas for S = 2. Extension to a larger number
of species is only technically involved and requires no further arguments.
Denote Xt and Yt the proportions of the two main species, sxt and syt their
selection parameters and pxt and pyt their proportions in the pool. The immi-
gration parameter will still be denoted mt. The method presented for S = 1
in the previous section can be generalized to a larger number of species. It
will have of course some limitations: greater the number of species is, larger
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will be the size of the approaching linear system. In fact, the derivative of
the expectation of order n involves only the expectation of lower and higher
order in the case of two species. Now with 3 species we also need to know
the expectation of the form E[Xn

t Y
k
t ] for k, n in N. We will thus need a

system of size N2. We present here the extension of our approximation for
3 species.

(
dXt

dYt

)
=

(
mt(p

x
t −Xt) +Xt(s

x
t −Xts

x
t − Yts

y
t )

mt(p
y
t − Yt) + Yt(s

y
t −Xts

x
t − Yts

y
t )

)
dt+ σ(Xt, Yt)dBt (12)

where σ verifies σ.σ∗(x, y) = a(x, y) with

a(x, y) = 2

(
x(1− x) −xy
−xy y(1− y)

)
We have to calculate d(Xn

t Y
k
t ) with Itô’s formula :

d(Xn
t Y

k
t ) =

(
mt(p

x
t −Xt) +Xt(stx−Xts

x
t − Yts

y
t )
)
nXn−1

t Y k
t

+
(
mt(p

y
t − Yt) + Yt(s

y
t −Xts

x
t − Yts

y
t )
)
kXn

t Y
k−1
t

+ n(n− 1)(1−Xt)X
n−1
t Y k

t + k(k − 1)(1− Yt)Xn
t Y

k−1
t

− 2nkXn
t Y

k
t + dMt

=Xn−1
t Y k

t n(mtp
x
t + n− 1)

+Xn
t Y

k−1
t k(mtp

y
t + k − 1)

+Xn
t Y

k
t

(
−mt(n+ k)− 2kn− k(k − 1)− n(n− 1) + nsxt + ksyt

)
−Xn+1

t Y k
t s

x
t (n+ k)

−Xn
t Y

k+1
t syt (n+ k)

+ dMt (13)

here Mt is a martingale. Then dE[Xn
t Y

k
t ] is expressed in terms of 4 other

quantities which complicates the one dimensional calculations. Moreover we
must define what are the neglected expectations on which we will make an
approximation, that is how to close the system. We can decide we make an
approximation to the order N then that we neglect all the terms of higher
order in the expression of dE[Xn

t Y
k
t ] where max(n, k) = N .

Suppose we want to get the expectation up to order N we need exactly∑N
k=1 2k+1 quantities. And so the size of the approaching differential linear

system will be of order (N + 1)2.
The following figure represents the complexity of the problem, for example
dE[XtYt] is expressed as a function of the expectations of the quantities to
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which the blue arrows point.

X→ ←XY→ Y
↙ ↙ ↘

X2 X2Y X2Y 2 Y 2X Y 2

Algorithmically it is not very difficult to build the matrix approaching the
expectations of the diffusion. We must begin by giving a vector composed of
the different expectation of size (N + 1)2. For that, let us define an applica-
tion that transforms the expectation of order (n, k) that is to say E[Xn

t Y
k
t ]

into an integer which corresponds to its coordinate in the expectation vec-
tor. Next we build the matrix AN2 as in the case of two species from the
coefficients calculated in 13. We consider as error each expectation (n, k)
with max(n, k) > N in the Itô formula. So that the error is composed of
2N + 1 terms. And the approximation boils down to solving numerically
a linear system. As an example consider the case N = 1, we therefore
involve four expectations which are E[XnY k], k, n ∈ {0, 1}. The order im-
posed by φ is therefore (1,E[X],E[Y ],E[XY ]). Three terms compose the
error: E[sxtX

2],E[syt Y
2], 2E[(sxt + syt )XY

2]. We can also, as in the case of
two species, prove the convergence of this algorithm by following exactly the
same pattern as in the one species case. The renormalizing coefficients of
the expectation (n, k) then become (sxt )n(syt )k

(n−1)!(k−1)! . It can similarly be shown

that the error is at most of the order of N
2 max(sxt ,s

y
t )N

(N−1)! .

The extension to a larger number is straightforward and will entail an error of

the order N
S
2 +2‖st‖N∞
N ! , and it will still be reasonable but requires computations

of a system of size NS which may be prohibitive for large S.

Numerical applications. We can easily program such an algorithm and check
that the results obtained are in agreement with quantities obtained by Monte
Carlo method. See following figures:
Basic example
We consider here a case with no immigration and constant selection param-
eter. The number of simulated trajectories for MC mean is 1000, J = 1000,
m = 0, X0 = 0.5, Y0 = 0.3, sy = 2, sx = 1, the size of the approaching linear
system is 144. Figure 8 plots approximate values of E[St] and E[Xt] by the
precedent method from the approximation in large population and by MC
method from the discrete model.

Time dependent parameter case
In this second example, we consider once again a case without immigration
and time dependent selection parameter. The number of simulated trajecto-
ries for MC mean is 1000, J = 1000, m = 0, X0 = 0.5, Y0 = 0.3, sy = 2, sx is
piecewise constant taking two values 4 and −4 at regular time intervals, the
size of the approaching linear system is 144. Figure 9 plot the approximate
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Figure 8. On the left hand side expectation of the Simpson
index and Monte Carlo mean, and on the right hand side
expectations of each species and their Monte Carlo means

Figure 9. Left hand side Simpson index, right hand with
the expectations of the three species.

values of E[St] and E[Xt] by the precedent method from the approximation
in large population and by MC method from the discrete model.

4.2. When the selection is a diffusion. In the third Section we gave
a method to get the moments of Xt, and thus E(St) for a time depen-
dent immigration/selection parameter. If these parameters are random but
autonomous, it gives a way to approximate the expectation of the Simpson
index by doing a Monte Carlo mean with respect to the environment, passing
from quenched to annealed. It would be however more interesting to eval-
uate directly the expectation of the Simpson index without further Monte
Carlo simulations. It seems quite impossible to give a general algorithm for
every environment but we will give in this section an efficient approxima-
tion method in a particular case. We consider for the selection parameter st
a rescaled Wright-Fisher diffusion, whose leading Brownian motion is inde-
pendent of the one leading the SDE for the species evolution. This choice
assures us that st is a diffusion evolving in a bounded set and the choice
of the different parameters leads to a wide choice of a Moran process with
immigration.
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4.2.1. The expectation approximation.
Let us just give first the diffusion approximation result for this particular
case, whose proof is even simpler as it relies on usual approximation diffusion
for Markov chains.

Theorem 18. Assume that (vJn)n∈N is a Moran process without selection
with size J and the parameters ms et ps. Let c and b two constants such as
sJn = cvJn − b ∀n ∈ N, and assume that Xn follow a Moran process with size
J and parameters (mn)n∈N, (pn)n∈N et (sJn)n∈N describe in the first part. Let
UJn be the process having for coordinates XJ

n et sJn.
Then when J goes to infinity, the process UJ

tJ2 converge in law to the pro-
cess Ut which coordinates are solutions of the following stochastic differential
equation:(

dXt

dvt

)
=

(
m′t(pt −Xt) + s′tXt(1−Xt)

m′st (pst − vt)

)
dt+

(√
2Xt(1−Xt)√
2vt(1− vt)

)
dBt (14)

where s′t = st
J = cvt − b, m′t = mt

J , m′st =
ms

t
J .

To approach the expectation of Xt we use the method describe previously
for three species, here v play the same role as a third species. However the
dynamics is not exactly the same, the Itô formula gives us:

d(Xn
t v

k
t ) =Xn−1

t vkt n(m′tpt + n− 1)

+Xn
t v

k−1
t k(m′st p

s
t + k − 1)

+Xn
t v

k
t

(
− (m′t + b)n− km′st − k(k − 1)− n(n− 1)

)
+Xn+1

t vkt nb

+Xn
t v

k+1
t cn

−Xn+1
t vk+1

t nc (15)
+ dMt (16)

with Mt a martingale. Then as previously we close our system, for a given
N , and to do so to neglect all the terms of higher order in the expression of
dE[Xn

t v
k
t ] where max(n, k) = N . And now the algorithm is able to calculate

all the expectations of the form E[Xn
t v

k
t ] and so obtain the expectation of

the Simpson index. The proof follows the same pattern. The renormalizing
coefficients of the expectation (n, k) in the proof allow to control the eigen-
values of the matrix thanks to the Gershgorin disks as before. Many choices
are possible and we take here the coefficient 1

4√
n!k!

. This choice leads to a

convergence speed at most of the order of N2

4
√

(N)!
.

4.2.2. Comparison with the neutral model.
In this part we compare the case where s is "neutral on average", to the
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Figure 10. Are plotted the approximate values of E[vt] and
E[Xt] by the precedent method from the approximation in
large population and by MC method from the discrete model.
The number of simulated trajectories for MC mean is 5000,
J = 1000, X0 = 0.2, v0 = 0.7, ms = 4, m = 2, p = ps = 0.5,
c = 3, b = 0.5 the size of the approaching linear system is 144

neutral case with s = 0. Thanks to the previous method one can for ex-
ample calculate the average Simpson index in the case where the selection
expectation is 0. For it let’s take ps = 1/2, v0 = 1/2 (this enforces c = −2b).
The following figures show the results:

Figure 11. Comparison with neutral case. Approximate
values of E[St] and E[Xt] by the precedent method from the
approximation in large population X0 = 0.5, ms = 1, m = 2,
p = 0.5, c = 3, size of the approaching linear system is 144

We thus see that a selection even if neutral in mean, involves deeper mech-
anism which lead to a different behaviour than the neutral one. Of course
the Simpson index involves not only the expectation of one species but also
the moment of order two.

4.3. Effect of selection on increase of biodiversity.
We have already seen in the case of two species that selection alone could
contribute to the decrease of the average Simpson index in the absence of
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Figure 12. Comparison with the neutral case. Approximate
values of E[St] and E[Xt] by the precedent method from the
approximation in large population X0 = 0.1, ms = 0.5, m =
2, p = 0.5, c = 5, size of the approaching linear system is 144.

immigration. There was however a threshold for s under which such a phe-
nomenon could not occur. We sort of generalize it here to any number of
species.

Proposition 19. Note as previously S + 1 the number of species in the
community with si the selection parameter for species i. Then if all ‖si‖∞
are less than 1

2 the Simpson index is increasing in the absence of immigration.
In other words, the selection can not be the source of the diversity decreasing.

Proof. Assume all the sit,∀t are between α and −α . First write:

1−St = 2
S∑
i=1

Xi
t(1−Xi

t)−
∑
j 6=i

Xi
tX

j
t

=

S∑
i=1

Xi
t(1−Xi

t) +

S∑
i=1

Xi
t(1−

S∑
i=1

Xi
t)

=
S+1∑
i=1

Xi
t(1−Xi

t)
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Then,

dE[St] =2E[1−St]− 2E[
S∑
i=1

sitX
i
t(St −Xi

t)]dt

=2E[1−St −
S∑
i=1

sitX
i
t(St − 1)−

S∑
i=1

sitX
i
t(1−Xi

t)]dt

>2E[1−St −
S∑
i=1

sitX
i
t(St − 1)− α

S∑
i=1

Xi
t(1−Xi

t)]dt

>2E[(1−St)(1 +

S∑
i=1

sitX
i
t)− α

S∑
i=1

Xi
t(1−Xi

t)]dt

>2E[(1−St)(1− α+
S∑
i=1

sitX
i
t) + α

S∑
i=1

Xi
t(1−

S∑
i=1

Xi
t)]dt

>2E[(1−St)(1− α+
S∑
i=1

sitX
i
t)]dt

>2E[(1−St)(1− α(1 +

S∑
i=1

Xi
t))]dt

and so if ∀i, α 6 1
2 , dE[St] > 0 and E[St] is increasing.

�

Remark that this bound is certainly not optimal, as the two species case
indicates but true for each S.

4.4. Long time behaviour.
We will once again assume in this part s,m, p are constants. If m = 0 then
a species will still invade the community definitively. On the other hand, if
m 6= 0, the law of the vector of abundance, converges in a long time to a
unique invariant measure. Consider the generator of the diffusion (14) which
is the generator of the Wright-Fisher diffusion with selection and mutation:

L f(x) =
S∑

i,j=1

xi(δi,j−xj)
∂2f(x)

∂xi∂xjj
+

S∑
i=1

(
m(pi − xi) + xi

(
si −

S∑
i=1

xisi

))
∂f(x)

∂xi

A reversible and stationary measure for the diffusion (14) is given by (see
for example [13, 40, 24]:

πS(dx) = C× exp

 S+1∑
i,j=1

sixixj

× (x1)mp
1−1× ...× (xS+1)mp

S+1−1dx1...dxS
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Where xS+1 = 1 −
S∑
i=1

xi and pS+1 = 1 −
S∑
i=1

pi, sS+1 = 0. C is a constant

just like
∫
πS(dx) = 1.

Of course, when s and m are time dependent, periodic for example, an
invariant measure will not exist. The next figure presents the approximate
values of E[St] and E[Xi

t ] for i in {1, 2, 3} by the precedent method from
the approximation in large population and by Monte Carlo method from
thr discret model. The number of simulated trajectories for Monte Carlo
mean is 5000, J = 500, m is a time dependant piecewise process, it takes
alternatively the values of 3 and 0 at regular time intervals. X0 = 0.5,
px = 0.33, Y0 = 0.3, py = 0.33, sy et sx are Markovian jump processes, the
size of the approaching linear system is 144.

Figure 13. E[St] Figure 14. E[Xt],E[Yt]

Concerning the long time behaviour, we may once again refer to [35] for
the spectral gap which is e(S+1)

∑S+1
1 si/m by Holley-Stroock’s perturbation

argument. Unfortunately, it is not possible to refine this argument as there
is no Hardy’s type inequalities in this case. Once again it is also possible
to derive a logarithmic Sobolev inequality, and thus convergence in entropy
(and total variation) but constants are less explicit.

5. Proofs

In this section we gather the proofs, technical or more or less well known.

5.1. Proof of the diffusion approximation, Theorem 3.

In the following proof we’ll get back to a martingale problems. All the results
used in this section can be funded in [41] p267-272.
For the sake of clarity, assume that m = 0, and that S = 1.
The multidimensional case is treated exactly the same way.
We can put h = 1

J2 and U means here (x, s) where x ∈ Ex and s ∈ Es.
Let a(U) = x(1−x), b(U) = sx(1−x) and Lxf(U) = b(U)× ∂f

∂x (U)+a(U)×
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∂2f
∂x2

(U) the generator of the SDFE (14) and Lsf(U) =
∑
y∈Es

Qs,yf(x, y) the

generator of a Markovian jump process applied to a function depending of
the population variable.
Let’s start with the following lemma

Lemma 20. ([41] p268)
Let f be a C∞ function, note AJf(U) =

∫
E f(y) − f(u)dπJ(U, dy) then

J2AJf converge uniformly to Lxf + Lsf

Proof.

AJf(U) =

∫
E
f(y)− f(u)dπJ(U, dy) =

∫
E
f(z, w)− f(x, s)dπJ(U = (x, s), dy)

=

∫
E
f(z, w)− f(x, s)dπJ(U, dy)

=

∫
E
f(z, w)− f(x,w) + f(x,w)− f(x, s)dπJ(U, dy)

=

∫
E
f(z, w)− f(x,w)dπJ(U, dy) +

∫
E
f(x,w)− f(x, s)dπJ(U, dy)

=

∫
E
f(z, w)− f(x,w)dπJ(U, dy) +

∑
w∈Es

f(x,w)− f(x, s)P iJ(x, y, h).

Via Taylor’s formula, we obtain∫
E
f(z, w)− f(x,w)dπJ(U, dy) = E[f(Xt+h, st+h)− f(x, st+h)|Ut = (x, s)]

=
∂f

∂x
(x, s)E[Xt+h − x|Ut] +

∂2f

2∂x2 (x, s)E[(Xt+h − x)2|Ut]

+
∂2f

∂x∂s
(x, s)E[Xt+h − x|Ut]E[st+h − s|Ut] +O(E[‖Ut+h − Ut‖3|Ut]).

we give the limits of the previous quantities,
• lim
h→0

sup
E
‖ 1
hE[XJ

t+h − x|UJt ]‖ = b(x, s) by the second propriety (2),

• lim
h→0

sup
E
‖ 1
hE[(XJ

t+h− x)2|UJt ]‖ = a(x, s) by the second propriety (2),

• lim
h→0

sup
E
‖ 1
hE[XJ

t+h − x|UJt ]E[sJt+h − s|UJt ]‖ = 0 because

|E[sJt+h − s|Ut]| = |
∑
w∈Es

(w − st)P iJ(st, w, h)|

6 max
x,y∈Es

|x− y|
∑

w∈Es/st

P iJ(st, w, h),

• lim
h→0

sup
E

E[‖UJt+h−U‖3|UJt ] = 0 because
∫
E sup
i6S
|yi−ui|3πJ(U, dy)→ 0

and by the previous point.
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Then, going to the limit in the previous expression,

lim
h→0

sup
E
|AJf(U)

1

h
− Lxf(U)− Lsf(U)|

≤ lim
h→0

sup
E
|1
h

∫
E
f(z, w)− f(x,w)dπJ(U, dy)− Lxf(U)|

+ lim
h→0

sup
E
|1
h

∑
w∈Es

(f(x,w)− f(x, s))P iJ(x, y, h)− Lsf(U)|

=0

And this expression conclude the proof.
�

Now let f be C∞, then

EU [f(UJt )] = f(U) + EU

|tJ2|−1∑
k=1

E[f(UJ(k+1)h)− f(UJkh)|UJkh]


= f(U) + EU

|tJ2|−1∑
k=1

AJf(Ukh)


= f(U) + EU

|tJ2|−1∑
k=1

h

h
AJf(Ukh)



and so

EU [f(UJt+h)− f(U)−
|tJ2|−1∑
k=1

h

h
AJf(Ukh)] = 0

i.e f(UJt )− f(U)−
|tJ2|−1∑
k=1

h
hAJf(Ukh) is a martingale for πJ .

Moreover, note the sum is a Riemann sum and the previous lemma ensures
when J tends to infinity the convergence of

f(UJt )− f(U)−
|tJ2|−1∑
k=1

h

h
AJf(Ukh)

towards

f(Ut)− f(U)−
∫ t

0
Lxf(Us) + Lsf(Us)ds.

We need now to find a probability measure on the Borel sets of the canonical
space C ([0, 1], R) verifying the martingale problem for Lx +Ls. Let us show
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now that πJ admits an adherent value in the space of probability measure
on the Borel of C ([0, 1], R) with the norm

‖πJ‖ = sup
f∈C

|
∫
fdπJ |
|f |∞

(which is a norm since the πJ are supported in [0, 1]).
Let note πJf =

∫
E fdπ

J .
Let (fn)N be a dense sequence in the space of continuous functions then
(πJfn)J is a sequence of R having an adherence value in R because it is
uniformly bounded by |fn|∞. Then by diagonal extraction, eventually for
a subsequence, πJfn converges to a certain φfn in R for all n. And by the
uniformly continuous extension theorem, we define φf for all f of C . And
since φf is a linear form, the Riesz-Markov theorem ensures the existence of
a unique measure µ such that

∫
fdµ = φf . Since this is true for all f ∈ C ,

by considering the constant function equal to 1, we find µ(Ω) = 1 and µ is a
probability. The convergence of ‖πJ − µ‖ to 0 is then immediate in view of
the chosen norm.
Thus our sequence πJ admits an accumulation point. So, there is at least
one π and one X process that satisfy the martingale problem associated with
Lx + Ls.
And so π verifies

∫
f(Ut) − f(U) −

∫ t
0 Lxf(Us) + Lsf(Us)dsdπ(U,Ut) = 0.

So it exist at least a solution to the martingale problem for Lx + Ls .

If the uniqueness of this martingale problem is verified then the process
converges in law to the diffusion process (our Xt) defined by a, b and thus
and s the jump process of generator Q, since they are both solutions of the
same problem of martingale. The proof of uniqueness is quite standard,
following Ethier [12] when s, m, p constant. A straightforward modification
allows to obtain the result for s, m, p random.

5.2. Proof of Proposition 12.
Let g be the solution of the differential equation (8). Let us first verify that g
is well defined on [0, 1]. It must be ensured that the solutions do not diverge
in 0 and 1, in which case the second member of the equation is not defined.
For that we can write the solution of this equation. So

g(x) =

∫ x

0
e−su

(
K +

∫ u

1
2

est

t(1− t)
dt

)
du+ C

where C,Kare constant. As e−su is bounded on[0, 1], there are two positive
constants B and D such that

lim
x→0
|g(x)| 6 lim

x→0

∫ x

a

∫ u

a

D

t
dtdu+B 6∞
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as ln is integrable on a neighbourhood of 0. Thus g is well defined on [0,1]
and bounded (because continue).

So we have g(Xt∧T1,0) = g(X0) +
∫ t∧T1,0

0 g′(Xu)
√

2Xu(1−Xu)dBu− t∧T1,0.
But the process

∫ t∧T1,0

0 g′(Xu)
√

2Xu(1−Xu)dBu is a stopped martingale
because t∧T1,0 is a stopping time and g′(Xu)

√
2Xu(1−Xu) is adapted to the

considered filtration. We deduce that EX0 [g(Xt∧T1,0)] = g(X0)−EX0 [t∧T1,0]
and the first property, i.e EX0 [t∧ T1,0] 6 2 sup

[0,1]
(g) 6∞, and thus the second

point is shown.Now if t→∞, EX0 [g(Xt∧T1,0)]→ 0 because g(0) = g(1) = 0
and we find again g(X0) = EX0 [T1,0].
To prove the third point, consider f(x) = e−sx − 1. Then f is solution of
f ′′(x) + sf ′(x) = 0 and f(0) = 0. By Itô’s formula, we obtain d(f(Xt) =
f(X0) + dMt. As T1 and T0 are stopping times T1 ∧ T0 = T1,0 is also a
stopping time. Sof(XT0,1) = f(X0) + dM ′t où dM ′t is still a martingale. By
taking expectation we have EX0 [f(XT0,1)] = f(X0) = f(1)P(T1 < T0) and
we deduce P(T1 < T0) = e−sX0−1

e−s−1
.

5.3. Proof of Proposition 15.
Let us consider the speed measure and the scale function as in Feller [18].

m(y) =
1

2y(1− y)
exp(

∫ y

a
s+

m(p− x)

x(1− x)
dx) (speed measure)

= c× ymp−1 × (1− y)m(1−p)−1 × exp(sy), c ∈ R

µ(t) =

∫ t

a
exp(−

∫ y

a
s+

m(p− x)

x(1− x)
dx)dy (scale function)

= c′
∫ t

a
y−mp × (1− y)−m(1−p) × exp(−sy)dy, c′ ∈ R.

Then 1 is reachable if and only if µ(1) <∞ and
∫ 1

1
2
µ(1)−µ(y)m(y)dy <∞.

It is easily seen that µ(1) <∞ if and only if m(1− p) < 1.
Next,

∫ 1
1
2
(µ(1)− µ(y)m(y))dy <∞ if and only if µ(1)−

∫
µ(y)m(y) is inte-

grable on a neighborhood of 1. But

µ(1)− µ(y)m(y) 6
∫ 1

y
x−mp(1− x)−m(1−p)ymp−1(1− y)m(1−p)−1esy−sxdx

6
∫ 1

y
(1− x)−m(1−p)dx× (1− y)m(1−p)−1 1

y

6 a× 1

y
,
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for some constant a. This quantity is well defined and integrable on a neigh-
borhood of 1. So 1 is reachable if and only if m(1− p) < 1.

Now ifm(1−p) 6 1, 1 is not reachable, it is regular (reflective barriers) if and
only if m(y) is integrable. It is indeed the case here, −21 < m(1−p)−1 6 0.
Of course the same holds for 0.
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