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Abstract

The total stress tensor as the average stress within a triphasic granular medium

is formally derived from micromechanics where internal forces associated with

the solid phase, the two immiscible fluid phases and the associated three inter-

faces are explicitly accounted for. It is demonstrated that for rigid solid particles,

the contributions of all local solid-fluid surface tensions to the total stress are

eventually zero. The present work gives the total stress expression as a function

of a solid-phase specific stress tensor and a fluid mixture stress contribution

that is related to the material’s microstructure. A generally non-spherical fluid

mixture stress is obtained in contrast to an averaged hydrostatic fluid pres-

sure usually associated with standard thermodynamics. The tensorial nature of

this fluid mixture stress contribution is highlighted through numerical experi-

ments pertaining to an idealized granular material in the pendular regime at low

wetting saturations. Numerical simulations providing full access to microstruc-

tural information are conducted using the Discrete Element Method (DEM),

which describes internal forces using resultant forces that clearly deviate from

the distributed nature of internal forces in triphasic granular media, e.g., fluid

pressures. Nevertheless, this micro-scale representation is demonstrated to be

indeed valid for macro-scale stress description in the pendular regime.

Keywords: granular material, microstructure, stress, unsaturated conditions,

interfaces
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1. Introduction

Granular materials have many distinctive features, revealing among others,

a dual nature: they can behave as either a fluid or a bulk solid as observed

in an hourglass. In the bulk solid state, they possess mechanical strength and

bearing capacity so that they are able to sustain foundation loads such as in

civil engineering. However, this mechanical strength can drastically change in

the presence of a mixture of fluids within the pore space due to the multiphasic

condition that sets in, implicating various interactions between the individual

solid and fluids phases. In the real world, this phenomenon is clearly evidenced

by the change in consistency of sand in a beach as the water content gradually

increases towards the shoreline.

As will become more evident later throughout this paper, challenges in the

mechanical description of such a multiphasic porous material arise from the va-

riety of stress variables that emerge. On the one hand, the equilibrium under

external loads applied on the boundaries of a triphasic granular system involves

an overall macroscopic stress, the so-called total stress. Probing into the micro-

scopic scale on the other hand, shows that distinct stresses also exist in the fluids

and the solid phase, with for instance distinct individual fluid pressures since

the fluid phases are separated by singular surfaces showing interfacial surface

tension.

A simplified interpretation of the behaviour through one single stress variable

would be of great practical interest, which conceptually led to the Principle of

Effective Stress (Terzaghi, 1936; Bishop and Blight, 1963; Nuth and Laloui,

2008). This concept delivers a very strong statement as it signifies that the

mechanical response (strains) of a material is solely controlled by a so-called

effective stress related to the solid phase, irrespective of the magnitudes of any

of the stresses in the various phases. In other words, when comparing a dry (air-

saturated) porous material with when it is invaded with various fluid phases,

the Principle of Effective Stress implies that the same mechanical behaviour is

to be expected as long as the effective stress loading path under multiphasic
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conditions coincides with the total stress path in the dry state.

The effective stress concept has been shown to be valid when the pore space

is saturated by one single fluid, with the effective stress σ1 being expressed under

such conditions in terms of the total stresses Σ, the fluid pressure u, the solid

matrix compressibilityKs and the drained bulk compressibility (of the skeleton)

Kh (Biot, 1941):

σ1 “ Σ ´ u

ˆ

1 ´
Kh

Ks

˙

δ « Σ ´ u δ (1)

where δ is the identity tensor. Interestingly, the approximated version of Eq. (1),

as proposed by Terzaghi (1936), is the most venerable equation used in soil

mechanics where soil particles are much stiffer than the skeleton as a whole.

By construction, Eq. (1) is restricted to the biphasic case, which led Bishop

(1959; 1963) to address the more commonly encountered triphasic condition,

proposing a variant of Terzaghi’s effective stress expression, i.e.

σ1 “ Σ ´ unp1 ´ χq δ ´ uw χ δ (2)

with χ P r0; 1s the so-called Bishop parameter, and un, uw the pressures of the

non-wetting (n) and wetting (w) immiscible fluid phases, respectively. Water

and air in so-called unsaturated soils, or water and oil in petroleum reservoirs

are typical examples of wetting and non-wetting fluids—with the wetting fluid

type being dependent on the host soil or rock for oil-water mixtures.

Unfortunately, the application of Eq. (2) to experimental observations on

triphasic media faced major difficulties, as reviewed by Nuth and Laloui (2008).

In particular, no stress variable was found by Nuth and Laloui (2008) that

would relate to strain in a consistent manner between unsaturated and dry

conditions, thus challenging the principle of effective stress. The same conclusion

has been reached by Wan et al. (2015) based on the numerical modelling of dry

and unsaturated granular media. On the other hand, considering a solid-phase

related stress variable, Khalili et al. (2004); Lu and Likos (2006); Nuth and

Laloui (2008) obtained a unique stress limit criterion from experimental data at

failure in both triphasic and biphasic conditions, which has also been obtained

numerically by Hicher and Chang (2007); Scholtès et al. (2009); Wan et al.
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(2015). In the end, a consensus is that some aspects of the mechanical behaviour

in triphasic conditions, such as failure description, can be inferred from biphasic

conditions using a single effective stress variable, whereas a full stress-strain

description requires including additionnal stress variables, e.g. the capillary

pressure uc “ un ´ uw, in constitutive models (Nuth and Laloui, 2008; Alonso

et al., 2010). Basically, this means that the Principle of Effective Stress as

stated previously does not hold in triphasic conditions. Nevertheless, it appears

that the effective stress denomination is often still associated to the solid-phase

related variable mentionned in the above (Nuth and Laloui, 2008; Borja and

Koliji, 2009; Alonso et al., 2010). Connected with the possible breakdown of

the Principle of Effective Stress is the “two stress variables approach” that does

not rely on any effective stress (Fredlund, 2006; Alonso et al., 1990), as well as

the suction hardening concept according to which the capillary pressure enters

the hardening parameters (Borja and Koliji, 2009), leading to discrepancies

between biphasic and triphasic conditions.

The search for a single effective stress variable in the realm of geomechanics

may be formally compared to the search for a back stress variable, as coined by

Nowick and Machlin (1947), in Solid Mechanics. Tensorial back stress variables

enter elasto-viscoplastic models as the difference between the total stress tensor

and a dissipative stress variable which governs the material behaviour (Prager,

1956; Lemaitre and Chaboche, 1990; Frederick and Armstrong, 2007; Henann

and Anand, 2009). Evolving yield surface centers in kinematic hardening models

are typical back stress examples.

Modelling triphasic porous media according to the Principle of Effective

Stress would also require subtracting from the total stress a stress contribution

accounting for internal forces due to the fluid mixture, leaving the solid-phase

related effective stress to govern material deformation and failure. The fluid

mixture stress contribution is denoted as suction stress in the general case (Lu

and Likos, 2006; Nikooee et al., 2013) and reduces to the so-called capillary

stresses (Hicher and Chang, 2007; Scholtès et al., 2009; Wan et al., 2015) for

granular media with non-viscous fluids. Indeed, the pore fluid mixture is exclu-
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sively governed by capillarity in such media, with other physico-chemical forces

and adsorbed liquid layers being negligible. The present manuscript focuses on

capillary stresses only, hoping that a correct capillary stress determination as

proposed herein will subsequently bring some insights into a more general effec-

tive stress discussion. At the moment, the following results have been obtained

for the nature of capillary stresses.

In line with Bishop’s (1959) expression given in Eq. (2), capillary stresses

are often expressed in terms of the fluid pressures only (e.g., Zienkiewicz et al.,

1999; Nuth and Laloui, 2008; Borja and Koliji, 2009; Lu et al., 2010). However,

triphasic conditions imply singular discontinuity surfaces as fluid-fluid interfaces

which are absent in the biphasic case. This motivated other approaches to

include interfacial surface tension forces in the stress analysis. Among those,

Fredlund (2006); Madeo et al. (2013); Duriez and Wan (2016b) account for the

fluid-fluid interface only, while Gray et al. (2009); Nikooee et al. (2013) include

solid-fluid interfaces as well. The lack of consensus may arise from the fact that

capillarity is best evidenced and understood for fluid-fluid interfaces e.g., in

capillary tubes, leading even to controversies about solid-fluid interfaces in the

fluid mechanics community (Lunati, 2007; Shikhmurzaev, 2008). Nevertheless,

solid-fluid surface tensions, being described as early as in Young’s equation

(1805), are evidenced by the contraction of very small metal particles (e.g.

Vermaak et al., 1968; Jiang et al., 2001) or may let sand adopt a hydrophobic

behaviour (Vitz, 1990).

A first objective of the present work is to clarify under which conditions

the solid-fluid interfaces contribute or not to the stress of triphasic granular

media. In fact, it will be rigorously demonstrated that the stress contribution

of solid-fluid surface tension is zero on average for negligible solid-solid surfaces,

an important result absent from previous works bearing similarities with Section

2 such as Chateau et al. (2002); Dormieux et al. (2006a); Gray et al. (2009).

Also, most approaches represent the capillary stresses as a scalar or a spheri-

cal, i.e. isotropic, tensor (Hassanizadeh and Gray, 1990; Nuth and Laloui, 2008;

Borja and Koliji, 2009; Gray et al., 2009; Lu et al., 2010; Nikooee et al., 2013).
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This feature arises in these works from the usual consideration of mixture theory

and thermodynamics framework, often adopting a restrictive scalar or spherical

description of stresses and strains. Indeed, other micromechanical approaches

suggest that capillary stresses show a generic tensorial nature (Chateau et al.,

2002; Hicher and Chang, 2007; Scholtès et al., 2009; Wan et al., 2015; Duriez

and Wan, 2016b; Li et al., 2016). It is tempting to consider micromechanics

to bring more pertinent insights to the mechanical behaviour, such as done by

Sibille et al. (2015), because granular materials show a clear microstructure with

also a fluid ‘fabric’ in triphasic conditions (Manahiloh and Muhunthan, 2012).

A second objective of the manuscript is thus to clearly establish and illus-

trate how the microstructure enters into the stress state of triphasic granular

media, leading to deviatoric capillary stresses as shown in Section 4. It is note-

worthy that Madeo et al. (2013) evidenced the need of a second gradient theory

to describe the mechanical behaviour of unsaturated porous media. However,

the scope of the present paper is restricted to the stress tensor and the first

displacement gradient being work-conjugate.

The present paper begins with the micromechanical derivation of stresses

in a triphasic granular medium in Section 2, isolating the sought after capil-

lary stresses. A clear microstructure dependency is proposed for the capillary

stresses, and because experimental microstructure measurements in triphasic

granular media, e.g from X-ray computed tomography (Culligan et al., 2004;

Bruchon et al., 2013), are not yet precise enough to be used in conjunction

with the analytical developments presented herein, Section 3 recalls a numerical

model of ideal triphasic granular media at low wetting saturation that pro-

vides full access to pertinent microstructural information, including interfaces

(Duriez and Wan, 2016a). Based on the Discrete Element Method (Cundall and

Strack, 1979), the model describes by design the micro-scale stress field from

resultant vector forces, that are distinct in nature from distributed fluid pres-

sure or surface tension internal forces. Chateau et al. (2002); Duriez and Wan

(2016b) nevertheless suggested that such DEM models are still able to describe
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stresses in triphasic granular media, but in the absence of any formal analytical

demonstration.

Hence, a third objective of the paper is to formally provide such a demon-

stration as touched upon in Section 3.2. Finally, Section 4 explores in details

important characteristics and properties of the analytically derived capillary

stresses with the aid of DEM.

The notation adopted in this paper is such that a superimposed arrow desig-

nates first order tensors (vectors) such as ~x, ~ν, and bold symbols are employed

for second order tensors like δ, Σ. Also, the geomechanics sign convention is

used, i.e. σ ~n corresponds to an applied loading on a given body when the

normal vector ~n points inwards to the boundary, leading to a positive sign for

compressive stresses σ.

2. Stress homogenization of triphasic granular media with interfaces

The representative elementary volume (REV) V of a triphasic granular ma-

terial features, at the micro-scale, different volume phases Vα, α P tn; s;wu for

the solid (s) and fluids (n,w) phases, as well as interface surfaces Sαβ , α and

β ‰ α P tn; s;wu, and contact lines Γ where all three phases meet. Extending

Duriez and Wan (2016b), surface tension is here described along all three in-

terfaces, and we first underscore the corresponding consequences that ensue for

the stress description at the micro-scale.

2.1. Micro-scale stress description along interfaces and contact lines

An interface Sαβ considered here as a distinct medium is subject to internal

surface tension forces proportional to the surfacic energy γαβ . The following

stress-like tensor παβ describes these internal surface tension forces that are

tensile in nature (Chateau et al., 2002; Dormieux et al., 2006b; Gray et al.,

2009; Duriez and Wan, 2016b):

παβ “ γαβ p~n b ~n ´ δq (3)
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Following the geomechanics sign convention, Eq. (3) basically expresses the

surface stress-like tensor παβ in terms of γαβ and the projection tensor onto

Sαβ , δαβ “ pδ ´ ~n b ~nq, with δ the identity tensor, and ~n the normal to Sαβ .

n

Figure 1: Interface Sαβ with ~n the normal and ~ναβ the inwards conormal

The interface material points experience along the contour C the surface

tension forces described by παβ, as well as internal forces within α (described

by Cauchy stress σα), and internal forces within β (described by σβ). Hence,

the equilibrium of forces at the interface material points leads to:
ż

Sαβ

pσα ´ σβq~n dS ´

ż

C

γαβ ~ναβ dl “ ~0 (4)

with ~n pointing from α to β and ~ναβ the inward conormal tangent to Sαβ and

normal to C, and dl ą 0 the arc length (Fig. 1). Next, the contour integral in

Eq. (4) is classically rewritten using the following equality (see e.g., Gurtin and

Murdoch, 1975; Wan et al., 2015):
ż

C

~ναβ dl “

ż

Sαβ

divS p~nq~n dS (5)

with divSpq the surface divergence operator as defined by Gurtin and Murdoch

(1975): roughly speaking, divSpq refers to the projection of the classical differ-

ential operator ∇. “ divpq onto the tangent plane of the surface S of interest.

Eq. (5) finally gives the normal stress discontinuity across Sαβ due to capillarity;

in case Sαβ is curved:

pσα ´ σβq~n “ γαβ divS p~nq~n (6)

Considering the fluid-fluid interface Snw, σα “ uα δ, α P tn;wu with uα the

fluid pressures, together with Eq. (6) give the Laplace-Young equation:

uc “ un ´ uw “ γnw divS p~nq (7)
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with ~n towards the wetting fluid. The capillary pressure uc can be identified as

the matric suction in the present case of granular media.

Considering the solid-fluid interface Ssβ , Eq. (6) serves as a boundary condi-

tion for the solid stresses that accounts for solid-fluid surface tension (Chateau

et al., 2002; Dormieux et al., 2006a; Lunati, 2007; Gray et al., 2009), with ~n

being the outward solid normal:

σs ~n “ puβ ` γsβ divS ~nq~n (8)

A different boundary condition for the solid stresses holds along the contact

line Γ where the solid phase meets the two fluid phases (Fig. 2). Here, equilib-

n

s

w n

γsw=-γswt γns=γnst 

γnw 
θ

w

s

n

dldS

Γ

Figure 2: Contact line Γ: 3D (left) and 2D (right) views. With respect to Eq. (9), dl is a
portion of Γ, and dS is an elemental surface area constructed from dl and an infinitesimally
small length (magnified in the Figure) along ~t

rium consideration for a peripheral solid facet dS located along Γ and sustaining

solid internal forces and three surface tension forces leads to:

σs ~ndS`p~γnw ` ~γns ` ~γswq dl “ ~0 ô σs ~ndS “
`

´~γnw ` pγsw ´ γnsq~t
˘

dl (9)

where ~n is the outward solid normal and ~t a tangent vector. In connection with

Young’s equation (1805) given as

γnw cos θ “ γns ´ γsw (10)

with θ being the contact or wetting angle (Fig. 2), a local zero tangential solid

stress along Γ can be deduced from Eq. (9):

pσs ~nq.~t “ γnw cos θ ` γsw ´ γns “ 0 (11)

Now that the micro-scale stress description has been recalled, the macro-

scale stress tensor is next derived.
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2.2. Macro-scale stresses of triphasic granular media

The total stress Σ for the REV is volume-averaged using the microscopic

stress tensors within all three volume phases and three interfaces (Chateau

et al., 2002; Dormieux et al., 2006a; Gray et al., 2009). Classically, no stress

tensor or other mechanical properties is considered for the contact line itself

(Hassanizadeh and Gray, 1990; Gray et al., 2009; Nikooee et al., 2013):

Σ “
1

V

«

ÿ

α“n,s,w

ż

Vα

σα dV `
ÿ

α,β“n,s,w

ż

Sαβ

παβ dS

ff

(12)

The fluid stresses are the isotropic pressures un δ, uw δ. Considering thermody-

namic equilibrium, the fluid pressures are assumed to be uniform, leading to a

uniform capillary pressure, whatever the saturation regime and the connected

or disconnected feature of the fluid phases.

Regarding the solid phase, the latter is made of distinct particles p, Vs “
Ť

p

Vp , and the volume integral for each particle is classically rewritten as a sur-

face integral from the divergence theorem, considering equilibrium of particles

without body forces:

ż

Vp

σs dV “

ż

Sp

pσs ~nq b ~x dS (13)

with ~n the outward normal and the positions ~x being defined from an adequate

centroid for each particle thanks to particles equilibrium.

Paying attention to the microstructure of triphasic granular media, the par-

ticle surfaces Sp show solid-fluid interfaces Sp,sα, α P tn;wu, contact lines Γp,

and contact surfaces Sp,ss. Eq. (8), resp. (9), applies along Sp,sα, resp. Γp.

Considering quasi-rigid particles, the contact surfaces Sp,ss are negligible and

thus,
ż

Sp,ss

pσs ~nq b ~x dS “ ´
ÿ

cp

~f c b ~xc (14)

with ~f c being the contact forces, as sustained by p, due do the different contacts

tcpu.
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Accounting for the above, algebraic manipulations of Eq. (12) lead to the

following expression for the total stresses:

Σ ´ un δ “
1

V

”

ř

c

~f c b~l ´ uc

´

Vw δ `
ş

Ssw
~n b ~x dS

¯

´γnw

´

ş

Snw
pδ ´ ~n b ~nq dS `

ş

Γ
~νnw b ~x dl

¯

`
ř

α“n;w

γsα

´

ş

Ssα
pdivS ~n~n b ~x ` ~n b ~n ´ δq dS ´

ş

Γ
~νsα b ~x dl

¯ ı

(15)

The above stress expression together with the physical interpretation of each

term will be amply discussed in the following sections.

2.3. Solid-fluid surface tension zero stress contribution

We herein focus on the last stress contributional term on the r.h.s of Eq. (15),

arising from solid-fluid surface tensions γsα. First, we observe that such stress

contributions are due directly to the internal forces within the interfaces Ssα by

integrating surface tension force field πsα over the membrane surface. Other

γsα-stress contributions come from the stress application by Ssα onto the solid

phase, through the two boundary conditions for the solid stresses, i.e. Eq. (8)

along the surfaces Ssα excluding the contact lines, and Eq. (9) along the contact

lines. However, these γsα-stress contributions cancel out for each interface since

the following equality holds for any surface S of contour C “ Γ, conormal ~ν,

and normal ~n (Fig. 1):

ż

S

pdivS p~nq~n b ~x ` ~n b ~n ´ δq dS “

ż

Γ

~ν b ~x dl (16)

Eq. (16) is formally demonstrated using Stokes theorem in Appendix A. In fact,

this important result is a generalization of the following equation proposed by

Rosenkilde (1967) that is restricted to closed surfaces Sc:

ż

Sc

divS p~nq~n b ~x dS “

ż

Sc

pδ ´ ~n b ~nq dS (17)

Obviously, Eq. (16) reduces to (17) for closed surfaces showing no contour Γ.

The conclusion of a zero average stress contribution from solid-fluid sur-

face tensions is valid for any porous media including one or two immiscible

fluids and showing negligible solid-solid surfaces Sss such that the solid-fluid
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surfaces Ssα are always bound by contact lines Γ. In this sense, the present

result obtained from quasi-static micromechanics is consistent with the thermo-

dynamical approach followed by Nikooee et al. (2013). Indeed, Nikooee et al.

(2013) also showed, from alternative free energy considerations, that solid-fluid

surface tensions would affect the behaviour only for deformable solid particles.

It should be noted that Chateau et al. (2002) previously mentioned this zero

stress contribution from solid-fluid surface tensions without a clear justification.

Also, it is worth mentioning that the herein proposed Eq. (16) suggests possible

simplications in the final result of Gray et al. (2009).

2.4. Capillary stresses and microstructure

As a consequence of the result presented in the previous section, Eq. (15)

together with (16) lead to the total stress expression for the triphasic REV as:

Σ ´ un δ “σcont ´
1

V

„

uc

ˆ

Vw δ `

ż

Ssw

~n b ~x dS

˙

` γnw

ˆ
ż

Snw

pδ ´ ~n b ~nq dS `

ż

Γ

~νnw b ~x dl

˙ 

(18)

σcont “
1

V

ÿ

c

~f c b~l (19)

The first stress contribution on the r.h.s of Eq. (18) is denoted herein as

the contact stress tensor σcont since it accounts for the stress interaction at

any contact c between a solid particle pair 1-2 through the contact force ~f c as

sustained by 2, ~l being the branch vector from the centre of 1 to the one of

2. This first term describes the part of the solid phase internal forces that is

due to the solid phase itself, excluding stress applications by the other phases.

In this sense, it has thus been denoted as effective stress by Lu and Likos

(2006); Gray et al. (2009); Li et al. (2016). Also, as a partial confirmation of

this denomination, Hicher and Chang (2007); Scholtès et al. (2009); Wan et al.

(2015); Duriez and Wan (2016a) considered the above-mentioned stress term to

unify the failure description between triphasic and biphasic conditions.

The second stress contribution in Eq. (18) describes the internal forces

of a triphasic material due to the capillary pressure uc. A spherical stress
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p´uc Vw{V δq is due to the fluid volumes and corresponding isotropic pressures.

Another contribution encompasses the stress application onto the solid phase

by the fluid phases through the suction surfacic loadings along the wetted solid

surfaces: (´uc{V
ş

Ssw
~n b ~x dS). The latter contribution directly depends on

the wetted solid surfaces orientations.

Finally, the third stress contribution in Eq. (18) arises from the γnw sur-

face tension forces related to the fluid-fluid interface Snw. In particular, the

internal forces within the Snw interface are described in terms of γnw and the

local interface orientation pδ ´ ~n b ~nq. The stress application by Snw onto the

solid particles along the contact lines, depending on the wettability ~νnw, is also

accounted for.

These two former stress contributions coming from the fluid phases and in-

terfaces correspond to the capillary stresses σcap mentioned in the introduction

and defined as:

σcap “ Σ ´ un δ ´ σcont (20)

We show herein the capillary stresses depend not only on the fluid pressures

un, uw, such as proposed by Bishop (1959); Zienkiewicz et al. (1999); Nuth

and Laloui (2008); Borja and Koliji (2009); Lu et al. (2010), but also on the

surface tension γnw and more importantly fluid-fluid and solid-fluid interface

topologies. Furthermore, we propose a clear microstructure dependency through

the following microstructure tensors defined as:

µV w “ Vw δ (21)

µSsw “

ż

Ssw

~n b ~x dS (22)

µSnw “

ż

Snw

pδ ´ ~n b ~nq dS (23)

µΓ “

ż

Γ

~νnw b ~x dl (24)

such that the capillary stresses express as:

σcap “ ´
1

V

”

uc pµV w ` µSswq ` γnw pµSnw ` µΓq
ı

(25)
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It is important to recall that a general tensorial (non-spherical) form of the

capillary stress is possible due to the nature of all microstructure tensors other

than µV w in Eq. (25). This general non-spherical form for the capillary stress

could not be obtained from a thermodynamics approach as in Hassanizadeh and

Gray (1990); Lu et al. (2010); Nikooee et al. (2013). The shortcoming arises from

the constitutive assumptions considered in those works where the free energies

are systematically expressed according to scalars such as saturation, whereas

tensorial dependencies would be necessary to account for a possibly oriented

microstructure.

Being obtained from static considerations without any kinematics, the stress

decomposition in Eq. (18) however does not attach any constitutive meaning

to the contact and capillary stress tensors. Further investigations are thus led

in the remaining developments, where the focus is on the capillary stresses for

two extreme saturation regimes.

2.5. Capillary stresses for high wetting saturation

In biphasic conditions, the capillary stresses are spherical, with the stress

decomposition, Eq. (18), reducing to a form equivalent to the effective stress

expression for such conditions, Eq. (1):

Σ “ σcont ` u δ (26)

with the contact stress tensor σcont that operates in the solid phase serving as

the effective stress for granular materials with negligible solid matrix compress-

ibility.

The same stress decomposition as Eq. (26), together with a spherical nature

for the capillary stress, also holds under triphasic conditions in the so-called

capillary regime showing high wetting saturations. In this regime, the non-

wetting fluid forms isolated bubbles which are of spherical shape to minimize

fluid-fluid specific energy. This leads in particular to the following expression

for the microstructure tensor µSnw, obtained from the algebraic equality (17)
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applied to the closed interfaces Snw together with Laplace-Young Eq. (7):

µSnw “
uc

γnw
Vn δ (27)

such that it is easy to get:

σcap “ ´uc δ (28)

and Eq. (26) with u “ uw is recovered, as suggested by Chateau et al. (2002)

using a different justification.

The sphericity of capillary stresses in such a saturation regime corresponds

to the absence of any preferred orientation at the micro-scale when solid surfaces

are completely wetted and nw interfaces are spherical. On the other hand, a

preferred orientation is expected for low saturation, in the so-called pendular

regime involving oriented capillary bridges.

3. Multiscale simulation of ideal granular media in the pendular regime

3.1. Model formulation

The DEM model considered herein (Duriez and Wan, 2016a) is built within

the code Yade (Šmilauer et al., 2015), being inspired by the one by Scholtès et al.

(2009). It applies to low wetting saturations—the so-called pendular regime for

which the wetting fluid forms isolated capillary bridges, i.e. menisci between

particle pairs (Fig. 3). This saturation regime is of limited extent, up to 5-

10% wetting saturation ratio roughly, but nevertheless provides granular media

with very distinct features (e.g. apparent cohesion) compared with biphasic

conditions, making this regime worthy of investigation (Chateau et al., 2002;

Scholtès et al., 2009; Wan et al., 2015; Wang and Sun, 2015).

R2 ≥ R1

R1 θ θ
δ2δ1

d

s sw

n

Figure 3: A capillary bridge

The DEM model considers a collection of spherical discrete elements (DE),

possibly of different radii Rp, that correspond in shape and size to the solid
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particles of an idealized granular medium. For such media, the capillary stresses

follow directly from Eq. (25) as:

σcap “ ´
1

V

«

uc

˜

Vw δ `
ř

p

Rp

ş

Sp,sw
~n b ~n dS

¸

`γnw

˜

ş

Snw
pδ ´ ~n b ~nq dS `

ř

p

Rp

ş

Γp
~νnw b ~n dl

¸ ff (29)

Since actual solid particles and DE are quasi-rigid, strains can only arise

from particle relative displacements under pair-wise mutual force interactions

between the particles.

As a starting point, contacting DE sustain point forces approximating con-

tact interaction following simplified contact laws that express the normal (resp.

tangential) contact force as a function of the normal (resp. tangential) rela-

tive displacement. In the normal direction, the contact law is linearly elastic in

compression and disregards tension. For the tangential direction, the behaviour

is governed by Coulombian friction leading to a linear elastic-plastic contact

law. Such contact description involves three model parameters, relevant to the

contact scale (see Wan et al., 2015, for details).

The next step is to incorporate capillary forces to account for the pore fluid

mixture in terms of menisci topology between pairs of particles. A rigorous cap-

illary force determination starts with solving numerically the Laplace-Young

Eq. (7) in order to compute the axisymmetric geometry of capillary bridges,

gravity being neglected (Fig. 3). The existence and properties of the menisci

depend on the particle radii R1, R2, their separating distance d, the fluid-fluid

surface tension, and assumed uniform contact angle and capillary pressure val-

ues. The model predicts by design a fluid distribution obeying uniform capillary

pressure conditions, as done by Scholtès et al. (2009); Wang and Sun (2015).

These uniform suction conditions are specific to thermodynamic equilibrium

and the model does not include any pore flow consideration that could address

transient phenomena, contrary to Gili and Alonso (2002); Mani et al. (2015);

Sivanesapillai et al. (2015). Also, simulations are currently conducted using a

constant contact angle irrespective of advancing or receding movements of the
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contact line along the solid surface, thereby neglecting contact angle hystere-

sis phenomena. However, the model has previously been compared in terms of

water retention behavior with experiments (Wan et al., 2015; Duriez and Wan,

2016b).

Once the capillary bridge distribution is determined, attractive capillary

forces ~f cap between capillary bonded particle pairs are finally obtained from

the capillary pressure and fluid-fluid surface tension loadings on either spherical

particle:

||~f cap|| “ π R1 sin δ1 pucR1 sin δ1 ` 2 γnw sinpθ ` δ1qq

“ π R2 sin δ2 pucR2 sin δ2 ` 2 γnw sinpθ ` δ2qq
(30)

with δ1, δ2 the filling angles on each particle 1, 2 (Fig. 3). Considering either

particle to compute the capillary force norm—using index 1 or 2 in Eq. (30)—is

immaterial due to the meniscus equilibrium.

In line with the previous focus on solid-fluid surface tensions, it is worth

to clarify that these do not contribute to the capillary force. A first possible

justification to this assertion is to consider the solid-fluid surface tensions as an

internal force to the solid particles, thus leading to no resultant external forces

on the DE. Alternatively, in case the DE were assimilated to solid particles

separately from the solid-fluid interfaces, two external loadings proportional to

γsα, α “ n;w would apply on the DE:

1. a first one along Ssα:
ş

Ssα
´γsα divS p~nq~n dS, see Eq. (8)

2. a second one along the contour C of Ssα:
ş

C
γsα ~νsα dl, see Eq. (9)

and the resulting loading would be zero, see Eq. (5) and also Lunati (2007);

Shikhmurzaev (2008). The absence of solid-fluid surface tension γsα from the

resultant forces used in DEM to describe internal forces is consistent—though

not equivalent—with their zero contribution to the total stresses of a triphasic

material, discussed in Section 2.2.

Through the capillary force determination, the particle size distribution, the

fluid-fluid surface tension and the contact angle constitute additional model

parameters (Duriez and Wan, 2016a).
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3.2. Numerical description of stress

According to their calculation paradigm, DEM models of multiphasic condi-

tions (Gili and Alonso, 2002; Scholtès et al., 2009; Richefeu et al., 2006) includ-

ing the present one describe all internal forces of a triphasic granular medium

exclusively with interaction forces between DE. In particular, non-solid phases

with their internal forces are not directly included, but rather reduced to the

resultant forces induced on the solid phase. A total stress tensor is then defined

for the DEM sample from contact and capillary forces for all contacts c and

menisci m, applying the classical homogenization techniques to the DE (Duriez

and Wan, 2016c):

Σ “
1

V

ÿ

DE

ż

VDE

σ dV “
1

V

ÿ

c

~f c b~l `
1

V

ÿ

m

~f cap b~l “ σcont ` σ
cap
DEM (31)

σ
cap
DEM “

1

V

ÿ

m

~f cap b~l (32)

By contrast with the computation of particles relative displacements and strains

in granular media, the sole consideration of resultant forces may be inadequate

to describe stresses in a general manner, as evidenced by any solid sustaining

non-zero stresses while in equilibrium. For instance, the DEM is unable to

capture the stress state of a biphasic granular media showing a uniform fluid

pressure because the fluid-induced resultant force on solid particles is zero in

such case. For this reason, the DEM total stress in Eq. (31) is to be compared

with the net stress pΣ´un δq in Eq. (18) derived from analytical homogenization.

The current stress analysis of the DEM model involves the same contact

stress tensor σcont as the one derived previously from analytical homogeniza-

tion, Eq. (19). As for the fluid mixture stress contribution, the DEM framework

leads to a capillary stress expression from resultant capillary forces, clearly dis-

tinct in nature from the previous expression obtained from analytical homog-

enization, Eq. (29). As such, we refer to the capillary stress tensor defined by

Eq. (32) as σcap
DEM , as opposed to the previous capillary stress tensor σcap ex-

pressed by Eq. (29). Nevertheless, Chateau et al. (2002) suggested with little

justification that a stress description from resultant forces is still possible, such
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that σcap “ σ
cap
DEM . Duriez and Wan (2016b,c) presented numerical compar-

isons confirming it, provided the fluid-fluid interface is accounted for in addition

to bulk phases (Wan et al., 2015). In order to further assess the equivalence

of the stress state of DEM models with the stress state of simulated triphasic

materials, as derived from homogenization, the equality of the first invariants

of σcap and σ
cap
DEM is herein demonstrated from the Laplace-Young equation

as follows.

The mean capillary stress as predicted by the homogenization approach,

denoted as pcaphom, is obtained taking the trace of Eq. (29):

p
cap
hom “ ´

1

3V

«

uc

˜

3Vw `
ÿ

p

Rp Sp,sw

¸

` γnw

˜

2Snw `
ÿ

p

Rp Γp sin θ

¸ff

(33)

By construction of the DEM model, the comparison is restricted to the pendular

regime for which the wetting fluid forms menisci between particle pairs pi, jq “

p1, 2q. Then, Eq. (33) is rewritten accounting for menisci microstructure:

p
cap
hom “ ´

1

3V

ÿ

m

«

uc

˜

3Vm `
ÿ

i“1,2

Ri Si,sw

¸

` γnw

˜

2Sm `
ÿ

i“1,2

Ri Γi sin θ

¸ff

(34)

For a given meniscus of volume Vm and fluid-fluid surface Sm, the wetted surface

Si,sw on each spherical particle i is Si,sw “ 2 π Ri
2p1´ cos δiq and the meniscus

contour Γi is equal to 2 π Ri sin δi, see Fig. 3.

On the other hand, the mean stress p
cap
DEM of σ

cap
DEM involves the scalar

products ~f cap.~l through the trace of ~f cap b~l, see Eq. (32), such that:

p
cap
DEM “ ´

1

3V

ÿ

m

`

uc πR1
2 sin2 δ1 ` γnw Γ1 sinpθ ` δ1q

˘

pR1 ` R2 ` dq (35)

Comparing the two expressions of the mean capillary stress, qualitative dif-

ferences clearly appear with the menisci surface Sm and volume Vm entering

Eq. (34) and not (35) for instance. However, using the Laplace-Young equation

and applying Eq. (16) to the bridge surface Sm, Appendix B demonstrates that
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for any meniscus:

uc

˜

3Vm `
ř

i“1,2

Ri Si,sw

¸

` γnw

˜

2Sm `
ř

i“1,2

Ri Γi sin θ

¸

“
`

uc πR1
2 sin2 δ1 ` γnw Γ1 sinpθ ` δ1q

˘

pR1 ` R2 ` dq

(36)

Eq. (36) is a general property of capillary bridges between spherical particles,

under mechanical equilibrium conditions i.e. complying with the Laplace-Young

equation. It could be used as such to validate triphasic microstructure exper-

imental measurements at the capillary bridge scale. Used here at the REV

scale, it remarkably proves that the mean capillary stresses provided by DEM

modelling or analytical homogenization are finally equivalent, validating the

stress description by DEM in spite of the above mentionned possible reasons for

discrepancy.

From a numerical point of view, the complete equality between σ
cap
DEM and

σcap, considering other invariants than pcap as well as principal directions, has

been recently obtained by Duriez and Wan (2016b).

4. Microstructure and anisotropy of capillary stresses in the pendular
regime

The DEM model is finally applied to a slightly polysized numerical packing

of spherical particles. Table 1 presents the retained parameters.

Table 1: DEM model parameters

Contact Packing Capillarity
kn{D̄ kt{kn ϕ Dmin Dmax e γnw θ

(MPa) (-) (0) (mm) (mm) (-) (N/m) (0)
10 0.21 20 0.25 0.3 0.61 0.073 10

Three mechanical parameters, kn{D̄, kt{kn, and ϕ, are relevant to the two

constant local stiffnesses kn, kt and the local friction angle ϕ of the contact

interaction, as detailed by Wan et al. (2015). Their values are taken from

comparable DEM simulations on glass beads (Hanes and Walton, 2000; Favier

et al., 2009). Regarding the capillary interaction, the particle size distribution

is chosen to be uniform in number between two extreme diameters Dmin, Dmax.
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The void ratio e of the considered packing is such that the sample shows a dense,

i.e. dilatant behaviour under shearing for the considered confining pressures.

Finally, an air-water fluid mixture is considered with the relevant surface tension

value at ambient temperature and a small, though not zero, contact angle value

θ, in accordance with the wetting of glass beads by water (Richefeu et al., 2006;

Scheel et al., 2008).

4.1. Isotropic solid packing

An isotropic packing is first considered with the numerical sample being

under hydrostatic total stresses (with Σxx “ Σyy “ Σzz “ 10 kPa) and various

capillary pressure, i.e. wetting saturation Sr values. According to the model

design presented back in Section 3.1, wetting saturation (capillary pressure) is

uniformly imposed to the sample: capillary bridges are introduced solving the

Laplace-Young equation between particles pairs for a given capillary pressure

value. Doing so, capillary bridges are introduced between both contacting and

separated particles, up to some interparticle distance beyond which the Laplace-

Young equation does not give any solution. Due to the isotropic configuration

of the solid phase, the resulting fluid phases and interfaces distributions are

also isotropic and any microstructure tensor µ among µV w,µSsw,µSnw,µΓ is

spherical, i.e.

µ “ m δ (37)

with m defined as the first invariant of µ:

m “
trpµq

3
(38)

and being expressed for the various µ tensors as:

mV w “Vw (39)

mSsw “
1

3

ÿ

p

Rp Sp,sw (40)

mSnw “
2

3
Snw (41)

mΓ “
1

3

ÿ

p

Rp Γp sin θ (42)
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Thus, the capillary stresses σcap reduce to their spherical part pcapδ, with pcap

previously expressed according to the microstructure in Eq. (33):

σcap “ ´
1

V

”

uc pmV w ` mSswq ` γnw pmSnw ` mΓq
ı

δ “ pcap δ (43)

The capillary stress together with its distinct contributions are depicted ac-

cording to the wetting saturation in Fig. 5, based on microstructural information

obtained from the DEM model as given in Fig. 4.
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Figure 4: Scalar representation of spherical microstructure tensors during the hydraulic load-
ing of an isotropic sample

The capillary stress shows a non-zero limit when the saturation asymptot-

ically tends to zero, while it is strictly zero for the dry case. This non-zero

limit is related to the non-zero limit of the capillary force for a capillary bridge

(between contacting particles) whose volume asymptotically vanishes (Gili and

Alonso, 2002; Herminghaus, 2005). For such infinitesimal saturations, the cap-

illary stress mostly depends on the capillary pressure and the minutely wetted

solid surfaces, the other stress contributions being negligible. For higher satura-

tions close to the upper limit of the pendular regime, a significant contribution

from surface tension arises through fluid-fluid interfaces and contact lines, see

Fig. 5(a). Generally speaking, and as it is obvious for the contact line term,

the relative weight of the distinct contributions depends on the wetting angle
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Figure 5: Capillary stresses during the hydraulic loading of an isotropic sample

θ (Duriez and Wan, 2016a). In total the capillary stress as obtained from mi-

cromechanics is little affected by the considered changes in saturation, Fig. 5(b).

Even though an increasing saturation magnifies the relevant micro-features, e.g.

the wetted surfaces (Fig. 4), it is accompanied by a decrease in capillary pressure

which directly enters the capillary stress expression, Eq. (43).

Also, the mean capillary stress as obtained here from micromechanics is

compared with the classical expression pcap “ ´uc Sr. The latter expression

corresponds to the early proposal by Bishop (1963), taking the corresponding

χ parameter equal to saturation Sr. This expression has more recently also

been proposed from thermodynamical considerations (Hassanizadeh and Gray,

1990; Lu et al., 2010). However, such an expression significantly underestimates

the capillary stresses in the pendular regime, as compared with the present

micromechanical approach, see Fig. 5(b). The discrepancy is believed to arise

because of the missing microstructure dependencies in the constitutive assump-

tions formulated in such thermodynamic approaches. It should be noted that

Nikooee et al. (2013) later on introduced new dependencies in the constitu-

tive assumptions made by Hassanizadeh and Gray (1990), modifying the initial

result.
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4.2. Anisotropic solid packing

A second configuration is herein considered such as the classical critical state

which is reached after sustained shearing of a granular material. Here, the

numerical sample is brought to critical state by imposing an axisymmetric, so-

called “triaxial”, compression up to 45% axial strain ε1 “ εyy, under 10 kPa

constant lateral pressure and dry conditions.

At this stage, an anisotropic contact network has been induced by the devia-

toric loading, starting from an initially isotropic configuration. Imposing subse-

quently triphasic conditions to the sample with various capillary pressure values,

and solving for capillary bridges between all contacting and separated particles,

an anisotropic liquid distribution arises since capillary bridges preferably form

between close particles. The microstructure tensors then may show both a spher-

ical and deviatoric component, µV w excepted. Taking advantage of axisymme-

try and by analogy to the classical stress variables p “ pΣxx ` Σyy ` Σzzq{3

and q “ Σyy ´ Σxx “ Σyy ´ Σzz, the spherical and deviatoric part of any mi-

crostructure tensor µ are respectively quantified by the scalars m, Eq. (38), and

t defined as:

t “

c

3

2
||µ ´ mδ|| “ µyy ´ µxx “ µyy ´ µzz (44)

where, obviously:

tV w “ 0 (45)

For this critical state configuration, deviatoric components are measured as

expected for some microstructure tensors (Fig. 6), namely µSsw and µΓ that

refer to the wetted solid surfaces and contact lines, respectively.

The deviatoric nature of µSsw, as measured by tSsw{mSsw, can be compared

to the fabric tensor F that describes the contact network:

F “
1

nc

ÿ

cont.

~n b ~n (46)

where nc is the total number of contacts between spherical particles, each of

them being oriented by ~n. An exact equality between tF {mF “ 3 tF and

tSsw{mSsw would hold for a monosized solid packing under very high capillary
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pressure for which capillary bridges exist at contacts only and show negligible

wetted surfaces. Here, the discrepancy between the two ratios narrows to 11%

for uc “ 40 kPa and Sr « 0.063 % (Fig. 7). For higher saturations when cap-
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Figure 7: Deviatoric natures of the fabric tensor F and the wetted solid surfaces microstructure
tensor µSsw

illary bridges between separated particles exist, the deviatoric nature of µSsw

decreases while the anisotropy of the solid packing i.e. tF is barely affected

by the hydraulic loading. In fact, deviatoric strains and changes in tF arise

transitioning from dry to unsaturated conditions but become negligible upon
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subsequent hydraulic loading in triphasic conditions (see also Wan et al., 2015).

Focusing now on the the fluid-fluid interface, the microstructure tensor µSnw

interestingly turns out to be spherical with a very good approximation. At the

capillary bridge scale, a deviatoric nature exists for µSnw (Fig. 8 and 9(a)),

which is in relationship with an oriented meniscus shape. However, these devi-
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Figure 8: Deviatoric nature of µSnw for capillary bridges between two particles showing
R2{R1 “ 1.1, considering various dimensionless capillary pressures u˚

c and interparticle dis-
tance d˚ “ d{R2

atoric components approximatively cancel each other at the REV scale (Fig. 6(b)

and 9(b)). The sphericity of µSnw at the macro-scale has also been observed

by Duriez and Wan (2016b) for other numerical samples, still in the pendu-

lar regime. This sphericity of the nw interface was previously proposed as an

assumption by Gray et al. (2009), without any possible measures to support it.

Finally, the capillary stresses depending on µV w,µSsw,µSnw,µΓ deviate

from an averaged fluid pressure (Fig. 10) showing a non-zero deviatoric compo-

nent qcap defined as:

qcap “ σcap
yy ´ σcap

xx “ σcap
yy ´ σcap

zz “ ´

c

3

2
||σcap ´ pcap δ|| (47)

For very low saturations, deviatoric capillary stresses arise mostly from the cap-

illary pressure internal forces along the wetted solid surfaces, in relationship

with the anisotropic solid packing as discussed in the above. For higher sat-

urations, surface tension internal forces along the menisci contours contribute
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also significantly to deviatoric capillary stresses, see Fig. 10(a). Obviously, the

classical expression σcap “ ´uc Sr δ is inadequate to describe such deviatoric

capillary stresses, in addition to underestimate the mean capillary stress pcap in

this anisotropic configuration, see Fig. 10(b), in line with the previous compar-

ison for an isotropic case, Fig. 5(b).

4.3. Evolving solid packing

Finally, the case of a solid packing subject to important deformations is tack-

led considering the following mechanical loadings in triphasic conditions: two

triaxial compressions under 4 and 40 kPa of capillary pressure and 10 kPa con-

fining pressure. Such mechanical loading is considered to occur within smaller

time scales than the hydraulic loadings previously considered under thermody-

namic equilibrium. As such, the possibility to solve the Laplace-Young equation

is complemented by additional conditions before considering capillary bridges.

Namely, capillary bridges are now assumed to form between contacting particles

only, in accordance with observations by Herminghaus (2005). In case particles

subsequently separate because of the mechanical loading, the menisci continue
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Figure 10: Capillary stresses during hydraulic loading of a sample at critical state

to be considered as long as the interparticle distance allows for a solution of the

Laplace-Young equation. These processes of bridge creation and rupture occur

in a fully drained manner, and during the mechanical loading, the saturation

slightly evolves in r2.8%; 3.6%s and r0.06%; 0.09%s for a 4 and 40 kPa capillary

pressure, respectively. Similar macroscopic behaviours are obtained during the

two loading paths, see Fig. 11(a), the capillary stresses being a small portion

of the total stresses (Fig. 11). This is due to the particle size distribution that

confers the numerical sample a limited sensitivity to triphasic conditions: the

latter would be greater for smaller particles.

Starting from an isotropic initial state, the solid phase turns anisotropic

because of the deviatoric mechanical loading, as evidenced by the fabric tensor

F , see Fig. 12(a). As observed during hydraulic loadings in the above, the wetted

solid surfaces tend to follow the same anisotropy as the solid phase, especially

for higher capillary pressure, see Fig. 12(a). As for the fluid-fluid interface,

the sphericity of the corresponding microstructure tensor µSnw is also verified

along this mechanical loading, see Fig. 12(b). Note finally that the contact line

microstructure tensor µΓ is the one showing the greatest deviatoric nature as

measured by t{m because of the low contact angle that is here considered.

Because of processes involving microstructure orientation, deviatoric capil-
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Figure 11: Triaxial compression loading paths in triphasic conditions
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Figure 12: Microstructure evolutions during the triaxial compressions
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lary stresses arise during the mechanical loading, see Fig. 11(b). The largest (in

absolute value) deviatoric capillary stresses are obtained before the critical state

previously analyzed. They occur at the beginning of the total stress softening

when the microstructure anisotropy is the most developed (Fig. 12).

Let us finally recall that a failure criterion encompassing stress limit states

for granular materials in both dry and wet conditions can be expressed according

to the contact stress tensor σcont “ Σ´ un δ ´σcap (Hicher and Chang, 2007;

Scholtès et al., 2009; Wan et al., 2015; Duriez and Wan, 2016a). For axisym-

metric loading paths such as triaxial compressions, it is sufficient to consider

the stress ratio qcont{pcont that obeys:

qcont

pcont
“

q ´ qcap

p ´ un ´ pcap
(48)

Obviously, predicting failure for a given external loading in terms of the total

stresses p, q requires a precise estimation of both pcap and qcap. Neglecting

in particular the deviatoric capillary stress qcap could lead to underestimating

failure.

5. Conclusion

The present micromechanical analysis elucidates the nature of stresses in

triphasic granular materials by accurately taking into account details of internal

forces within the three bulk phases and the three associated interfaces. It is

in particular demonstrated analytically that solid-fluid surface tensions do not

contribute to the average stress whenever solid contact surfaces are negligible.

The proposed tensorial stress decomposition involves a capillary stress that

is derived in terms of capillary pressure, fluid-fluid surface tension, as well as

other tensorial quantities that depend on microstructure. An important im-

plication of this expression is that the mixture of the two non-viscous fluids is

able to sustain deviatoric stresses in triphasic media as demonstrated in DEM

numerical experiments that precisely describe the micro-scale. Numerical exper-

iments considered idealized spherical granular materials. If the particle shape

of real granular materials were to be considered, it would be expected that the
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anisotropy of the capillary stress due to the fluid mixture would be even greater

than in the present analysis.

Another major finding of the present work is that the DEM stress descrip-

tion from resultant forces acting on solid particles is equivalent in the pendular

regime to the stress decomposition herein proposed from analytical homoge-

nization of all phases and interfaces. The demonstration of the DEM stress

description for granular media under low-saturation fully validates its use under

such wet conditions. This also implies that possible simplifications in the realm

of microstructure experimental measurements can be made by using Eq. (36)

that expresses complex relationships between micro-scale parameters.

Contrary to alternate approaches based on thermodynamics, the proposed

stress decomposition does not attach any constitutive meaning to the distinct

stress contributions since only statical considerations are made without any kine-

matics. On the other hand, and with respect to Hassanizadeh and Gray (1990);

Gray et al. (2009); Madeo et al. (2013); Nikooee et al. (2013) who considered

an elastic behaviour for the solid phase, the present result is not restricted to

any particular mechanical behaviour of the different phases—except that fluid

viscosity was neglected. Comparing the present work with thermodynamics

approaches allows us to assess how well stress decompositions obtained from

thermodynamics account for the microstructure of triphasic granular materi-

als, which is believed to be of utmost importance. In fact, it is believed that

tensorial free energy dependencies, such as the microstructure tensors proposed

here, should be introduced in addition to scalar dependencies to capture the

deviatoric nature of capillary stresses from thermodynamics.

Ongoing work is actually being pursued in order to assess the effective nature

of σcont “ Σ´un δ´σcap from a constitutive point of view, and not restricted

to failure description. In the meantime, the proposed stress decomposition

already sheds further light on the old debate regarding the validity of Bishop’s

effective stress equation in partially saturated soils in that it identifies missing

microstructural dependencies in Bishop’s capillary stress equation.
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Appendix A: Demonstration of Eq. (16)

Stokes’ theorem states the surface integral of the curl of an arbitrary vector

field ~F over a surface S equals to the line integral of that vector field over the

surface’s boundary Γ. Adopting ~dl “ ~h dl and the index notation with Einstein

convention:
ż

S

~∇ ˆ ~F .~n dS “

ż

Γ

~F .~dl

ô

ż

S

ǫijk
BFk

Bxj

ni dS “

ż

Γ

Fihi dl (A.1)

In Eq. (A.1), ǫijk is the Levi-Civita symbol. It is possible to replace the vector

field ~F with a second-order tensor field W to get:

ż

S

ǫijk
BWmk

Bxj

ni dS “

ż

Γ

Wmihi dl (A.2)

It is convenient here to define W from the Levi-Civita symbol, a second order

tensor field w and a constant vector ~b: Wij “ ǫjnlwinbl. Then, the l.h.s of

Eq. (A.2) is:

ż

S

ǫijk
BWmk

Bxj

ni dS “

ż

S

ǫijkǫknl

ˆ

Bwmn

Bxj

bl `
Bbl
Bxj

wmn

˙

ni dS

“

ż

S

ǫijkǫknl
Bwmn

Bxj

blni dS (A.3)

Using the identity:

ǫijkǫknl “ ǫkijǫknl “ δinδjl ´ δilδjn (A.4)

we get finally for the l.h.s of (A.2):

ż

S

ǫijk
BWmk

Bxj

ni dS “

ż

S

ˆ

Bwmi

Bxj

bj ´
Bwmj

Bxj

bi

˙

ni dS

“ bk

ż

S

ˆ

Bwmi

Bxk

´
Bwmj

Bxj

δik

˙

ni dS (A.5)

On the other hand, for the r.h.s of Eq. (A.2) we have:

ż

Γ

Wmihi dl “

ż

Γ

ǫinkwmnbkhi dl “ ´bk

ż

Γ

ǫkniwmnhi dl (A.6)
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Because bk are arbitrary, they can be eliminated from Equations (A.2),(A.5),(A.6);

which gives the following second order tensorial equality:

ż

Γ

ǫkniwmnhi dl “

ż

S

ˆ

Bwmj

Bxj

δik ´
Bwmi

Bxk

˙

ni dS (A.7)

Now, choosing w “ ~xb ~n and knowing that ǫkninnhi “ νk, Eq. (A.7) takes the

form:

ż

Γ

νkxm dl “

ż

S

ˆ

nmnk `
Bnj

Bxj

xmnk ´ δmk ´ xm

Bni

Bxk

ni

˙

dS (A.8)

Also knowing that:
Bni

Bxk

ni “
1

2

B

Bxk

pniniq “ ~0 (A.9)

Equation (A.8) can finally be stated in the form:

ż

Γ

νkxm dl “

ż

S

ˆ

nmnk `
Bnj

Bxj

xmnk ´ δmk

˙

dS

ðñ

ż

Γ

~ν b ~x dl “

ż

S

pdivS p~nq~n b ~x ` ~n b ~n ´ δq dS (A.10)

which demonstrates Eq. (16).

Appendix B: Demonstration of Eq. (36)

As a starting point, the trace of the tensorial equality (16) or (A.10) gives

for any surface S:
ż

S

pdivS ~n~n.~x ´ 2q dS “

ż

Γ

~ν.~x dl (B.1)

Applying Eq. (B.1) to the meniscus lateral surface Sm (Fig. 13), we note that

divS ~n is constant, obeying Laplace-Young equation divS ~n “ puw ´ unq{γnw “

´uc{γnw. Then, the l.h.s of Eq. (B.1) is:

ż

Sm

pdivS ~n~n.~x ´ 2q dS “ ´
uc

γnw

ż

Sm

~x.~n dS ´ 2Sm (B.2)

The lateral surface Sm does not completely enclose the meniscus volume Vm,

however Sm Y S1,sw Y S2,sw does (Fig. 13). Then, applying the divergence
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Figure 13: Meniscus half-geometry

theorem with the classical divergence operator div gives:

´
uc

γnw

ż

Sm

~x.~n dS

“ ´
uc

γnw

˜

ż

Vm

div ~x dV ´
ÿ

i“1,2

ż

Si,sw

~x.~n dS

¸

; ~n inwards to the particles

“ ´
uc

γnw

˜

3Vm `
ÿ

i“1,2

ż

Si,sw

~x.~n dS

¸

; ~n outwards to the particles (B.3)

For each wetted surface Si,sw (i “ 1, 2):

ż

Si,sw

~x.~n dS “

ż

Si,sw

´

ÝÝÑ
HOi.~n ` Ri ~n.~n

¯

dS “ ´HOi π Ri
2 sin2 δi ` Ri Si,sw

(B.4)

The l.h.s of Eq. (B.1) is finally equal to:

´
uc

γnw

˜

3Vm `
ÿ

i“1,2

`

Ri Si,sw ´ HOi π Ri
2 sin2 δi

˘

¸

´ 2Sm (B.5)

Focusing now on the r.h.s of Eq. (B.1), we have:

ż

Γ

~ν.~x dl “

ż

Γ1

~ν.~x dl `

ż

Γ2

~ν.~x dl (B.6)

For each wetted contour Γi (i “ 1, 2):

ż

Γi

~ν.~x dl “

ż

Γi

~ν.p
ÝÝÑ
HOi ` Ri ~nq dl “ Γi p´HOi sin pδi ` θq ` Ri sin θq (B.7)

Finally, the r.h.s of Eq. (B.1) is:

ż

Γ

~ν.~x dl “
ÿ

i“1,2

Γi p´HOi sin pδi ` θq ` Ri sin θq (B.8)
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Equating (B.5) and (B.8) according to (B.1) gives:

s

˜

3Vm `
ř

i“1,2

Ri Si,sw

¸

` γnw

˜

2Sm `
ř

i“1,2

ΓiRi sin θ

¸

“
ř

i“1,2

s π Ri
2 sin2 δiHOi ` γnw Γi HOi sin pδi ` θq

(B.9)

Since s π R1
2 sin2 δ1 ` γnw Γ1 sin pδ1 ` θq “ s π R2

2 sin2 δ2 ` γnw Γ2 sin pδ2 ` θq

from Eq. (30), the r.h.s of (B.9) is equal to:

`

s π R1
2 sin2 δ1 ` γnw Γ1 sin pδ1 ` θq

˘

ÿ

i“1,2

HOi (B.10)

Considering finally that
ř

HOi “ R1 ` R2 ` d, this readily demonstrates

Eq. (36).
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