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a b s t r a c t

A coupled numerical scheme, based onmodal expansions and boundary integral represen-
tations, is developed for treating propagation and scattering by dense arrays of impenetra-
ble cylinders inside awaveguide. Numerical results are presented anddiscussed concerning
reflection and transmission, as well as the wave details both inside and outside the array.
The method is applied to water waves propagating over an array of vertical cylinders in
constant depth extended all over the water column, operating as a porous breakwater
unit in a periodic arrangement (segmented breakwater). Focusing on the reflection and
transmission properties, a simplifiedmodel is also derived, based on Foldy–Lax theory. The
latter provides an equivalent index of refraction of the medium representing the porous
structure, modeled as an inclusion in the waveguide. Results obtained by the present
fully coupled and approximatemodels are compared against experimental measurements,
collected in wave tank, showing good agreement. The present analysis permits an efficient
calculation of the properties of the examined structure, reducing the computational cost
and supporting design and optimization studies.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Porous structures are often studied in the context of shoreline protection, see, e.g., [1,2]. A particular kind is artificial
coastal cellular breakwaters which contain openings of very narrow width, typically much less than one wavelength; see,
e.g., [3–6] and the references cited there. The latter structures permit part of flow and energy to propagate to the lee side,
and are exploitable for dissipation of incident wave energy and improvement of water quality in a basin. Furthermore, wave
transformation and attenuation inmangrove forests andmarine vegetation is also a subject of interest in coastal engineering,
taking into account their role in supporting local economy and stabilizing and protecting the coastal zone. In many studies
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Fig. 1. Schematic presentation of thewaveguide containing a porous scatterer constituted bymany vertical cylinders in themiddle. (a) Top view, (b) vertical
section through the channel centerline.

mangrove trunks and roots are treated as vertical cylindrical elements located in thewater column, [7]; see also [8]. Particular
arrangements used in experiments and numerical models are regular arrays of vertical cylinders; see e.g., [9–12]. In the case
when the scatterer diameter is very small compared to the characteristic wavelength, typically of the order of a few percent,
the structure could bemacroscopically considered as porousmedium. For waves of small steepness the problem is treated in
the framework of linear theory. Also, if the length of the porous structure is small, viscous dissipation can be approximately
omitted.

For protection structures composed by dense arrays of vertical cylinders, laboratory physical models have been recently
used to study and characterize the complex hydrodynamic processes involved during wave propagation within such porous
media; see [3]. Furthermore, sloshing experiments in a rectangular tank, completely filledwith vertical cylinders undergoing
forced horizontal motion around the natural frequency of the first sloshing mode, have been used by Molin and Remy [13]
to identify the dispersion equation of linear waves propagating through such dense arrays of vertical cylinders; see also
[12]. However, when considering the same porous structures with gaps, as e.g. in periodic arrangements (as in the case of
segmented porous breakwaters) or during tests in a rectangular wave tank where the structure occupies the middle region,
as studied by Arnaud [14], additional phenomena enter into play, like scattering and interaction with the tank walls, which
forms a waveguide, and the appearance of critical frequencies.

When the vertical cylinders in the examined finite-width protection structure extent from the top (free surface) to the
bottom surface and the depth is constant, the problem can be treated by the Helmholtz equation on the horizontal plane,
supplemented with additional conditions at the sides of the tank or for accounting for the effects of periodic boundaries
in the case of segmented porous breakwater. The latter constitutes a scattering problem by many impenetrable bodies in
a waveguide. Similar problems are frequently encountered in acoustics, elasticity and electromagnetism; see, e.g., [15–17]
and the references cited there. Also, similar applications have been studied by Li andMei [18] in the case of array of cylinders
in a long channel, where multiple scattering can excite Bragg resonances if the frequency falls within one of the band gaps.

In thiswork a coupled numerical scheme, based on amodal expansions, in conjunctionwith boundary element technique,
is developed for treating propagation and scattering by finite structures consisted of regular arrangements of impenetrable
cylinders inside a waveguide. Numerical results are presented and discussed concerning the wave details both inside
and outside the porous structure, illustrating its applicability operating as breakwater unit in a periodic arrangement.
Subsequently, focusing on the reflection and transmission properties far from the structure, a simplified model is derived,
based on Foldy–Lax theory; see, e.g., Martin [16]. The latter model provides an equivalent refraction index for the wave
scattering by the porous structure located strictly inside thewaveguide; see e.g., [19,20]. Results obtainedby thepresent fully
coupled and simplified methods are compared against experimental measurements collected in the wave tank of SeaTech
of University of Toulon, France, showing good agreement. The present models support further design and optimization
studies concerning the examined porous structures, and can be used for studying similar scattering problems in acoustic
and electromagnetic waveguides.
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2. Mathematical formulation

We consider small-amplitude harmonic water waves of angular frequency ω, propagating in the x-direction in a channel
or a tank of constant water depth h, with vertical side walls located at y = ±d; see Fig. 1. In this environment the waves
are scattered by a structure of length L and breadth B, located at the center of the domain. The structure consists of multiple
bottom mounted vertical cylinders of radius a = D/2 in a symmetric arrangement, however, the extension of the present
method to treat more general arrangements is straightforward. The above configuration models also the interaction of
normally incident waves with a y-periodic arrangement of such structures of breadth B and gaps 2d − B between them.
Furthermore, we will consider that the radius of the cylinder(s) is small with respect to the incident wavelength ka ≪ 1,
where k denotes the characteristic wavenumber

ω2
= kg tanh (kh) . (1)

We consider the multiple scattering problem in the above waveguide excited by any superposition of the incoming
propagating modes by

Φ+ (x, y, z; t) = Re
(
Φ+ (x, y, z) exp (−iωt)

)
, (2)

where i =
√

−1 and the complex potential Φ+ (x, y, z) satisfies the Laplace equation and the no-entrance boundary
conditions at the bottom z = −h and the side walls y = ±d. Since the boundaries are vertical surfaces, evanescent modes
corresponding to the imaginary roots of the dispersion relation are not excited and the three-dimensional incident wave
potential is given by

Φ+ (x, y, z) =
cosh (k (z + h))

cosh (kh)

Np∑
n=1

A+

n Yn (y) exp (ikxnx) . (3)

Considering the above incident field to be symmetric with respect to the centerline (y = 0) and to satisfy the no-entrance
boundary conditions on the side walls (y = ±d), the transverse eigenfunctions and eigenvalues appearing in the above
expansion are given by

Yn (y) = Wn cos
(
(n − 1)

πy
d

)
, and kxn =

√
k2 −

π2(n − 1)2

d2
, n = 1, 2, 3, . . ., (4)

where the constantsWn can be fixed by normalization, and thus,

W1 = 1/
√
2d and Wn = 1/

√
d, n = 2, 3, . . . . (5)

We easily derive from the above relations the number of propagating wavenumbers

Np = 1 + [kd/π ] , (6)

where [◦] denotes the integer part. It is also seen from the above relations, that forwaterwavenumbers k (ω) = (n − 1) π/d,
n = 2, 3, 4.., which correspond to the following frequencies

ωn =

√
((n − 1) gπ/d) tanh ((n − 1) πh/d), n = 2, 3 . . . , (7)

a newmode, with index n, is added to the set of propagating terms. It is seen from Eqs. (3) and (4), that at these frequencies
the newmode behaves like a stationary field that could possibly develop a resonance in the waveguide. Furthermore, using
Eq. (7), for n = 1, we obtain the following frequency

ω1 =

√
(gπ/d) tanh (πh/d), (8)

which identifies the upper limit of frequency for possible excitation of the waveguide only by the first (n = 1) mode
corresponding to plane wave. Thus, for ω < ω1 the incident field in the waveguide consists only by the parallel wave

Φ+ (x, y, z) = A+

1
cosh (k (z + h))

cosh (kh)
exp (ikx) , (9)

while for higher frequencies, ω > ω1, the incident fieldΦ+ may contain in general more propagating modes (Eq. (3)).
Using the method of separation of variables complete representations of the wave field are derived in the form of normal

mode series; see e.g., [21]. In the upwave region (left semi-infinite strip) the wave field consists of incident, reflected and
evanescent components (generated from the scatterer), with amplitudes A(1)n ,

Φ(1) (x, y, z) =
cosh (k (z + h))

cosh (kh)

⎛⎝ Np∑
n=1

A+

n Yn (z) exp (ikxnx)+

∞∑
n=1

A(1)n Yn (y) exp (−ikxnx)

⎞⎠ , (10a)
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while in the downwave region (right half-strip) the field is

Φ(3) (x, y, z) =
cosh (k (z + h))

cosh (kh)

∞∑
n=1

A(3)n Yn (y) exp (ikxnx) , (10b)

and consists only of transmitted and evanescent modes, with amplitudes A(3)n .
Since the incident wave field contains only the propagating water-wave modes and the solid boundaries (both side

walls of the channel and the multiple scatterers) are vertical surfaces, the evanescent water-wave modes characterized
by vertical structure cos (kn (z + h)) /cos (knh) and wavenumbers kn, n = 1, 2, .. corresponding to the imaginary roots
of the dispersion relation (1) on the complex plane, are not excited. The total three-dimensional field in the considered
waveguide contains both the incident and the diffracted component due to structure composed by many vertical cylinders,
Φ (x, y, z) = Φ+ (x, y, z)+ Ψ (x, y, z), and is represented by

Φ (x, y, z) = ϕ (x, y)
cosh (k (z + h))

cosh (kh)
, (11a)

where

ϕ (x, y) = ϕ+ (x, y)+ ψ (x, y) and ϕ+ (x, y) =

Np∑
n=1

A+

n Yn (y) exp (ikxnx) . (11b)

Thus, the problem is reduced to theHelmholtz equation on the horizontal planewith respect to the surfacewave potential
ϕ (x, y) (or the free surface elevation η (x, y)) satisfying(

∇
2
+ k2

)
ϕ (x, y) = 0, in D = {−∞ < x < ∞,−d ≤ y ≤ d } , (12a)

∂nϕ (x, y) = 0, (x, y) ∈ ∂DC = ∪
i=1,NC

∂Di, (12b)

∂yϕ (x, y) = 0, y = ±d, (12c)

ϕ (x, y) ∼

Np∑
n=1

A+

n Yn (y) exp (ikxnx)+ reflected waves for x → −∞,−d ≤ y ≤ d, (12d)

ϕ (x, y) ∼ transmitted waves for x → −∞, −d ≤ y ≤ d, (12e)

where ∇ =
(
∂x, ∂y

)
is the surface gradient, n indicates the normal vector on the boundary of the NC cylinders (∂Di) directed

to the exterior of the fluid domain and ∂nϕ (x, y) the corresponding normal derivative of thewave potential on the horizontal
plane.

Some properties of the scattering field ψ can be revealed by using the integral representation

ψ (x, y) ≈

∫
β (xs) G (x|xs) dxs,

involving the Green’s function G (x|xs) in the considered waveguide (also termed as a line source), which is given by (see
[21]):

G (x|x0) = G (x, y|xs, ys) =
i
2

∑
n=1

Yn (y) Yn (ys)
exp (ikxn |x − xs|)

kxn
,

where x = (x, y) denotes the field point and xs = (xs, ys) the corresponding source with density β , respectively. From
the above it is seen that at the critical frequencies specified by Eq. (9), the x-wavenumbers kxn = 0 (see Eq. (4)), and if
these modes are excited, the scattering field could possibly become singular resonating the waveguide. Before proceeding
to the reformulation of the problem, Eqs. (12), as a matching boundary value problem based on the fundamental solution
of the Helmholtz equation (or the free-space Green’s function), it is worth mentioning here that the above complex Green’s
function is slowly convergent, especially near the singularity as the field point (x, y) approaches the source point (xs, ys).
This fact leads to increased computational complexity and cost, especially concerning the calculation of the BEM influence
coefficients. On the other hand, the evaluation of the latter quantities using the free-space Green’s function is much easier
and faster, at the cost of increased discretization required due to the treatment of additional boundaries (the side walls and
the matching interfaces) that need to be considered.

Using Eqs. (10), the above multiple scattering problem in the infinite strip −∞ < x < ∞, −d ≤ y ≤ d, is reformulated
as a matching-boundary value problem in the bounded subdomain −ℓ < x < ℓ, −d ≤ y ≤ d containing strictly into its
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interior the Nc cylindrical scatterers, as follows:(
∇

2
+ k2

)
ϕ(2) (x, y) = 0, in D(2) {−ℓ < x < ℓ , − d ≤ y ≤ d} , (13a)

∂nϕ
(2) (x, y) = 0, (x, y) ∈ ∂DC , (13b)

∂yϕ
(2) (x, y) = 0, −ℓ < x < ℓ , y = ±d, (13c)

ϕ(2) (x, y) = ϕ(1) (x, y) and ∂xϕ
(2) (x, y) = ∂xϕ

(1) (x, y) , x = −ℓ, −d ≤ y ≤ d, (13d)

ϕ(2) (x, y) = ϕ(3) (x, y) and ∂xϕ
(2) (x, y) = ∂xϕ

(1) (x, y) , x = ℓ, −d ≤ y ≤ d, (13e)

where x = ±ℓ denotes the position of the interfaces shown also by using dotted lines in Fig. 1(a), and

ϕ(1) (x, y) =

Np∑
n=1

A+

n Yn (y) exp (ikxnx)+

∞∑
n=1

A(1)n Yn (y) exp (−ikxnx) , (14a)

ϕ(3) (x, y) =

∞∑
n=1

A(3)n Yn (y) exp (ikxnx) . (14b)

We note that all terms in the above infinite series with index greater than Np present exponential decay (always faster
for larger n) because the wavenumbers kxn defined from Eq. (4) are imaginary always increasing in modulus. In the sequel
the series appearing in the above equations are truncated keeping only a finite number Nm of terms (Nm > Np) that are
sufficient for numerical convergence.

Given the amplitudes of the incident modes
{
A+
n , n = 1, 2, . . . ,Np

}
, the problem is solved in the box-shaped bounded

subregion (−ℓ < x < ℓ, −d ≤ y ≤ d), finding the unknown wave potential ϕ(2) and the sets of unknown coefficients
A(1)n , A

(3)
n , n = 1, 2, . . . . In the following, a hybrid modal-BEMwill be presented for treating the above problem. For simplicity

in the presentation, from now on the wave in the middle region ϕ(2) (x, y) will be simply denoted as ϕ (x, y) and the
corresponding domain as D.

Moreover, energy flux conservation is easily derived by using Green’s theorem for the field in the waveguide, in
conjunction with the wall conditions Eqs. (12c), from which we finally obtain

Im
{∫ y=d

y=−d
ϕ∗ (x, y)

dϕ (x, y)
dx

dy
}

= const, (15a)

for any transverse section x= const of the waveguide outside the scatterer, where ϕ∗ denotes the complex conjugate of the
potential. Applying the above equation, in conjunction with the representations (14) in the far upwave region x ≪ −ℓ and
in the far downwave region x ≫ −ℓ, and using the fact that the functions ∥Yn∥ = 1, the following relation is derived:

Np∑
n=1

kxn
(⏐⏐A+

n

⏐⏐2 −
⏐⏐A(1)n

⏐⏐2) =

Np∑
n=1

kxn
⏐⏐A(3)n

⏐⏐2. (15b)

The above relation will be used to check satisfaction of energy conservation from the calculated values of the reflection
and transmission amplitudes, as obtained by the present modal-BEM that will be described in detail in the next sections.

3. The matching-boundary value problem

In the bounded (middle) subregion thewave field is represented by a single layer boundary integral representation based
on simple sources, as follows

ϕ (x) =

∫
∂D
σ (xs)G (x|xs) ds (xs) , x ∈ D ∪ ∂D, (16a)

where x = (x, y) denotes the field point, xs = (x, y) ∈ ∂D the source point on the boundary, and the involved function
G (x|xs) is the fundamental solution of Helmholtz equation on the plane, which should not to be confused with the Green’s
function G (x|xs) of the previous section. The fundamental solution is defined by means of the Hankel function of zero order
and first kind as follows

G (x|xs) =
i
4
H(1)0 (k |x − xs|) . (16b)
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Fig. 2. Hybrid modal-BEM formulation and discretization of various sections of the boundary in the middle subdomain of the waveguide. Side walls are the
boundary parts 1 and 3, and the incident and transmission interfaces are the parts 4 and 2, respectively. The cylindrical scatterers are numbered as parts 5,
6, . . . ,M. Also, the outward normal vector on various parts of the boundary is indicated.

Using the jump relations of the single layer we obtain from Eqs. (16) the following integral representations concerning
the derivatives of the potential

∇ϕ =

⎧⎪⎪⎨⎪⎪⎩
∇x

∫
∂D
σ (xs)G (x|xs) ds (xs) =

∫
∂D
σ (xs)∇xG (x|xs) ds (xs) , for x ∈ D

σ (x)n
2

+

∫
∂D
σ (xs)∇xG (x|xs) ds (xs) , for x ∈ ∂D

(17)

Then by calculating the wave velocity for points on the boundaryx ∈ ∂D we obtain the representation of the normal
derivative of the potential

∂ϕ

∂n

⏐⏐⏐⏐
∂D

≡ n∇ϕ =
σ (x)
2

+

∫
∂D
σ (xs) ∂nG (x|xs) ds (xs) , x ∈ ∂D, (18)

where n denotes the unit normal vector on the boundary (directed outwards the domain D), as shown in Fig. 2, and
∂nG (x|xs) = n∇xG (x|xs). Then, the Neumann boundary condition on the solid boundary of the scatterers and the side
walls is

σ (x)
2

+

∫
∂D
σ (xs) ∂nG (x|xs) ds (xs) = 0 , for x ∈ ∂DC and − ℓ < x < ℓ , y = ±d. (19)

The formulation is completed by including the matching condition at the two interfaces separating the middle domain
D from the two semi-infinite strips. To this aim using the truncated versions of Eqs. (14) keeping only a finite number Nm
of terms Nm > Np, and the boundary integral representations (16) and (17), we obtain for points x on the left interface
{x = −ℓ, − d ≤ y ≤ d } the following equation expressing the matching of the potential

ϕ|x=−ℓ ≡

∫
∂D
σ (xs)G (x|xs) ds (xs) =

Np∑
n=1

A+

n Yn (y) exp (ikxnℓ)+

Nm∑
n=1

A(1)n Yn (y) exp (−ikxnℓ) , (20)

and as concerns the matching of the normal derivative

∂ϕ

∂n

⏐⏐⏐⏐
x=−ℓ

≡
σ (x)
2

+

∫
∂D
σ (xs) ∂nG (x|xs) ds (xs)

= −

Np∑
n=1

ikxnA+

n Yn (y) exp (ikxnℓ) +

Nm∑
n=1

ikxnA(1)n Yn (y) exp (−ikxnℓ) . (21)

Using the orthogonality and completeness properties of the basis functions {Yn (y) , n = 1, 2, . . .} in the interval −d ≤

y ≤ d, the coefficients
{
A(1)n , n = 1, 2 . . .

}
are expressed from Eq. (20) as follows

A(1)n = exp (ikxnℓ)
(⟨
ϕ|x=−ℓ, Yn

⟩
− A+

n exp (ikxnℓ)
)
, n = 1, 2, 3 . . . , (22)

where ⟨f (y) , g (y)⟩ =
∫ y=ℓ
y=−ℓ

f (y) g (y) dy denotes the inner product in −d ≤ y ≤ d.
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Using the above result in Eq. (21) we obtain the final form of the non-local boundary condition expressing the matching
of the potential on the left interface x = −ℓ:

∂ϕ

∂n

⏐⏐⏐⏐
x=−ℓ

−

Nm∑
n=1

ikxn
⟨
ϕ|x=−ℓ, Yn

⟩
Yn (y) = −2ikxnA+

n exp (ikxnℓ) Yn (y) , −d ≤ y ≤ d, (23)

where A+
n is the n-amplitude of the incident mode constituting the forcing of the problem. Quite similarly, for points on

the right interface {x = ℓ, − d ≤ y ≤ d } we obtain the following result concerning the coefficients of the expansion of the
potential in the right half strip

A(3)n = exp (−ikxnℓ)
⟨
ϕ|x=ℓ, Yn

⟩
, n = 1, 2, 3 . . . . (24)

and using this result we obtain the following non-local condition, expressing the matching of the potential on the right
interfacex = ℓ:

∂ϕ

∂n

⏐⏐⏐⏐
x=ℓ

−

Nm∑
n=1

ikxn
⟨
ϕ|x=ℓ, Yn

⟩
Yn (y) = 0, −d ≤ y ≤ d (25)

where

ϕ|x=−ℓ ≡

∫
∂D
σ (xs)G (x|xs) ds (xs) and

∂ϕ

∂n

⏐⏐⏐⏐
x=−ℓ

≡
σ (x)
2

+

∫
∂D
σ (xs) ∂nG (x|xs) ds (xs)

considered for points {x = ℓ, − d ≤ y ≤ d}.
The examined problem possesses a unique solution, with the possible exception of a set of discrete frequencies

constituting the spectrum of irregular frequencies connected with the single layer representation used; see, e.g., [22,23] and
the references cited there. Also, the possible existence of trappedmodes at specific frequencies could cause non-uniqueness
of the problem (see, e.g., [24]). In the present work we focus on the numerical solution of the above system in the case
of regular frequencies only, leaving the study of the interesting problem concerning irregular frequencies and singular
conditions in future extensions.

4. The modal Boundary Element Method

The problem is solved by applying a Boundary Element Method to calculate the integral operators, in conjunction with a
collocation technique. The external boundary of the middle domain consists of four parts (walls, incidence and transmission
sides) and the boundaries of discs in the arrangement, numbered consecutively as indicated in Fig. 2. Moreover, linear
elements are used to discretize the various parts of the boundary, ensuring continuity of geometry, in conjunction with
a piecewise constant approximation of the source distribution σ (x) , x ∈ ∂D. Thus, the unknowns are the value of the
density in each element σj, j = 1, 2, . . . ,Nel, where Nel is the total number of elements used to discretize all parts of the
boundary, and the equations are satisfied at specific control points xj ∈ ∂D, selected to be the centers of the boundary
elements, j = 1, 2, . . . ,Nel; see Fig. 2. In this way, the integrals representing the values of the potential and its normal
derivative on the boundary involved in the boundary and matching conditions Eqs. (19), (23) and (25), are approximated by

ϕ
(
xj

)
=

Nel∑
n=1

σnFjn, ∂nϕ
(
xj

)
=

Nel∑
n=1

σnUjn . (26)

In the above relations, the matrices Fjn and Ujn are defined by the following integrals defining induced quantities from
the n-linear element to the j-control point, respectively,

Fjn =

∫
(n)

H(1)0

(
k
⏐⏐xj − x (s)

⏐⏐) ds, (27)

and

Ujn =
δjn

2
− k

∫
(n)

H(1)1

(
k
⏐⏐xj − x (s)

⏐⏐) nx
n

(
xj − x (s)

)
+ ny

n
(
yj − y (s)

)⏐⏐xj − x (s)
⏐⏐2 ds. (28)

In the above equations x (s) = (x (s) , y (s)) denotes the parametric equation of the n-elementwith s denoting the physical
length, n =

(
nx
j , n

y
j

)
is the outer unit normal vector at the center of the j-element, and H(1)1 is the Hankel function of first

kind and first order. For j ̸= n the integrals in Eqs. (27) and (28) are regular and, for small nondimensional wavenumbers kδs,
where δs is a representative value of themeshsize on the boundary (element length), and small distances k

⏐⏐xj − xn
⏐⏐, they can

be calculated by usual numerical integration rules, and in the present work an adaptive Simpson’s rule is applied. Difficulties
could arise for higher frequencies, which is the case in similar problems in acoustic and electromagnetic waveguides, where
these integrals are more efficiently calculated by means of Filon’s rule; see, e.g. [25]. For large distances k

⏐⏐xj − xn
⏐⏐ ≫ 1, the

above integrals aremore rapidly and efficiently calculated bymeans of multipole expansions of the kernels; see, e.g. [26]. On
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Fig. 3. (a) Waves scattered by a hard cylinder (ka=4.66) as calculated by the present BEM using Nel = 31 elements. (b) Real part of the potential on the
surface of the cylinder using Nel = 31 (circles), Nel =61 (crosses) against the analytical solution (solid lines). (c) Same as before for the imaginary part of
the potential.

the other hand, for j = n the integral in Eq. (27), expressing the induced potential froma linear element to its center, isweakly
singular. These integrals contain logarithmic singularity and are conveniently treated by transformation of the integration
variable. In particular, simple transformations of the form u2

= (s − smid), where smid the coordinate of the middle of the
element, bringing the integration points closer to the singularity, are sufficient in order to reduce the integrals to regular
ones and apply similar as before numerical rules. Finally, we notice that for j = n the singular integral in Eq. (28) exists in the
sense of Cauchy principal value. However, it becomes simply zero due to symmetry properties of the kernel about the point
of singularity. The above facts result in a very fast calculation of the matrices Fjn and Ujn even for complex configurations
discretized by using large number of elements.

On the basis of the above, the boundary condition Eq. (19) on the surface of the scatterers ∂DC and on the side walls
y = ±d, becomes

Nel∑
n=1

σnUjn = 0, for j ∈ {J (∂Dc) , J (y = ±d) } , (29)

where J (∂Dc) , J (y = ±d) denote the corresponding set of indices of the panels on these parts of the boundary ∂D. The
infinite series appearing in Eqs. (23) and (25), respectively, are truncated keeping only a finite number of terms Nm > Np,
exploiting the fact that all terms above Np present exponential decay (always faster for larger n) because the wavenumbers
kxn defined from Eq. (4) are imaginary always increasing in modulus. Furthermore, using the BEM representations (26) in
Eqs. (23) and (25) we obtain:

Nel∑
n=1

σnUjn − i
Nm∑
n=1

kxnYn
(
yj

) Nel∑
p=1

σpFmp ⟨Hm, Yn⟩ = −2ikxn
(
δnmA+

m

)
exp (ikxnℓ) Yn

(
yj

)
, p,m, and j ∈ J (x = −ℓ) ,

(30)

Nel∑
n=1

σnUjn − i
Nm∑
n=1

kxnYn
(
yj

) Nel∑
p=1

σpFmp ⟨Hm, Yn⟩ = 0, p,m, and j ∈ J (x = ℓ) , (31)

where Hm (y) denotes the unit step function with support on the m-element of the vertical interfaces. Clearly, the above
equations materialize the discrete form of the matching-boundary conditions by the present modal-BEM formulation, and
the linear system is solved with respect to the discrete complex unknowns {σn, n = 1, 2, . . . ,Nel}.

4.1. Validation in the case of scattering of parallel incident waves by hard cylinder

In order to illustrate the applicability and efficiency of the present method, we first consider the simple case of scattering
of plane harmonic waves by a single hard cylindrical scatterer in infinite domain, corresponding to the limiting case of
waveguide of infinite width (d → ∞). This will help us also to estimate the number of panels on each cylinder that is
needed for convergence of the results.
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Fig. 4. Porous breakwater constructed by regular arrangement of vertical cylinders.

In this case analytical solution is available, which is obtained by separation of variables in cylindrical coordinates.
Assuming that the circular scatterer of radius a is located at the center of the domain (x, y) = (0, 0), the analytical solution
is given by (see, e.g., [16,27]),

ϕ (r, θ) = exp (ikx)+ ψ (r, θ) , (32a)

ψ (r, θ) =

∞∑
m=0

Am cos (mθ)H(1)m (kr) , with Am = −εmim
J ′m (ka)

Φ
(1)
m (ka)

, (32b)

where r =
(
x2 + y2

)1/2
, θ = 2 tan−1 (y/(x + r)) are the cylindrical coordinates and J ′m (u) =

dJm(u)
du and Φ(1)

m (u) =
dH(1)m (u)

du ,
and εm is the Neumann symbol (εm = 1,m = 0, and εm = 2,m ≥ 1). Indicative results obtained by the present BEM are
shown in Fig. 3 forNel = 31 and 61 elements on the surface of the impermeable cylinder and compared against the analytical
solution. In this example, we consider planewater waves of frequency f = 1.5 Hz propagating in constant depth h = 0.23m,
and thus, the shallowness parameter is h/λ = 0.34 corresponding to intermediate water depth. The waves are scattered by
a circular, bottom mounted cylinder of radius a = 0.5 m, which is comparable to the dimensions of the porous structure
examined in this work as presented in more detail in the next section. Thus, the nondimensional wavenumber in the case of
Fig. 3 is ka = 4.66. We clearly observe the excellent convergence of the present BEM scheme to the analytical solution.

4.2. Numerical results for the many cylinder structure in the waveguide

In recent research by Arnaud et al. [3] wave propagation through arrangements of vertical cylinder arrays is investigated,
that is examined for possible applications as permeable breakwaters and protective structures. In particular, laboratory
physical models have been systematically tested in [14] to characterize the complex hydrodynamic processes involved
during wave propagation and to study the effect of specific surface or porosity on the wave energy dissipation; see Figs.
4 and 5. Several arrangements with different cylinder diameters have been considered in order to study the effects of the
specific surface while keeping the porosity constant. In particular, three cylinder diameters are considered in [14], with
D = 0.020 m, 0.032 m and 0.050 m, arranged in blocks of length L = 0.3 m and breadth B = 1.2 m. The cylinders are
regularly disposed along two perpendicular axes forming a 45 deg angle with the longitudinal axis. Porosity in the case of
the examined arrangements of vertical cylinders attain the same value, given in terms of diameter D and number NC of
cylinders as follows:

γ = 1 − NC
πa2

LB
, where a = D/2. (33)

The structure of Fig. 4 with cylinders of diameter D = 0.032m and the indicated spacing is modeled by arranging 17 rows of
4 cylinders in x direction and, between them, 16 rows of 5 cylinders, i.e. a total numberNc =148 cylinders, as shown in Fig. 6.
Using the above values in Eq. (33) it results in γ = 0.67 which approximates well the reported value in the experiments
[3,14]. Although the above value of porosity is relatively low, the term ‘dense arrays of vertical cylinders’ is also used herein
to characterize this type of structures; see also [12].



10 K.A. Belibassakis et al. / Wave Motion 80 (2018) 1–19

Fig. 5. Tests in the wave tank of Seatech (Univ. Toulon) with the porous breakwater unit located in the middle of the tank.

Table 1
Critical frequencies of Seatech tank, for water depth h = 0.23m and distance
between centerline and side walls d = 1.3 m.

n 1 2 3 4 5 6
fn (Hz) 0.55 0.98 1.29 1.53 1.72 1.89

The above structure operating as porous segmented breakwater is tested in the wave tank of Seatech shown in Fig. 5, in
water depth h = 0.23 m. The tank is 10 m long and 2.6 m wide, and the porous breakwater is located in the middle of the
tank so that the side gaps between the structure and thewalls of the tank are equal to 0.7m. For this configuration andwater
depth the critical frequencies estimated from Eq. (7) are listed in Table 1 below.

In the following, we consider forcing only by the first incident mode (plane incident waves) in the tank, and results
obtained by the present modal-BEM are shown in Fig. 6 for three frequencies f =1 Hz, 1.5 Hz and 1.8 Hz, for which
experiments were performed in the tank. Present calculations are based on total M = 152 boundary sections modeling
the waveguide and all the cylinders in the porous structure. More specifically, 50 elements are used along the side walls and
64 elements in the entrance and exit boundaries. Also, 30 elements are used to discretize each one of the 148 cylinders in
the arrangement, resulting in a total number of 4668 elements, which is found enough for numerical convergence. In the
colorplots of Fig. 6 (left column) the real part and the modulus of the wave field, at each one of the above frequencies, is
shown. In all cases we observe that the field is resolved with high accuracy, both outside and inside the arrangement of
vertical cylinders composing the porous structure. In the right subplots of Fig. 6 the computed results along the section
y = 0.1 m (at 10 cm from the centerline of the tank) are shown. The real part of the wave field is plotted by using thin
solid line and the imaginary part by dashed line, respectively. Also, the modulus of the wave field, which is proportional to
the distribution of the amplitude of the free-surface elevation along the same longitudinal section, is shown by using thick
lines. In these plots, the limits of the structure are indicated by vertical dashed lines. We observe that at all frequencies the
structure allowsmuch part of the flow and energy to be transmitted to the downwave side. In particular, as concerns energy
transmission, the examined structure seems to be more efficient at lower frequencies. Furthermore, although in cases (a)
and (b) the frequency (f =1 Hz and 1.5 Hz) is close to the second and fourth critical value (see Table 1), respectively, still no
special effect is reflected in the results, indicating that the possible resonances are very local.

For the examined configuration, more results concerning the reflection and transmission of waves are presented in Fig. 7,
characterizing also the energy exchange between the first incident mode (with amplitude A+

0 ) and the higher modes that
can be excited by the scattering structure in the tank, as the frequency exceeds the critical values of Table 1. In this figure
the nondimensional coefficients associated with the reflection and the transmission modes are plotted, as calculated by the
present modal-BEM. These coefficients are defined by the corresponding amplitudes in the representations, Eqs. (14a) and
(14b), respectively, as follows

Rn =
⏐⏐A(1)n

⏐⏐ /A+

0 , and Tn =
⏐⏐A(3)n

⏐⏐ /A+

0 , n = 1, 2, 3, . . . . (34)

In particular, the first three coefficients, containingmost of the energy, are plotted against the nondimensional wavenumber
kh = 2πh/λ, for frequencies from 0.8 to 2.1 Hz, corresponding to wave conditions ranging from intermediate water depth
to deep water. We observe in Fig. 7, similarly as in the case of finite underwater steps or submerged breakwaters, that
the behavior of transmission and reflection coefficients presents alternating maxima and minima at specific frequencies.
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Fig. 6. Calculated wave field (only half symmetric part) in the waveguide modeling the tank experiments in water depth h = 0.23 m, at frequencies (a)
f =1 Hz, (b) f = 1.5 Hz, (c) f = 1.8 Hz, excited by the first incident mode. The right column subplots indicate computed results along the section y = 0.1 m
from the centerline. Real part of the field is indicated by thin solid line, imaginary part by dashed line, andmodulus with thick lines, respectively. The limits
of the structure are indicated by vertical dashed lines.
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Fig. 7. Transmission coefficients (Tn , shown by using black lines) and reflection coefficients (Rn , shown by using red lines) of the examined porous structure
against nondimensional wavenumber kh, concerning the first three modes. Results for the first mode are indicated by using solid lines and for the rest by
dashed lines, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Moreover, as the frequency of the incident wave increases, higher modes are excited, carrying energy in the transmission
region. We also remark here that the shown results, obtained by using the above discretization, are found to be consistent
with the energy conservation relation Eq. (15b), presenting error less than 1%, which diminishes with further increase of the
number of boundary elements.

In the following, wewill consider the above as reference data to compare with results obtained by a simplifiedmodel and
experimental measurements in the tank. The computational cost of the simplified model is significantly less that the above
more complete modal-BEM solution, facilitating its systematic application to investigate the reflection and transmission
properties of such porous structures in more complex environment and supporting further design and optimization studies.
Comparative data for computational requirements and time will be provided at the end of Section 5.2.

5. A simplified coupled-mode model on the horizontal plane

In the case of the scattering of time-harmonic waves by large number of densely arranged small obstacles in a
homogeneous medium, where the size of the bodies is quite small compared with the wavelength, the computation cost of
the numerical simulation of the field by boundary elementmethods, in conjunctionwith a Dirichlet-to-Neumann conditions,
can become excessively high, making difficult its use in optimization studies and application to scattering problems bymany
such structures in realistic environments. In this section an approximate, simplified model, with very low computational
requirements, is presented and tested for the solution of the problem. The simplified model is based on the Helmholtz
equation on the horizontal plane, and treats the porous structure as an inclusion in the waveguide, characterized by an
effective index of refraction keff . The latter is estimated as discussed in more detail in Appendix by an adapted version
Foldy–Lax theory (see, e.g., [16]). Thus, the governing equation is(

∇
2
+ κ2)ϕ (x, y) = 0, (35)

where thewavenumber parameter in thewater subregion is the standard one κ2
= k2 (as obtained from Eq. (1) for the given

frequency and water depth), and in the porous subregion this parameter is approximated by an effective value as follows,

κ2
= k2eff = γ k2, (36)

where γ is the porosity coefficient (defined by Eq. (33)).
The solution of the Helmholtz equation (35) is obtained by a domain decomposition technique. The problem is solved

taking into account the incidence-reflection condition at the entrance and the transmission condition at the exit of the
waveguide, the side-wall boundary conditions, and the matching conditions on the interfaces separating the porous from
thewater subregions, shownby using dashed lines in Fig. 8. The usual interface conditions (see, e.g., [21]) concern the normal
derivative ∂ϕ/∂n and the value of the wave field ϕ (x, y) on the two sides of the interface. In the present work we use the
following conditions

∂ϕ

∂n

⏐⏐⏐⏐
water

= γ
∂ϕ

∂n

⏐⏐⏐⏐
porous

, (37)
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Fig. 8. Domain decomposition of the plane waveguide including the porous structure (porous region) in the middle part shown by thick dashed lines.

which expresses the interface condition for the flow rate through the interface (see, e.g., [1], Eq. 2.14), in conjunction with

ϕ|water = S ϕ|porous, (38)

which expresses the interface condition for the pressure across the same interface, where S is an empirically estimated
coefficient (see, e.g., [1], Eq. 2.13). It is remarked here that in several works concerning the propagation of water waves
through or over porousmedia, see e.g., [1,2,28], themodel by Sollitt and Cross [29] is used to describe the porous flow. In the
latter model an extra term is included in the momentum equation representing the effect of added resistance caused by the
virtual mass of the grains in the porous medium, and when applied to the present configuration it results to a modification
of the water-wave dispersion relation, as follows

ω2S = kpg tanh
(
kph

)
, (39)

from which the wavenumber kp associated with the propagating mode in the porous subregion can be calculated. In the
latter works S = 1 + CM (1 − γ ) /γ is described as a coefficient representing the effect of inertia in the porous flow. The
inertia coefficient CM for circular discs, especially in the frequency band and corresponding Reynolds numbers (wave inertial
to viscous forces) considered here, takes values near unity. Thus, in the present case S ≈ 1/γ>1 and the wavenumber in
the porous subregion derived from Eq. (39) would be kp > k. Furthermore, theoretical and experimental analysis involving
sloshing experiments byMolin & Remy (2016) [13], shows that the followingmodified form of the dispersion relation better
describes the wave properties in the porous region

ω2
√
S = kpg tanh

(
kph/

√
S
)
, (40)

which results in kp = k/
√
γ , and thus also kp > k. Therefore, for S > 1, both the above dispersion relations Eqs. (39) and

(40), produce values for thewavenumber kp that are greater than the corresponding value k in thewater region (for the same
frequency), and the appropriate use of the dispersion relation to represent the waves over the porous region is thoroughly
discussed in [12]. On the other hand, in the present simplified model the wave parameter in the porous subregion is smaller
than the water wavenumber, keff =

√
γ k < k. However, it should be stressed here that keff is not representative of the water

wave behavior over the porous structure, but rather it provides us with an effective index of refraction for modeling the
scattering effect of the porous structure treated as an inclusion on the basis of applications based on the Helmholtz equation
on the horizontal plane. In the sequel a coupled-mode systemwill be presented for solving the above problem Eqs. (35)–(38)
and approximating the performance of the porous structure with very small computation cost.

5.1. Coupled-mode system

On the basis of coupled mode theory, the problem is approximately solved on the horizontal plane by decomposing the
domain into three parts denoted by (I), (II) and (III) in Fig. 8, where (I) and (III) are incident and transmissionwater subregions
in the waveguide and the field is provided by the expansions (14a) and (14b), respectively. In the middle subdomain (II),
which includes the porous medium modeling the structure, a similar modal expansion is introduced, as follows

ϕ(2) (x, y) =

∑
n=1

ϕn (x) Y (2)n (y) , −ℓ ≤ x ≤ ℓ , − d ≤ y ≤ dp and dp ≤ y ≤ d , (41)

where the new functions
{
Y (2)n (y) , n = 1, 2, . . . .

}
are symmetric, Y (2)n (y) = Y (2)n (−y), in −d ≤ y ≤ 0 and 0 ≤ y ≤ d,

respectively, and are obtained as the solution of the following eigenvalue problem in 0 ≤ y ≤ d :

d2Y (2)n (y)
dy2

+
(
k2 (y)− k2n

)
Y (2)n (y) = 0, in 0 < y < d, (42a)
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Fig. 9. First four vertical eigenfunctions Yn (y), in 0 < y < d = 1.3 m, in the case of f = 1.8 Hz, h = 0.23 m, for: (a) γ = S = 1 in uniform layer (e.g., in
water regions I and III), (b) in the middle subregion (II), for γ = 0.67 and S =1/γ , and (c) γ =0.67 and S = 1, with the interface located at y = dp = 0.6 m,
as indicated by horizontal dashed line. The lower part (P) denotes porous medium and the upper part (W) water, respectively.

dY (2)n (y)
dy

= 0, y = 0 and y = d, (42b)

Y (2)n

(
y = dp + 0

)
= SY (2)n

(
y = dp − 0

)
, (42c)

dY (2)n
(
y = dp + 0

)
dy

= γ
dY (2)n

(
y = dp − 0

)
dy

, (42d)

where

k2 (y) = k2 for d > y > dp and k2 (y) = k2eff for 0 < y < dp. (42e)

The eigenfunctions associated with the above problem are given by

Y (2)n (y) = W cos
(√

k2eff − k2ny
)
, in 0 < y < dp, (43a)

Y (2)n (y) =

W cos
(√

k2 − k2ndp
)

cos
(√

k2 − k2n
(
d − dp

)) cos
(√

k2 − k2n (d − y)
)
, in d > y > dp, (43b)

and the constant W can be again fixed by normalization. In the sequel the above eigenfunctions will be simply denoted
as Yn (y) = Y (2)n (y) /

Y (2)n

, and since they are orthogonal it holds ⟨Yn, Ym⟩ = δnm, where δnm denotes Kronecker’s delta.
Moreover, the corresponding eigenvalues {kn, n = 1, 2, . . .} are determined by the roots of the following equation

γ

√
k2eff − k2n sin

(√
k2eff − k2ndp

)
cos

(√
k2 − k2n

(
d − dp

))
+ S

√
k2 − k2n sin

(√
k2 − k2n

(
d − dp

))
cos

(√
k2eff − k2ndp

)
= 0. (44)

In Fig. 9 the first four vertical eigenfunctions Yn (y), in 0 < y < d = 1.3 m, are plotted, for frequency f = 1.8 Hz and
water depth h = 0.23 m. In particular three cases of porosity coefficients are examined: (a) γ = S = 1 in uniform layer
(e.g., in water regions I and III), (b) for γ = 0.67 and S =1/γ , and (c) γ =0.67 and S = 1. In all cases the interface is located at
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y = dp = 0.6m, and is indicated by using horizontal dashed lines. In the last two cases of Fig. 9(b) and (c) the discontinuities
concerning the eigenfunctions and its y-derivative are evident at the interface separating the lower part corresponding to
the porous (P) medium and the upper part corresponding the water (W) region, respectively.

Consequently, in the present simplified model, the problem is solved by finding the modal amplitudes ϕn (x) in order to
satisfy Helmholtz equation in subregion (II)

∇
2ϕ(2) + k2 (y) ϕ(2) = 0, (45)

in conjunction with the following matching conditions

∂ϕ(1)

∂x
= N (y)

∂ϕ(2)

∂x
and ϕ(1) = F (y) ϕ(2) on 0 < y < d, x = −ℓ, (46a)

∂ϕ(3)

∂x
= N (y)

∂ϕ(2)

∂x
and ϕ(1) = F (y) ϕ(2) on 0 < y < d, x = ℓ, (46b)

where ϕ(1) and ϕ(3) are given by the modal expansions, Eqs. (14), in subregions (I) and (III), respectively. Also, the functions
N (y) and F (y) are determined from parameters γ and S as follows:

N (y) = γ , for 0 < y < dp and N (y) = 1, for dp < y < d, (47a)

and

F (y) = S, for 0 < y < dp and F (y) = 1, for dp < y < d. (47b)

Subsequently, by projecting Eq. (45), at each position x, on the transverse basis
{
Yn (y) = Y (2)n (y) /

Y (2)n

 , n = 1, 2, . . .
}
,

the following system of horizontal equations is derivedwith respect to the (unknown)modal amplitudes ϕn (x) , in −ℓ <
x < ℓ, ∑

n

amnϕ
′′

n + cmn ϕn =

∑
n

δmn
(
ϕ′′

n + k2nϕn
)

= 0, n = 1, 2, 3, . . . , (48)

where a prime denotes differentiation with respect to x, and the coefficients of the system are defined by

amn = ⟨Yn, Ym⟩ = δmn and cmn =

⟨
∂2Yn

∂y2
+ k2 (y) Yn, Ym

⟩
= k2nδmn. (49)

Moreover, the following boundary conditions are derived from the matching conditions, Eqs. (46),∑
n

Amnϕ
′

n (x = −ℓ)+ ikn Cmn ϕn (x = −ℓ) = 2ikm
(
δmpA+

p

)
, at x = −ℓ , (50a)

∑
n

Amnϕ
′

n (x = ℓ)− ikn Cmn ϕn (x = ℓ) = 0, at x = ℓ , (50b)

where the coupling matrices Amn and Cmn are defined by

Amn =
⟨
N (y) Y (2)n , Ym

⟩
, Cmn =

⟨
F (y) Y (2)n , Ym

⟩
. (51)

The above problem can be semi-analytically treated by introducing the following decomposition of the solution into
incident and reflected waves

ϕn (x) = αn exp (ikn (x + ℓ))+ βn exp (−ikn (x − ℓ)) (52)

where kn are obtained from Eq. (44). Using the above equation and the corresponding one concerning the x-derivative

ϕ′

n (x) = iknαn exp (ikn (x + ℓ))− iknβn exp (−ikn (x − ℓ)) , (53)

the system of equations, Eq. (48), is automatically satisfied and the boundary-matching conditions, Eqs. (50), result in the
following algebraic system with respect to the unknown amplitudes αn and βn:∑

n

Amnikn (αn − Enβn)+ ikn Cmn (αn − Enβn) = 2ikm
(
δmpA+

p

)
, (54a)

∑
n

Amnikn (αn − Enβn)+ ikn Cmn (αn − Enβn) = 2ikm
(
δmpA+

p

)
, (54b)

where En = exp (2iknℓ). The system equations (54) is finally solved by truncating the series equation (41) keeping a number
of terms sufficient for the convergence of the results.
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5.2. Comparison of simplified model against the modal-BEM solution and experimental data

In order to illustrate the applicability of the present simplifiedmodel for evaluating the performance of porous breakwater
structures composed by dense arrangements of vertical columns, in this section we present comparisons with solutions
obtained by the modal-BEM and laboratory data. In particular, the experimental arrangement tested in the SeaTech wave
tank, in water depth 0.23 m, shown in Fig. 5 is considered, for regular incident waves with frequency in the range 1 Hz–
1.8 Hz. Results obtained by the simplified model using γ = 0.67, corresponding to the porosity of the structure of Fig. 4,
are presented in Fig. 10. More specifically, in the top subplots the real part of the calculated wave field is shown and in the
lower subplot the modulus of the field, respectively, for the three plane incident wave frequencies: (a) 1 Hz, (b) 1.5 Hz and
(c) 1.8 Hz. The colorplots concerning the modulus of the wave field are also representative of the spatial distribution of the
amplitude of the free surface elevation in the domain normalized with respect to the incident wave. The numerical results
shown have been obtained by the simplified model, Eqs. (25), using totally 25 modes.

By comparing the plots of Fig. 10 with the corresponding ones in the left column of Fig. 6, we conclude that the calculated
wave patterns are compatible and thus, the present simplified model is able to provide useful information concerning the
wave details in thewater region outside the porous structure in thewaveguide, and especially, its reflection and transmission
properties. This is further indicated by considering the distributions of the calculated wave amplitude along the longitudinal
section y = 0.1m (at a distance 10 cm from the centerline of the tank), for the two frequencies f =1Hz and f = 1.8Hz,which
are presented in Fig. 11. In this figure results obtained by the present simplifiedmodel (shownbyusing solid lines) are plotted
against the full modal-BEM solution (shown by using thick red lines), and are further compared with the experimental data
indicated by using circles. In general, the results compare well with the full solution, especially at the front side of the
porous breakwater dominated by reflection. An exception is observed in the case of the higher frequency f = 1.8 Hz in
the downwave region just after the porous structure, where the reduced-order model locally overestimates the transmitted
wave amplitude.

For the studied configuration, it is worth mentioning here that the results of the present modal-BEM are more accurate,
however, they have been obtained by using a discretization of Nel=4668 boundary elements. Compared to the modal-BEM
data, the dimension of the coupled-mode system is only 2.8% and the required computation time is only 0.01%. Although the
results of the coupled-mode simplifiedmodel are not as accurate, the compression of the computation requirement supports
its systematic application to investigate the performance of the porous structure and further design and optimization studies
of various arrangements of many such structures in more realistic environment.

6. Conclusions

In this work a numerical scheme based on modal expansions and Boundary Element Method is developed for treating
the problem of wave scattering by dense array of multiple vertical cylinders, extended from the top to the bottom of
the water column. The vertical cylinders are regularly arranged in a block and tested in a tank, modeling a porous
segmented breakwater. Numerical results are shown and discussed concerning the wave details both inside and outside
the arrangement, and the applicability of such structures operating as breakwater units. Focusing on the reflection and
transmission properties and on the scattered field outside the porous structure, a simplifiedmodel is also derived based on an
adaptation of Foldy–Lax theory. The latter provides us an equivalent index of refraction for thewave scattering bymany small
obstacles located in a part of the waveguide. Results obtained by the present models are compared against experimental
measurements collected in the wave tank, showing relatively good agreement. The reduced-order model permits a rapid
and efficient calculation of the reflection and transmission properties of the examined structures by significantly reducing
the computational cost, and further supports design and optimization studies. Extensions to include non-symmetric fields
in the waveguide, which can be excited by non symmetric porous structures and/or arbitrary cylinder arrangements can
be straightforward developed. Finally, the present analysis may find useful applications to similar scattering problems in
acoustic and electromagnetic waveguides.
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Appendix. An approximate model of the porous medium

In order to derive an approximate model for the scattering of time-harmonic waves by large number of densely arranged
small obstacles in a homogeneousmedium,we consider here thework by Foldy [30] concerningmultiple isotropic scattering
in a medium which contains randomly distributed small scatterers, which was further extended by Lax [31,32]. Foldy–Lax
theory is based on the assumption that the scattered field is approximated by the waves emitted by point sources placed at
the centers of the obstacles, with density proportional to the wave field (see also [16] Chap. 8). We start here by considering
the following decomposition of the total wave field into incident ϕinc (x) = ϕinc (x, y) and scattering field ϕscat (x, y)

ϕ (x, y) = ϕinc (x, y)+ ϕscat (x, y) , where ϕscat (x, y) = qn0

∫
Ω

ϕ (xs)H(
1)

0 (k |x − xs|) dxs, (A.1)
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(a) 1 Hz.

(b) 1.5 Hz.

(c) 1.8 Hz.

Fig. 10. Calculated wave field as obtained by the present simplified model in water depth h = 0.23 m, for three frequencies. For each frequency, in the top
subplots the real part of the field is shown and in the lower subplots its modulus (or free surface elevation amplitude), respectively. The porous subregion
is indicated by dashed lines.
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Fig. 11. Distribution of the calculated wave amplitude along the section y = 0.1 m (10 cm from the centerline of the tank) as obtained by the present
simplified model, for frequencies: (a) f =1 Hz and (b) f = 1.8 Hz (results shown by using thin solid lines). The corresponding modal-BEM solution is also
shown by using red thick lines and the experimental data by using circles, respectively.

which is a modification of the version based on discrete point sources for ϕscat (x, y) (as e.g., described in [16], Eq. 8.50) to
a continuous distribution of the same singularities. In the above equation Ω denotes the region occupied by the densely
distributed scatterers. In the case of plane harmonic incident waves propagating along the x-direction in infinite medium
ϕinc (x, y) = exp (ikx). Moreover, q is a proportionality coefficient to be determined, and n0 denotes the number of
scatterers per unit volume in Ω . For the present structure, treated as an inclusion, n0 is expressed in terms of porosity
as: n0 = (1 − γ ) /

(
πa2

)
. Using the properties of the fundamental solution G (x|xs) of the Helmholtz equation on the plane

(defined by Eq. (16b)), we have(
∇

2
+ k2

)
G (x|xs) = −δ (x − xs) , (A.2)

where δ (x − xs) denotes Dirac’s delta function. Subsequently, by applying the Helmholtz operator to Eq. (A.1) we obtain:(
∇

2
+ k2

)
ϕ = 4iqn0ϕ, or equivalently(

∇
2
+ k2eff

)
ϕ = 0, with k2eff = (k + iκ)2 = k2

(
1 −

4iqn0

k2

)
, (A.3)

where keff represents an effective index of refraction associated with the porous medium, which could behave as dissipative
with characteristic coefficient controlled by the imaginary part of keff .

In order to obtain an approximation for the coefficient q, we focus on the vicinity of each one scatterer — circular disc of
radius a,which is assumed to be located well in the interior of the subregionΩ , and consider a cell ω of the porous medium
containing the scatterer. Next, we split the integral defining the scattering field in Eq. (A.1) in two parts as follows:

ϕscat (x, y) = qn0

∫
Ω\ω

ϕ (xs)H(
1)

0 (k |x − xs|) dxs + qn0

∫
ω

ϕ (xs)H(
1)

0 (k |x − xs|) dxs. (A.4)

Without loss of generality, we select the center of cell ω to be located at the origin of the coordinate system. Also, since
only one disc is included inω, it holds n0

∫
ω
dxs = 1. Taking into account the singular behavior of the functionH(1)0 (k |x − xs|)

for x ∈ ω, the contribution of the second term in the right-hand side of Eq.(A.4) to the scattering field is considered to be
dominant. In addition, the total field under the integral is approximated by the incident one ϕ ≈ϕinc , and thus, locally we
obtain the following approximation, for x = (x, y) ∈ ω (and xs = 0),

ϕscat (x, y) ≈ ϕinc qH(1)0 (k |x|) = qH(1)0 (k |x|) . (A.5)

Comparing the above result with the leading order term in the Fourier–Bessel series (Eq. (32)) representing the scattering
field by a single circular disc, i.e.

ϕscat (x, y) ≈ A0H
(1)
0 (k |x|) , where A0 = −J1 (ka) /H

(1)
1 (ka) , (A.6)

we finally obtain the approximation

q ≈ A0. (A.7)

Moreover, for small nondimensional wavenumbers ka ≪ 1, the coefficient A0 becomes A0 ≈ −
iπ
4 (ka)

2, and using this
result in Eq. (A.7) we obtain q ≈ −

iπ
4 (ka)

2. Substituting the latter value in the expression for keff given by Eq. (A.3) we finally
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obtain the following estimation concerning the effective index of refraction of the porous medium in terms of the porosity
γ ,

k2eff = γ k2. (A.8)
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