Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Illumination Robust Monocular Direct Visual Odometry for Outdoor Environment Mapping

Abstract : Vision-based localization and mapping in outdoor environments is still a challenging issue, which requests significant robustness against various unpredictable illumination changes. In this paper, an illumination-robust direct monocular SLAM system that focuses on modeling outdoor scenery is presented. To deal with global and local lighting changes, such as solar flares, the state-of-art illumination invariant photometric costs for RGB-D and stereo SLAM systems are revisited in the context of their monocular counterpart, where the camera motion and scene structure are jointly optimized with a reasonably poor initialization. Based on our analysis, a combined cost is proposed to achieve a high-precision motion estimation with an improved convergence radius. The proposed system is extensively evaluated on the synthetic and real-world datasets regarding accuracy, robustness, and processing time, where our approach outperforms systems with other costs and state-of-art DSO and ORBSLAM2 systems.
Complete list of metadata

Cited literature [27 references]  Display  Hide  Download
Contributor : Cedric Pradalier <>
Submitted on : Tuesday, September 18, 2018 - 7:15:17 PM
Last modification on : Friday, April 2, 2021 - 3:39:10 AM


Files produced by the author(s)


  • HAL Id : hal-01876700, version 1


Xiaolong Wu, Cédric Pradalier. Illumination Robust Monocular Direct Visual Odometry for Outdoor Environment Mapping. 2018. ⟨hal-01876700⟩



Record views


Files downloads