
HAL Id: hal-01875788
https://hal.science/hal-01875788

Submitted on 15 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Riemannian Optimization and Approximate Joint
Diagonalization for Blind Source Separation

Florent Bouchard, Jérôme Malick, Marco Congedo

To cite this version:
Florent Bouchard, Jérôme Malick, Marco Congedo. Riemannian Optimization and Approximate Joint
Diagonalization for Blind Source Separation. IEEE Transactions on Signal Processing, 2018, 66 (8),
pp.2041-2054. �10.1109/TSP.2018.2795539�. �hal-01875788�

https://hal.science/hal-01875788
https://hal.archives-ouvertes.fr


1

Riemannian Optimization and Approximate Joint
Diagonalization for Blind Source Separation
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Abstract—We consider the blind source separation (BSS)
problem and the closely related approximate joint diagonalization
(AJD) problem of symmetric positive difinite (SPD) matrices.
These two problems can be reduced to an optimization problem
with three key components: the criterion to minimize, the
constraint on the solution, and the optimization algorithm to
solve it. This article contains two contributions that allow to
treat these issues independently. We build the first complete
Riemannian optimization framework suited for BSS and AJD
handling three classical constraints, and allowing to use a large
panel of general optimization algorithms on manifolds. We
also perform a thorough study of the AJD problem of SPD
matrices from an information geometry point of view. We study
AJD criteria based on several divergences of the set of SPD
matrices, provide three optimization strategies to minimize them,
and analyze their properties. Our numerical experiments on
simulated and pseudo-real electroencephalographic data show the
interest of the Riemannian optimization framework and of the
different AJD criteria we consider.

Index Terms—approximate joint diagonalization, Riemannian
optimization, Riemannian geometry, symmetric positive definite
matrices, blind source separation.

I. INTRODUCTION

Blind source separation (BSS), a family of methods to
which independent component analysis (ICA) belongs [1]–
[3], has become a major tool for signal processing and data
analysis in a wide variety of engineering fields such as com-
munications, image processing, audio and biomedical signals
analysis. See [3] for a full review of theory and applications. In
this article we consider the linear instantaneous BSS problem,
which is based on the following mixing model

x(t) = As(t), (1)

where t is in {1, .., T}, x(t) in Rn is the observation, s(t)
in Rp is the source process, and A in Rn×p is a full rank
mixing matrix. Here, we treat the determined case where
p = n, however it is possible to handle the overdetermined
case (p < n) by reducing the dimension of x(t) with a pre-
whitening step. Knowing the T observations x(t), the goal is to
retrieve estimates (Â, ŝ) of (A, s) under some assumptions on
the source process only, such as statistical independence [3].
It is well known that there is not a unique solution (A, s) to
this recovery problem. For any permutation matrix P ∈ Rn×n
and non singular diagonal matrix Σ ∈ Rn×n, the couple
(APTΣ−1,ΣPs) is a solution equivalent to (A, s). The BSS
problem is usually reduced to seeking an invertible unmixing

matrix B yielding estimates Â = B−1 and ŝ(t) = Bx(t),
where the order and scaling of ŝ(t) are arbitratry.

In the original formulation of BSS the independence of
the sources is modeled in terms of mutual information (see
chapter 2 in [3]). The solution is obtained when the mutual
information of Bx(t) is minimal. Another closely related
approach is based on the maximum likelihood applied on
Bx(t) (see chapter 4 in [3]). It is also possible to solve the BSS
by an approximate joint diagonalization (AJD) of matrices
containing statistics of the observations x(t). Introduced for
BSS in [4], the concept of AJD was developped in the
pioneering article [5]. Given a set {Ck} of K symmetric
matrices, we suppose that for all 1 ≤ k ≤ K

Ck = AΛkA
T +Nk, (2)

where matrices Λk are diagonal matrices containing statistics
of the sources s(t) and matrices Nk comprise estimation error
and measurement noise. The solution of the AJD problem is a
joint diagonalizer B of the matrices Ck, which is obtained by
minimizing a criterion measuring the degree of diagonality of
the set {BCkBT }. In this paper, we focus on the case where
matrices Ck are symmetric positive definite (SPD), which has
drawn much attention in previous research [5]–[8] and where a
geometrical point of view can be exploited [8], [9]. Depending
on the data x(t) to analyze, one can build the set {Ck} by
exploiting second order statistics (see e.g. [3], [10], [11]),
in which case the obtained matrices are SPD given enough
samples. It is also possible to exploit higher-order statistics
by diagonalizing slices of data cumulants [2]–[4]. Concerning
the identifiability conditions of the AJD problem we refer the
reader to [7]. So far, the overwhelming majority of proposed
AJD methods have been using either the Frobenius distance
(least squares) [4], [7], [12]–[14] or the log-likelihood [5]–[7]
to define a diagonality measure. For the Frobenius distance,
the resulting criterion is

fF(B) =
∑
k

wk
∥∥BCkBT − ddiag(BCkB

T )
∥∥2

F
, (3)

where wk are positive weights, ‖·‖F denotes the Frobenius
norm and ddiag(·) cancels the off-diagonal elements of its
argument. Note that (3) is quite generic and only requires the
matrices Ck to be symmetric. The log-likelihood [6], [10] (also
referred to as the left Kullback-Leibler measure) reads

flKL(B) =
∑
k

wk log
det(ddiag(BCkB

T ))

det(BCkBT )
, (4)
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where det(·) denotes the determinant. In order to use (4)
the matrices Ck must be SPD. There is no closed form
solution for the minimizer of such criteria. Therefore, one
has to approximate it with an iterative optimization process.
Many optimization methods have been considered in previous
research such as Jacobi-like algorithms [4]–[6], Lagrange
multipliers [13], gradient descent [15], pseudo-Newton [16],
Gauss iterations [14] and natural gradient [7], [17], [18].

In order to avoid degenerate solutions, for instance the trivial
solution B = 0, constraints on B are needed. In early studies,
the solution was supposed orthogonal after a prewhitening step
meant to orthogonalize the data [2]–[4]. However, it is well
known that this induces irreversible errors in the estimation of
B, thus research has turned toward methods seeking a non-
orthogonal unmixing matrix [6], [12], [17], [19], [20]. Various
contraints have been introduced, such as the non-holonomic
constraint [7], [15], [21], [22] (avoid diagonal scaling), fixing
the determinant [22] or the norm of the lines of B [13], [14],
[20], [23]. In this paper, we consider three different classic
constraints. The first consists in fixing the determinant as

det(BBT ) = 1. (5)

The second is the unit lines norm constraint [14], [20], [23]

ddiag(BBT ) = In, (6)

where In is the identity matrix. Note that in [14], [23], the
constraint is ddiag(BGBT ) = In for some SPD matrix G. It
is equivalent to (6) when performing BSS on G−1/2x(t) instead
that on x(t). The third and last constraint we consider is
specific to the AJD problem and also involves fixing the norm
of the lines of B; called intrinsic contraint, it was introduced
in [13], [16] and can be written as

K∑
k=1

ddiag(BCkB
T )2 = In. (7)

Any AJD problem (and more generally linear BSS) boils
down to solving an optimization problem over a subset M
of GLn (set of invertible matrices in Rn×n) endowing the
constraints for a cost function f : GLn → R. Indeed, B is
solution to

argmin
B∈M⊂GLn

f(B). (8)

There are three key components when modeling and solving
this problem: (i) the choice of the criterion f to optimize,
(ii) the constraint on B (definition of M) and how it is
enforced, and (iii) the optimization algorithm employed to
approximate (8). Here we propose an unifying framework to
treat these three issues, subsuming and generalizing previous
research. Our framework thus provides a synthetic, yet com-
prehensive view on the AJD of SPD matrices.

Our first contribution mainly concerns points (ii) and (iii).
As discussed before, to find the solution to (8) previous
works are specific to a criterion, a constraint and an iterative
process. Therefore, in most cases one cannot simply change
one of these three components to obtain a new algorithm.
Furthermore, constraints on B are often included as a penalty
term in the cost function. A more natural way to handle

constraints is to consider optimization on Riemannian man-
ifolds [24]. This also allows to use generic optimization
algorithms that are neither specific to a constraint nor to a cost
function. Therefore, with Riemannian geometry it is simple to
change (i), (ii) or (iii) without affecting the others, increasing
the modularity of developed methods. Ideas of Riemannian
optimization have already been used in the context of BSS
but only partly in [7], [17], [18], [22] and with a manifold
that does not ensure the solution to be invertible in [25].
In section II, we define a new Riemannian manifold based
on the polar decomposition (section II-A) and we derive
appropriate submanifolds to handle constraints (5), (6) and
(7) (section II-B). We develop all the tools needed to use
any general optimization algorithms on manifolds [24] and
to make use of the newly defined manifolds transparent to
GLn in practice. To the best of our knowledge, except from
the parts anticipated in [26], this is the first paper to propose
a general and complete Riemannian framework for BSS.

Our second contribution, reported in section III, is a thor-
ough theoretical study of the AJD problem with respect to the
points (i) and (iii). Previous research on AJD criteria have been
mainly empirical: criterion (3) arises from the practical rea-
sonning that one needs to cancel the off-diagonal elements of
the matrices in order to diagonalize them and criterion (4) was
derived from the maximum likelihood approach [10]. Recent
advances in the study of the geometry of SPD matrices [8],
[27]–[32] have yielded a new perspective: all AJD criteria can
be generalized as

f(B) =
∑
k

wkd(BCkB
T ,Λk(B)), (9)

where d(·, ·) is a divergence function and Λk(B) are diagonal
matrices. Such criterion f measures the degree of diagonality
of the set {BCkBT } according to the divergence d(·, ·) and
the target diagonal matrices Λk(B). So far, all research has
considered Λk(B) = ddiag(BCkB

T ). However, [8] showed
that this is not always the closest diagonal matrix to BCkBT

according to d(·, ·). Thus, it might be advantageous to choose
Λk(B) otherwise. This shows that for AJD, issue (i) is actually
divided into two subissues: the choice of the divergence and
the choice of the target diagonal matrices. To solve (8) for
cost functions with form (9), different optimization strategies
can be employed and we give three possible Riemannian-
oriented choices in section III-A. Then in section III-B we
consider criteria with form (9) obtained from the Frobenius
distance, Kullback-Leibler divergence (which yields a left,
right and symmetric measure), log-det α-divergence, log-
Euclidean, natural Riemannian and Wasserstein distances. In
previous research, only the Frobenius distance, left Kullback-
Leibler measure and log-det α-divergence [8] have been
considered. The natural Riemannian distance was partly an-
ticipated in [33]. Different choices of divergence and target
diagonal matrices yield different AJD criteria, which possess
different properties. In section III-C, we give four properties
shown to be of interest [7]–[9] and we establish whether the
criteria considered in this article possess them.

Section IV contains numerical experiments on the AJD
problem where we compare the performance of the algo-
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rithms resulting from sections II and III with state of the art
competitors [6], [14], [34] both on simulated SPD matrices
(section IV-A) and pseudo-real electroencephalographic (EEG)
data (section IV-B). We perform a systematic evaluation of all
possible combinations of constraints, optimization strategies
and criteria. Therefore, we can estimate the influence of those
constituents of the AJD problem.

Finally, section V draws several conclusions and perspec-
tives. We discuss possible extensions of the Riemannian opti-
mization framework and perspectives for future AJD research,
especially on the need to better understand the links between
AJD and the concept of center of mass of SPD matrices We
conclude on the possible generalizations of this work to other
models beyond linear BSS. For better readibility, the proofs of
the propositions and other results are given in supplementary
materials.

II. THE RIEMANNIAN OPTIMIZATION FRAMEWORK

In this section we present a Riemannian framework to solve
optimization problems of the form (8) with contraints (5),
(6) or (7). Riemannian optimization [24] requires three in-
gredients: a Riemannian matrix manifold M, a function f
defined from M onto R (along with its Riemannian gradient
and Hessian), and a retraction R on M (mapping from the
tangent space back onto the manifold). As shown in figure 1,
given iterate Bi, a descent direction ξi in the tangent space
TBiM of M at Bi is obtained from the Riemannian gradient
(and Hessian) and the next iterate Bi+1 = RBi(ξi) results
from the retraction of ξi at Bi. The descent direction ξi is
obtained using Riemannian versions of generic methods such
as steepest-descent, conjugate gradient, Newton’s method or
trust-region method [24]. Therefore, we first need to define
the Riemannian manifolds of interest, which, in addition to
the definition of the set, requires to describe its tangent
space and a Riemannian metric (inner product on the tangent
space). Then, in order to manipulate any cost function we
need the relation between Riemannian and Euclidean (classical
definitions) gradient and Hessian. Finally, we need a retraction
on the manifolds of interest in order to update the solution.
There is an implicit retraction defined on a manifold M
that arises from its Riemannian geometry: the exponential
map defined from the shortest path connecting two points
(the geodesic). Other retractions can be considered and are
sometimes preferable [24], [35].

In our context, a Riemannian optimization framework can
be developed on the polar manifold Pn, a Riemannian mani-
fold equivalent to GLn that we study in section II-A. We then
define new submanifolds of Pn embedding constraints (5),

M

•
Bi

TBiM ξi

•Bi+1 = RBi(ξi)

Fig. 1: Schematic illustration of Riemannian optimization. Given the iterate
Bi in M and the descent direction ξi in TBiM, the next iterate Bi+1 is
obtained through the retraction of ξi at Bi.

(6) and (7) in section II-B. For better readibility, the proofs
of the following lemmas and propositions are reported in
supplementary materials.

A. Polar manifold Pn
A way to avoid GLn is to consider the polar decomposition:

given B in GLn, there exist unique matrices S ∈ S++
n (set

of SPD matrices) and U ∈ On (set of orthogonal matrices)
such that B = SU . It follows that GLn is “equivalent” to
the product manifold Pn = S++

n × On, which we call the
polar manifold. More precisely, Pn is diffeomorphic to GLn
with the mapping π:Pn → GLn such that π(S,U) = SU .
In the following, B denotes a couple (S,U) and B denotes
the corresponding matrix π(B). By slight abuse of notation,
f denotes a function either defined on GLn or Pn (the
corresponding function is obtained by taking f◦π or f◦π−1).

The geometry of Pn follows from those of S++
n and On,

which are well known [24], [27]. We recall here the main
ingredients that are used in this article. First note that Pn lies
into the Euclidean space En = Rn×n × Rn×n. The tangent
space TBPn of Pn at B = (S,U) is TSS++

n × TUOn, i.e.,

TBPn = {(ξS , ξU ) ∈ En: ξTS = ξS , Uξ
T
U+ξUU

T = 0}. (10)

We endow Pn with metric 〈·, ·〉., which corresponds to the
sum of the classical metrics of S++

n and On. It is defined for
B = (S,U) in Pn, ξ = (ξS , ξU ) and η = (ηS , ηU ) in TBPn
as

〈ξ, η〉B = tr(S−1ξSS
−1ηS) + tr(ξTUηU ), (11)

where tr(·) denotes the trace operator.
In order to obtain the Riemannian gradient and Hessian of a

function f on Pn from the classical ones in En, we first need
to define the orthogonal projection map PB to the metric (11)
defined from En onto TBPn such that, for Z = (ZS , ZU ),

PB(Z) =
(
sym(ZS), ZU − U sym(UTZU )

)
, (12)

where sym(·) returns the symmetrical part of its argument.
In the following, PS(ZS) and PU (ZU ) denote the first and
second components of PB(Z) respectively (the same type of
notations are used for gradients, Hessians and retractions). One
then obtain the Riemannian gradient and Hessian in TBPn of
f at B in Pn from the Euclidean ones in En with expressions

gradPn f(B) =
(
SPS(gradEn f(S))S, PU (gradEn f(U))

)
(13)

and

HessPn f(S)[ξ] = SPS(HessEn f(S)[ξ])S

+PS(ξSPS(gradEn f(S))S),

HessPn f(U)[ξ] = PU (HessEn f(U)[ξ])

−PU (ξU sym(UT gradEn f(U))).

(14)

This simplifies the manipulations of a cost function f defined
on Pn, however to solve problem (8) one may wish to
manipulate only f defined on GLn. This is the purpose of
the following proposition, where the Euclidean gradient and
Hessian of f on Pn are obtained from the Euclidean gradient
and Hessian of f on GLn denoted gradGL f and HessGL f :
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Proposition 1. Let B = (S,U) and ξ = (ξS , ξU ). Then,

gradEn f(B) = (gradGL f(π(B))UT , S gradGL f(π(B))),

HessEn f(S)[ξ] = HessGL f(π(B))[ξSU + SξU ]UT

+ gradGL f(π(B))ξTU ,

HessEn f(U)[ξ] = SHessGL f(π(B))[ξSU + SξU ]

+ ξS gradGL f(π(B)).

Finally a retraction RB on Pn at B is properly defined by the
exponential map on Pn, which is given, for all ξ = (ξS , ξU )
in TBPn, by

RB(ξ) = expPnB (ξ) =
(

exp
S++
n

S (ξS), expOnU (ξU )
)
, (15)

where exp
S++
n

S (ξS) = S1/2 exp(S−1/2ξSS
−1/2)S1/2 is the ex-

ponential map on S++
n (exp(·) is the standard matrix ex-

ponential) and expOnU (ξU ) is the exponential map on On,
which is given in equation (5.26) of [24]. All the tools needed
for solving (8) through Riemannian optimization on Pn have
been introduced. We can now define appropriate submanifolds
embedding the constraints.

B. Submanifolds of Pn
Our objective is to embed constraints (5), (6) and (7) by

defining the corresponding subsets of Pn. Constraint (5) is
expressed in Pn as det(π(B)π(B)T ) = 1. It leads to the
subspace of Pn

SPn = {(S,U) ∈ Pn : det(S) = 1}, (16)

which we call the special polar manifold. Constraint (6)
becomes ddiag(π(B)π(B)T ) = In in Pn. It leads to the
subspace of Pn

OPn = {(S,U) ∈ Pn : ddiag(S2) = In}, (17)

which we name the oblique polar manifold. Finally, con-
straint (7) leads to the subspace

IPn =

{
(S,U) ∈ Pn :

∑
k

ddiag(BCkB
T )2 = In

}
, (18)

which we refer to as the intrinsic polar manifold. In propo-
sition 2, we give the first ingredient needed for Riemannian
optimization, i.e. we define the Riemannian geometry of these
three subspaces.

Proposition 2. Subspaces SPn, OPn and IPn are connected
submanifolds of Pn. The tangent spaces of SPn, OPn and
IPn at B are subspaces of TBPn characterized for ξ =
(ξS , ξU ) by equations

SPn tr(S−1ξS) = 0

OPn ddiag(SξS) = 0

IPn ddiag(ḂQ) = 0

where Ḃ = ξSU + SξU is the derivative of B = π(B)
in direction ξ and Q =

∑
k CkB

T ddiag(BCkB
T ). Finally,

manifolds SPn, OPn and IPn inherit their metrics from the
one of Pn defined in (11).

As for the polar manifold, we need to define the orthogonal
projection maps on the tangent spaces of SPn, OPn and IPn
in order to obtain the Riemannian gradients and Hessians. In
the following lemma we give the orthogonal projection maps
from the tangent space of Pn. They can be obtained from the
ambient space En with (12).

Lemma 1. The projection maps PSB , POB and P IB on TBSPn,
TBOPn and TBIPn are respectively given, for Z = (ZS , ZU )
in TBPn, by

SPn (ZS − 1
n tr(S−1ZS)S,ZU )

OPn (ZS − PS(S2∆OS), ZU )

IPn (ZS − SPS(UQ∆I)S,ZU − PU (S∆IQ
T ))

where ∆O is the unique diagonal matrix solution to

ddiag(PS(S2∆OS)S) = ddiag(ZSS) (19)

and ∆I is the unique diagonal matrix solution to

ddiag(S(PS(UQ∆I)B + PU (S∆IQ
T ))Q)

= ddiag((ZSU + SZU )Q). (20)

We also need the derivatives of Q (proposition 2), ∆O and
∆I (lemma 1) at B in the direction ξ to obtain the Hessians.
We easily obtain the derivative Q̇ of Q as

Q̇ =
∑
k

Ck(ḂT ddiag(BCkB
T ) + 2BT ddiag(ḂCkB

T )).

(21)
For ∆O and ∆I , it is more complicated since they are defined
implicitly. We thus need the following lemmas.

Lemma 2. The derivative ∆̇O of ∆O defined in (19) at S in
the direction ξS is the unique diagonal matrix solution to

ddiag(PS(S2∆̇OS)S) = ddiag(ZSξS −WO)

where

WO = PS(S2∆OξS+(ξSS+SξS)∆OS)S+PS(S2∆OS)ξS .

Lemma 3. The derivative ∆̇I of ∆I defined in (20) at B
in the direction ξ = (ξS , ξU ) is the unique diagonal matrix
solution to

ddiag(S(PS(UQ∆̇I)B + PU (S∆̇IQ
T ))Q) =

ddiag((SZU + ZSU)Q̇+ (ξSZU + ZSξU )Q−WI),

where

WI = ξSEQ+ SHQ+ SEQ̇,

E = PS(UQ∆I)B + PU (S∆IQ
T ),

H =
1

2
(ξS∆IQ

T + S∆IQ̇
T )

+
∆I
2

(Q̇TUTB +QT ξTUB +QTUT Ḃ).

This leads to proposition 3 where the Riemannian gradients
and Hessians of f in SPn, OPn and IPn are obtained from
the Riemannian gradient and Hessian of f in Pn. One can
obtain them from the gradient and Hessian of f in GLn by
applying proposition 1, (13) and (14) first.
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Proposition 3. The Riemannian gradients of f at B in SPn,
OPn and IPn are

SPn PSB (gradP f(B))

OPn POB (gradP f(B))

IPn P IB (gradP f(B))

.

The Hessians are given, for a tangent vector ξ = (ξS , ξU ), by

SPn PSB (HessP f(B)[ξ])

OPn POB (HessP f(B)[ξ])− POB (SPS(ṀO)S, 0)

IPn
P IB (HessP f(B)[ξ])

−P IB (PB(ξSPS(MI)S + SṀIS,

−ξU sym(UTNI) + ṄI))

,

where ṀO = ∆̇OS+∆OξS , MI = UQ∆I , ṀI = ξUQ∆I+
UQ̇∆I + UQ∆̇I , NI = S∆IQ

T and ṄI = ξS∆IQ
T +

S∆̇IQ
T +S∆IQ̇

T . Note that ∆O, ∆I , ∆̇O, ∆̇I are obtained
with (19), (20), lemmas 2 and 3 with Z = gradP f(B).

It remains to define proper retractions on manifolds SPn,
OPn and IPn. This is achieved by the following

Proposition 4. The following functions RSB, ROB and RIB are
retractions at B in SPn, OPn and IPn respectively. They
are defined for ξ = (ξS , ξU ) in the tangent space as

SPn RB(ξ)

OPn (F (RS(ξS)), RU (ξU ))

IPn π−1(Υπ(RB(ξ)))

where the function F is defined for R in S++
n as

F (R) =
(

ddiag(R2)
−1/2R2 ddiag(R2)

−1/2
)1/2

(22)

and

Υ =

(∑
k

ddiag(π(RB(ξ))Ckπ(RB(ξ))T )2

)−1/4

. (23)

This completes our Riemannian optimization framework
and we can now use it to develop new AJD methods for SPD
matrices, given classical (Euclidean) gradients and Hessians
of the criteria in GLn.

III. APPLICATION TO THE AJD OF SPD MATRICES

The goal of AJD is: given a set {Ck} of K SPD matrices,
find a joint diagonalizer B in GLn such that the set {BCkBT }

S++
nD++

n

•
BCkB

T

•Λk(B)

•Λ̃k(B)

Fig. 2: Schematic illustration of the influence of the divergence and target
diagonal matrices on the AJD criterion. The target diagonal matrix (Λk(B)
or Λ̃k(B) here) determines where on D++

n one wants to go. The divergence,
which corresponds to a path on S++

n (curves joining BCkB
T and Λk(B)

or Λ̃k(B) here), determines how to get closer to the target diagonal matrix.

contains matrices as much diagonal as possible according to
a criterion with form (9). Such cost function only depends
on the choice of the divergence d(·, ·) and the set {Λk(B)}
of target diagonal matrices. As illustrated in figure 2, these
two factors mainly determine how matrices BCkBT converge
toward D++

n (set of diagonal matrices with strictly positive
elements) as (9) is optimized. Therefore, one can expect that
modifying at least one of them yields a different solution B.
For a given divergence d(·, ·), a natural choice for the target
matrices Λk(B) arises from geometry [8]. These are the closest
diagonal matrices to matrices BCkB

T according to d(·, ·),
which are defined as

Λk(B) = argmin
Λ∈D++

n

d(BCkB
T ,Λ). (24)

Regarding the minimization of (9), the intuitive approach is
to optimize it directly. However, [14] has shown that it can be
advantageous to use an indirect optimization scheme in terms
of accuracy and numerical efficiency. In such approach an
optimization subproblem with a cost function closely related
to (9) is considered at each iteration. In section III-A, we
present three different optimization strategies: the direct one,
a new indirect approach and a Riemannian-oriented version
of [14]. A major advantage of the two latter strategies is
that they are not dependent on the choice of the target
matrices Λk(B).

Section III-B contains the different divergences that we
consider along with the criteria they lead to. In this paper, we
are interested in the Frobenius distance, Kullback-Leibler di-
vergence, log-det α-divergence, natural Riemannian distance,
log-Euclidean distance and Wasserstein distance. Whenever
possible, we use all the optimization strategies of section III-A.
For the direct strategy we always choose the closest diagonal
matrices according to the divergence as target matrices. For the
two others, any diagonal matrices can be used even though
we only use the closest ones in our numerical experiments
(section IV).

In section III-C, we study four desirable properties of AJD
criteria [7]–[9]. For criteria with form (9), these properties de-
pends on the chosen divergence and diagonal target matrices.
The first one [7]–[9] concerns the diagonal scaling ambiguity,
which is intrinsic to the BSS and AJD problems as explained
in section I. The three others [9] are related to the effects of
some manipulations of the input matrix set {Ck}. Here, we
are interested in the rescaling of the matrices Ck by strictly
positive scalars ak, their inversion and their congruence with
a matrix W in GLn. Note that the two latter properties are
particularly interesting not only in practice, but also since they
are linked to well known properties of centers of mass of SPD
matrices (self-duality and congruence invariance) [9]. Finally,
we determine if the divergences of section III-B yield criteria
possessing those properties.

A. Optimization algorithms

All three strategies to minimize (9) share the steps presented
at the begining of algorithm 1. The differences between them
resides in the update rule on the estimated solution B and in
the way they treat the dependence of the target matrices Λk
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relatively to B. The convergence can be defined in various
ways and the choice we make for our numerical experiments
is given in section IV.

Algorithm 1: Riemannian AJD
Input: matrices {Ck} in S++

n , initial guess B0 for B
Output: iterates Bi of the estimated joint diagonalizer

1 Compute matrices {B0CkB
H
0 } and set i = 0.

2 while not convergence do
3 Obtain Bi+1 through update rule (a), (b) or (c) on Bi.

Update rule (a): direct strategy

1 Obtain a descent direction ξi from the gradient and
Hessian of (9) at Bi.

2 Compute Bi+1 through the retraction of ξi at Bi.

Update rule (b): indirect strategy

1 Compute matrices Λk.
2 Obtain a descent direction ξi from the gradient and

Hessian of (25) at Bi.
3 Compute Bi+1 through the retraction of ξi at Bi.

Update rule (c): inverse indirect strategy

1 Compute matrices Λk and set A0 = In.
2 Obtain a descent direction ξi from the gradient and

Hessian of (26) at A0.
3 Compute Ai through the retraction of ξi at A0.
4 Bi+1 ← A−1

i Bi.

The most natural and intuitive way to minimize (9) is
to optimize it directly as described in update rule (a) of
algorithm 1. As illustrated in figure 3, the update of B both
depends on the divergence and on the resulting modifications
of the target diagonal matrices. Indeed, in order to optimize (9)
with Λk(B) as a function of B we need to differentiate it to
obtain the gradient and Hessian of (9). However, it can be
very complicated to differentiate some functions B 7→ Λk(B)
and, when testing different possibilities, we need to obtain the
gradients and Hessians of (9) for each case, which can be quite
annoying.

A way to overcome these limitations is to develop methods
where the matrices Λk(B) are considered fixed at each iter-
ation, i.e., though updated at each iteration, they are treated
as a constant when deriving the gradient and Hessian. When
applying this strategy on (9) directly, we fix Λk = Λk(B) and
we consider another optimization subproblem with criterion

f̂(B) =
∑
k

wkd
(
BCkB

T ,Λk
)
. (25)

This leads to update rule (b) of algorithm 1. As illustrated
in figure 3, at each iteration matrices BCkBT get closer to
Λk(B) according to the chosen divergence without taking into
account how target matrices Λk(B) are modified.

Another solution is to use the approach introduced in [14]
and adapt it for Riemannian optimization as described in
update rule (c) of algorithm 1. At each iteration, given B and

(a)

S++
nD++

n

BiCkB
T
i•

•Λk(Bi)

•
B
i+1C

kB T
i+1

•Λk(Bi+1)

(b)

S++
nD++

n

BiCkB
T
i

•
•Λk(Bi) Bi+

1
Ck
B
T
i+

1

••Λk(Bi+1)

(c)

S++
nD++

n

Ai
Λk

(B
i)
A
T
i

BiCkB
T
i

•
•Λk(Bi) Bi+

1
Ck
B
T
i+

1

••Λk(Bi+1)

•

Fig. 3: Schematic illustration of the different optimization strategies in
algorithm 1. (a) corresponds to update rule (a) where both the chosen
divergence and how the target diagonal matrices are modified are taken
into account to obtain Bi+1. (b) represents update rule (b) where Bi is
modified so that matrices BiCkB

T
i get closer to targets Λk(Bi) according

to the divergence, without taking into account the resulting changes in the
target diagonal matrices. (c) illustrates update rule (c) where we first find
Ai so that matrices AiΛk(Bi)A

T
i get closer to BiCkB

T
i and then take

Bi+1 = A−1
i Bi to get closer to targets Λk(Bi). Again, the modifications

in the target diagonal matrices are not taken into account.

targets Λk(B) we consider the optimization subproblem with
criterion

f̃(A) =
∑
k

wkd
(
BCkB

T , AΛkA
T
)
. (26)

Starting from A0 = In, we perform one step in a descent
direction of f̃ to obtain A and update B such as B ← A−1B.
Again, matrices BCkBT get closer to Λk(B) without taking
into account how target matrices are modified. The difference
is that we first move matrices Λk(B) in S++

n so that they get
closer to BCkB

T and we then inverse A to move BCkBT

closer to Λk(B) as shown in figure 3. With this procedure, op-
timizing (26) on OPn or IPn does not ensure constraints (6)
and (7). Thus, we only consider this approach on SPn here.
To use the other constraints, one can optimize (26) on Pn and
apply them on A−1B or develop other suited manifolds.

It would be desirable to prove convergence of algorithm 1,
to consider its rate, and to study if the reached solutions
are global (or only local) minimizers of the problem. These
questions are linked to the property of geodesical convexity
of the criteria in the used manifold and would require further
studies of the geodesics and of the divergences, which arer
beyond the scope of this paper. Let us mention that we
have observed numerical convergence for the criteria that
we consider in the next section. Another point related to
convergence would be a theoretical comparison of the attained
solutions. Note that the three update rules generate different
iterates and, assuming convergence, they can reach in principle
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different (local) minima. However, by looking at the gradients
of the criteria of (9) and (25) with Λk(B) defined as in (24)
(see supplementary materials), we see that a local minimum
of (9) is also a local minimum of (25). It is more complicated
to establish such a result for (26); the reader is referred to [14]
for further discussions on this subject.

B. Studied criteria

We consider here different divergences (possibly squared
distances) to obtain AJD criteria. For each divergence we give
its definition, explain its interest, define its closest diagonal
matrix and finally give the different optimization strategies
of algorithm 1 that we can consider. For better readibility,
Euclidean gradients and Hessians of considered criteria are
given in supplementary materials.

1) Frobenius distance: This distance is defined as

δ2
F(M,Λ) = ‖M − Λ‖2F . (27)

This is the distance on S++
n equipped with the Euclidean

metric. As explained in section I, it yields the most studied
AJD criterion. It arises from the practical reasoning that
one wishes to minimize the off-diagonal elements of the
matrices to diagonalize. The closest diagonal matrix to M
according to this distance is Λ = ddiag(M). With this
distance, we can consider all three strategies of algorithm 1.
To use update rule (a), one needs to consider the criterion
corresponding to (9), which is denoted fF and defined for
Λk(B) = ddiag(BCkB

T ). For update rule (b), the criterion
corresponding to (25) is denoted f̂F. Finally, the criterion
corresponding to (26) is denoted f̃F and allows to use update
rule (c). Note that it corresponds to the method proposed
in [14].

2) Kullback-Leibler divergence: The Kullback-Leibler di-
vergence between two Gaussian distributions with covariance
P and S is defined as

dKL(P, S) = tr(PS−1 − In)− log det(PS−1). (28)

The interest of this divergence arises from the statistical infor-
mation it gives and its link with the likelihood and the mutual
information [10]. As this divergence is not symmetric with
respect to its arguments, it gives birth to different diagonality
measures to be used in (9).

The first one, referred as the left Kullback-Leibler measure,
is dlKL(M,Λ) = dKL(M,Λ). The closest diagonal matrix to
M according to this measure is, again, Λ = ddiag(M) [8].
Choosing Λk(B) = ddiag(BCkB

T ) yields the historical log
likelihood criterion given in (4) and denoted flKL. Due to
the properties of the determinant, it only makes sense to use
update rule (a) with this measure. Indeed, if we fix Λk(B) the
gradient and Hessian of the resulting criteria will no longer
depend on the data but only on the variable B or A.

The right Kullback-Leibler measure is drKL(M,Λ) =
dKL(Λ,M). The closest diagonal matrix to M for drKL is
Λ = ddiag(M−1)−1 [8]. Again, the only suited update rule
for this measure is (a) and we consider frKL corresponding
to (9) and defined for Λk(B) = ddiag((BCkB

T )−1)−1.

It is also possible to consider a symmetrized version of the
Kullback-Leibler divergence, simply defined as

dsKL(M,Λ) =
1

2
(dlKL(M,Λ) + drKL(M,Λ)). (29)

In this case, the closest diagonal matrix to M is Λ =
ddiag(M)1/2 ddiag(M−1)−1/2 [8]. Since the terms involving
the determinant vanish, we can use all three update rules of
algorithm 1 in this case. The criterion corresponding to (9) is
denoted fsKL and defined for

Λk(B) = ddiag(BCkB
T )

1/2 ddiag((BCkB
T )−1)

−1/2.

The criteria corresponding to (25) and (26) are denoted f̂sKL
and f̃sKL respectively.

3) Log-det α-divergence: This divergence [29] is defined
as

dαLD(M,Λ) =
4

1− α2
log

det( 1−α
2 M + 1+α

2 Λ)

det(M)
1−α
2 det(Λ)

1+α
2

, (30)

for α ∈] − 1, 1[. It was recently used in [8] for AJD. The
interesting properties of this divergence is that we have a
continuum in α and when α → −1 and α → 1, it coincides
with the right and left Kullback-Leibler measures presented
previously. Furthermore, α=0 yields the Bhattacharyya dis-
tance [29], also named S-divergence [30]. This distance is
of particular importance since it is closely related to the
natural Riemannian distance on S++

n while being numerically
cheaper [30]. As shown in [8], the closest diagonal matrix to
M according to this measure is the unique Λ solution to

ddiag

((
1− α

2
M +

1 + α

2
Λ

)−1
)

= Λ−1. (31)

A method to solve this equation can be found in supplementary
materials. Since this equation is difficult to differentiate, we do
not consider the direct optimization strategy of update rule (a)
with targets Λk(B) defined as in (31). However, we can use
the schemes of update rules (b) and (c) with criteria f̂αLD and
f̃αLD corresponding to (25) and (26) respectively.

4) Natural Riemannian distance: As shown in [27], the
natural Riemannian distance on S++

n is

δ2
R(M,Λ) =

∥∥∥log(Λ
−1/2MΛ

−1/2)
∥∥∥2

F
. (32)

This distance has been obtained both from a pure differential
geometric point of view [27], [28], [36], where it corresponds
to the length of the geodesic (shortest path between two points)
and from an information geometric point of view, assuming
the multivariate Normal distribution of the data and adopting
the Fisher information metric [37], [38], dating back to the
seminal works of Rao [39] and Amari [40]. This Riemannian
distance therefore has a major interest when dealing with SPD
matrices. As shown in [8], the closest matrix to M is the
unique Λ solution to

ddiag(log(M−1Λ)) = 0. (33)

A method to solve this equation can be found in supplementary
materials. It is cumbersome to consider the direct optimization
strategy (update rule (a)) with Λk(B) defined as in (33).
Therefore, we only consider update rules (b) and (c) with
criteria f̂R and f̃R corresponding to (25) and (26), respectively.
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5) Log-Euclidean distance: This distance [31], [36] is

δ2
LE(M,Λ) = ‖log(M)− log(Λ)‖2F . (34)

If M and Λ commute, the log-Euclidean distance is equivalent
to the Riemannian distance. It can be seen as a linearization
of the natural Riemannian distance around the identity matrix.
Indeed, it corresponds to the Frobenius distance of the projec-
tions of M and Λ on the tangent space at the identity matrix.
Since this tangent space is a linearization of the manifold of
SPD matrices around the identity, its natural distance is the
Frobenius one. The closest diagonal matrix to M is Λ =
exp(ddiag(log(M))). It yields the criterion fLE corresponding
to (9) defined for Λk(B) = exp(ddiag(log(BCkB

T ))). In-
terestingly, fLE can also be obtained by projecting the matrix
BCkB

T onto the tangent space of In (equivalent to projecting
Ck on the tangent space of (BTB)−1) and then using the
Frobenius distance. We can use the three update rules of
algorithm 1 with this distance. The criteria corresponding
to (25) and (26) are denoted f̂LE and f̃LE, respectively.

6) Wasserstein distance: This distance is given by

δ2
W(M,Λ) = tr

(
1

2
(M + Λ)− (Λ

1/2MΛ
1/2)

1/2

)
. (35)

This distance has the major advantage of being defined when
matrices M and Λ are positive semidefinite. It plays an
important role for optimal transport [41]–[43] and has found
interest in the study of covariance matrices [44], [45] and
spectral analysis of time series [46]. This distance yields
a Riemannian geometry on S++

n , which is fully described
in [32]. The closest diagonal matrix to M is Λ solution to

ddiag((Λ
1/2MΛ

1/2)
1/2) = Λ. (36)

The proof of this result along with a method to find Λ are
in supplementary materials. Again, we only consider update
rules (b) and (c) and criteria corresponding to (25) and (26)
are denoted f̂W and f̃W.

C. AJD properties

By studying the AJD problem, we can infer several desirable
properties for the AJD criteria. In this paper, we are interested
in four of them, which have been noticed in [7]–[9]. The first
property of interest arises from the fact that B and ΣB are
equivalent solutions for any non singular diagonal matrix Σ
as explained in section I. Therefore, it is desirable that the
criterion f takes the same values at B and ΣB, i.e., that it
satisfies the following

Property 1. The criterion f is said to be invariant by diagonal
scaling if, for B in GLn and any non singular diagonal matrix
Σ, we have

f(B) = f(ΣB). (37)

Assuming that Λk(ΣB) = ΣΛk(B)Σ, criteria with form (9)
possess this property if the divergence satisfies

d(ΣMΣ,ΛΣ2) = d(M,Λ), (38)

for M in S++
n , Λ in D++

n and a non singular diagonal matrix
Σ.

The three other properties concern the effects of some
transformations of the matrices Ck to diagonalize. In the
following, we denote an AJD criterion of the set {Ck} by
f{Ck} and the corresponding target diagonal matrices are
written ΛCk(B) when it is needed. A diagonality measure of
a matrix Ck should not depend on its scalingy [9], let us thus
consider the following

Property 2. The criterion f is said to be invariant by rescaling
of the input matrices Ck if, given B in GLn and any strictly
positive scalars ak, we have

f{akCk}(B) = f{Ck}(B). (39)

Assuming that ΛakCk(B) = akΛCk(B), (9) possesses this
property if we have

d(aM, aΛ) = d(M,Λ), (40)

for M in S++
n , Λ in D++

n and a in R+
∗ . Thus, a criterion

satisfying property 1 also satisfies property 2. As shown in [11]
for the Frobenius distance, criteria without this property might
induce the need of an ad-hoc normalization of the matrices Ck
in practical BSS applications.

For the third property, observe that if B is the joint
diagonalizer of the set {Ck}, then the joint diagonalizer of the
set {C−1

k } should be B−T , up to permutation and diagonal
scaling ambiguities [9]. Therefore, we consider the following

Property 3. The criterion f is said to be invariant by inversion
of the input matrices {Ck} if, for all B in GLn, we have

f{Ck}(B) = f{C−1
k }

(B−T ). (41)

For (9) to satisfy this property, we need to have

d(M−1,Λ−1) = d(M,Λ), (42)

and ΛCk(B) = ΛC−1
k

(B−T )−1. (43)

Note that if a divergence satisfies (42) then the corresponding
closest diagonal matrix resulting from (24) satisfies (43).

Finally, the last property is obtained by noticing that if B
is the joint diagonalizer of the set {WCkW

T } for W in GLn,
then the joint diagonalizer of the set {Ck} should be BW , up
to permutation and diagonal scaling ambiguities [9], i.e.,

Property 4. The criterion f is said to be invariant by
congruence of the input matrices {Ck} if, given W and B
in GLn, we have

f{WCkWT }(B) = f{Ck}(BW ). (44)

Assuming that ΛWCkWT (B) = ΛCk(BW ), this property is
always true for criteria with form (9).

The following table indicates which of the properties the
criteria of section III-B satisfy.

F lKL rKL sKL αLD R LE W
α 6= 0 α = 0

prop. 1 X X X X X X
prop. 2 X X X X X X X
prop. 3 X X X X
prop. 4 X X X X X X X X X

We see that only the symmetric Kullback-Leibler measure, the
log-det α-divergence for α = 0 and the natural Riemannian
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distance satisfy all properties. Thus, we hold here that these
three criteria are to be preferred, at least from a theoretical
point of view. This is in contrast with all previous AJD liter-
ature, which has considered only the Frobenius distance, the
left Kullback-Leibler measure and the log-det α-divergence,
the latter without considering the appropriate target diagonal
matrices.

IV. NUMERICAL EXPERIMENTS

In this section, we study the performance of AJD methods
on simulated covariance matrices (SPD) first and then on
pseudo-real data where real EEG is mixed with a synthetic
source signal. Our goal is to compare our Riemannian al-
gorithms with classical ones and to compare the constraints,
optimization strategies and cost functions.

AJD methods are obtained by optimizing the criteria of
section III-B with the strategies of section III-A. Optimization
is performed within the Riemannian framework of section II
for constraints (5), (6) and (7). We use a hybrid method that
consists in using a Riemannian conjugate gradient (RCG) algo-
rithm first and then a Riemannian trust region (RTR) method
initialized with the output of the RCG. We refer the reader
to [24] for details on those algorithms. For methods where Λk
are fixed, we choose the closest diagonal matrices to BCkBT

according to the distance or divergence the cost function
corresponds to. When we do not have explicit solutions for
those closest diagonal matrices we compute them by solving a
minimum distance optimization problem by the same above-
described algorithm combining conjugate gradient and trust
region (see supplementary materials).

We denote our algorithms as follows: we first indicate
the divergence it corresponds to, then the manifold used for
optimization and finally whether we use update rule (a), (b)
or (c) with letters a, b or c, respectively. For example, the
algorithm resulting from the Frobenius distance δF on the
special polar manifold SPn with update rule (a) is denoted
F-SP-a. For the log-det α-divergence, we consider values
α ∈ {−0.5, 0, 0.5}. When needed, we indicate the value of
α with a subscript, e.g. αLD0.

The stopping criterion for the iterate Bi is defined as
‖Bi−1B

−1
i −In‖2F/n. Its tolerance is set to εRCG = 10−5 for RCG

and εRTR = 10−6 for RTR. The optimization is performed with
the manopt toolbox [47] in Matlab. We compare our algorithms
with previously published NOJoB [34], uwedge [14] and
jadiag [6], which correspond to F-IP-a, F-SP-c and lKL-SP-a
respectively. Here, we compare the performance of the algo-
rithms in term of accuracy and not in term of computing time.
In fact, the computing times of the Riemannian algorithms are
larger than the ones of classical algorithms, which is partly
explained by the fact that we use a generic toolbox [47].

To analyze the results, we perform one-way repeated mea-
sures ANOVA (analysis of variance) to test the null hypothesis
that the mean performance of the methods within a given
comparison block is equivalent. If the ANOVA is significant,
which means that at least one of the means is statistically
dominant, we perform all pairwise post-hoc comparisons of
the mean performance for all methods within the blocks using

a repeated measure t-test. In order to account for the number
of statistical tests performed we apply a Bonferroni correction:
for the ANOVAs, the type one error rate was set to 5.10−4,
which approximately corresponds to 0.05 divided by the total
number of ANOVAs performed, while the threshold for the
post-hoc comparisons was set to 3.10−5, which corresponds
to 5.10−4 divided by the maximum number of pairwise
comparisons within each block.

A. Simulated covariance matrices

We simulate sets of K real valued n× n SPD matrices Ck
according to model [48]

Ck = AΛkA
T +

1

σ
Ek∆kE

T
k + βIn, (45)

where matrices A and Ek are random matrices with i.i.d.
elements drawn from the standard normal distribution. We
further ensure that the condition number with respect to
inversion of A is below 20. Free parameter σ and β = 10−3

define the expected signal to noise ratio and uncorrelated noise,
respectively. Diagonal matrices Λk and ∆k hold signal and
noise source energies and have i.i.d. elements with the pth el-
ement drawn from a chi-squared distribution with expectation
n/p1.5. Here, we perform the AJD with unit weights wk for all
matrices, we do a pre-whitening of the matrices Ck with the
inverse square root of their arithmetic mean and we initialize
all the algorithms with the identity matrix.

To estimate the performances of the algorithms, we measure
the accuracy by means of the Moreau-Amari index [49]

IM-A(M) =
1

2n(n− 1)

n∑
p=1

∑n
q=1 |Mpq|

max
1≤q≤n

|Mpq|
− 1



+
1

2n(n− 1)

n∑
p=1


n∑
q=1
|Mqp|

max
1≤q≤n

|Mqp|
− 1

 , (46)

where M = BA, with B the estimated joint diagonalizer and
A the true mixing matrix of the signal part in (45). Thus, IM-A
is a measure in [0, 1] with zero indicating a perfect recovering
of signal sources.

1) Riemannian optimization: We first check that Rieman-
nian optimization is appropriate for AJD by comparing the
performance of the classical algorithms NOJoB, uwedge and
jadiag with the corresponding Riemannian versions F-IP-a, F-
SP-c and lKL-SP-a. The median of the performance obtained
for these methods are plotted in figure 4 for n = 32. The
ANOVAs indicate that no difference in the performance of
Riemannian and classical algorithms is significant. The same
result is obtained with n = 8 (data not shown). We conclude
that Riemannian optimization is a viable solution to treat the
AJD problem.

2) Constraints and AJD optimization algorithms: We then
study the influence of the constraints and optimization strate-
gies corresponding to update rules (a), (b) and (c) in al-
gorithm 1. We obtain significant differences in the perfor-
mance only for the Frobenius distance (figure 5), the log-
det α-divergence (figure 6), the Riemannian distance (not
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Fig. 4: Median of the performance of the classical algorithms and their
corresponding Riemannian versions on simulated data with respect to the
noise parameter σ over 100 trials for n = 32 and K = {10, 50}.

represented since very similar to the log-det α-divergence
for α = 0) and the Wasserstein distance (figure 7). For
the other divergences, no significant result was found, thus
we do not show them here. Note that the optimization on
SPn is not always appropriate when associated with update
rule (a) because it often yields degenerate solutions (bad
scaling) for the symmetric Kullback-Leibler measure and the
log-Euclidean distance (data not shown).

In figure 5, the ANOVAs reveal that the differences between
algorithms based on the Frobenius distance are significant
for n = 32. Post-hoc comparisons reveal that F-SP-a and
F-SP-b perform poorly as compared to the others for σ =
{100, 500, 1000}. They further show that F-OP-a and F-OP-
b exhibit significantly lower performance (higher Moreau-
Amari index) as compared to F-IP-a, F-IP-b and F-SP-c for
σ = {50, 100}.

In figure 6, the ANOVAs show that there are significant dif-
ferences between methods based on the log-det α-divergence
with α = {0,−0.5} for n = 32, K = 50 and σ = {50, 100}.
There are also significant differences for n = 32, K = 10 and
σ = 50 (data not shown). The post-hoc comparisons show
that the performance of αLD-IP-b is higher as compared to
the other algorithms for K = 50 and σ = {50, 100}.

In figure 7, the ANOVAs reveal significant differences for
the methods based on the Wasserstein distance for n = 32 and
all values of K and σ. Post-hoc comparisons show that W-SP-
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Fig. 5: Median of the performance of algorithms based on the Frobenius
distance on simulated data with respect to the noise parameter σ over 100 trials
for n = 32 and K = {10, 50}. ∗: significative differences when performing
a one-way anova (p < 5.10−4) on the performance of all algorithms.
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Fig. 6: Median of the performance of algorithms based on the log-det α-
divergence for α = {0,−0.5} on simulated data with respect to the noise
parameter σ over 100 trials for n = 32 and K = 50. For α = 0.5, the results
of all algortihms are similar. ∗: significative differences when performing a
one-way anova (p < 5.10−4) on the performance of all algorithms.

b features lower performance for n = 32 and all values of K
and σ as compared to all other algorithms. Furthermore, the
performance of W-OP-b is significantly worse as compared to
W-IP-b and W-SP-c for all values of K and σ = {50, 100}.
Finally, W-SP-c yields significantly better results for K = 50
and σ = {50, 100}. Thus, W-SP-c appears to be the most
appropriate alogrithm with our simulated data.

3) Criteria: Finally, we look at the influence of the choice
of the divergence and target matrices. In figure 8, the per-
formance of algorithms associated with the three Kullback-
Leibler measures (left, right, symmetric) and with the log-det
α-divergence for α = {−0.5, 0, 0.5} are plotted. The ANOVAs
show significant differences for n = 32 and all values of
K and σ. Except for αLD-0.5-IP-b, a linear trend is clearly
visible with the performance increasing in the order of the
methods as displayed in figure 8. Post-hoc comparisons reveal
that this trend is exacerbated as K increases and σ decreases.
They also show that the only significant differences in the
performance of αLD-0.5-IP-b and rKL-IP-a are for K = 50 and
σ = {50, 100}. Note that these differences are not observed
with the other algorithms based on the log-det α-divergence
for α = −0.5. Therefore, αLD-0.5-IP-b appears to be the most
accurate as compared to the algorithms based on the three
Kullback-Leibler measures and the log-det α-divergence for
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Fig. 7: Median of the performance of algorithms based on the Wasserstein
distance on simulated data with respect to the noise parameter σ over 100 trials
for n = 32 and K = {10, 50}. ∗: significative differences when performing
a one-way anova (p < 5.10−4) on the performance of all algorithms.
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Fig. 8: Median of the performance of algorithms based on the Kullback-
Leibler and log-det α divergences on simulated data with respect to the noise
parameter σ over 100 trials for n = 32 and K = {10, 50}. For criteria
based on the log-det α-divergence (α = 0 and −0.5), algorithms with the
best performance are plotted (see figure 6). For the other criteria, all algorithms
give similar performance. ∗: significative differences when performing a one-
way anova (p < 5.10−4) on the performance of all algorithms.

α = {0, 0.5}.
In figure 9, we give the performance of algorithms corre-

sponding to the Frobenius distance, the left and right Kullback-
Leibler measures, the log-det α-divergence for α = 0, and
the natural Riemannian and Wasserstein distances. The log-
Euclidean distance is not represented since it yields results
very close to those of the natural Riemannian distance. Con-
cerning the significance, we observe the same trend as in
figure 8. When there are significant differences, the Frobenius
distance always gives the worst results and the log-det α-
divergence with α = −0.5 always gives the best ones.

In summary, on data simulated according to model (45),
the general Riemannian optimization framework we propose
here gives results that are equivalent to those obtained by
highly specific algorithms. Optimization on SPn appears
advantageous only when associated with update rule (c), while
with other update rules, IPn seems more robust. Finally,
the performance of the different divergences is ordered, and
it appears that it is more appropriate to use the log-det α-
divergence with α = −0.5. Note that these results are specific
to model (45) and we cannot expect them to be transposable
in general. However, the differences in the performance show
that all methods are not equivalent and that one of them might
be more appropriate depending on the data at hand.

B. Pseudo-real EEG data

Next, we study the performance of the AJD methods when
performing the BSS of pseudo-real EEG data. These data
are obtained by adding one mixed realistic simulated source
signal to real EEG recordings. The major interest of using
such data is that it allows to define objective and quantitative
performance criteria for the recovery while remaining in a
realistic framework. Indeed, one can measure how well the
added synthetic source signal is separated from the real EEG
by comparing the waveforms and the spatial mixing vectors
of the estimated and true simulated source signals.

Concerning the real data, we use the continuously recording
eyes-closed resting state EEG database from the Nova Tech
EEG (NTE) database (see Chapter VII in [50] for a full
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Fig. 9: Median of the performance of selected algorithms for most criteria
on simulated data with respect to the noise parameter σ over 100 trials for
n = {8, 32} and K = {10, 50}. For the Kullback-Leibler and log-det α-
divergences, we only plotted the left Kullback-Leibler and the log-det α-
divergence for α = {0,−0.5} (see figure 8 for the others). The log-Euclidean
distance is not represented here since its performance are close to those of the
Riemannian distance. ∗: significative differences when performing a one-way
anova (p < 5.10−4) on the performance of all algorithms.

description of these data). This database is composed of 84
subjects recorded with n = 19 electrodes (10-20 international
system) at a sample rate of fs = 128Hz. The signals are
filtered between 2−32Hz and 16 seconds (T = 2048 samples)
of each recording are used here. The real data are denoted Xreal
(in Rn×T ).

To build the synthetic database, we simulate signals using
autoregressive model

s(t) = 2r cos

(
2πf

fs

)
s(t− 1)− r2s(t− 2) +m(t), (47)

where f is the frequency, r = 0.95 defines the bandwidth and
m is a gaussian noise with zero mean and standard deviation
of 0.3. The synthetic source is defined as s = s̃+ ŝ in R1×T ,
where s̃ and ŝ are simulated using (47) with f = 13Hz
and f = 21Hz respectively. This source is projected on the
eletrodes with a random mixing vector a in Rn×1 to create
the synthetic EEG Xsim = as.

The BSS is performed on

X = σ
Xsim

‖Xsim‖F
+

Xreal

‖Xreal‖F
, (48)

where σ defines the signal to noise ratio. The analysis is
achieved by the AJD of Fourier cospectra estimated by 75%
overlapping sliding windows of 1 second (Welch method)
for frequencies 2-24Hz with 1Hz resolution. As explained in
supplementary materials, an ad-hoc normalization of the input
matrices is needed for methods based on criteria that are not
invariant with respect to their rescaling. Here, we choose to
normalize the trace of each cospectrum [11]. The weights wk
are defined by the non-diagonality measure of the matrices
Ck proposed in [11]. As for the simulated data, we do a pre-
whitening of the matrices Ck with the inverse square root of
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Fig. 10: Example of the BSS on subject 11 with σ = 0.05, for which the recovery of the synthetic source is particularly good, despite the low signal to noise
ratio. Left: 2.5 seconds of the real EEG recording (top, data of only 5 of the 19 available electrodes are shown) and the synthetic source signal (bottom).
Middle: 2.5 seconds of the mixing process of the real EEG recording and the synthetic source signal. Right: 2.5 seconds of the estimated source signal for
different criteria.

their arithmatic mean and we initialize all the algorithms with
the identity matrix. See figure 10 for an example of the BSS
pipeline.

To estimate the performance of the algorithms, we use
an index closely related to the Pearson correlation, which
measures the linear dependance between two vectors. It is
defined as

IP(u,v) = 1− | cov(u,v)|
σuσv

, (49)

where | · | denotes the absolute value, cov(·) returns the
covariance of its arguments, σu and σv are the standard
deviations of vectors u and v. IP gives a value in [0, 1]
with zero indicating perfect collinearity of the arguments. To
determine the performance of the spatial recovery, we use the
index IP(a,aest), where aest is the componnent of Aest = B−1

best matching a. We also measure the quality of the recovered
waveform sest in Sest = BX with the index IP(s, sest), where
sest is the source process best matching s.

1) Riemannian optimization: Again, we start by check-
ing that Riemannian optimization is appropriate for AJD
by comparing the performance of the classical algorithms
NOJoB, uwedge and jadiag with the ones of the correspond-
ing Riemannian versions F-IP-a, F-SP-c and lKL-SP-a. The
ANOVAs show that the differences in the performance of
Riemannian and classical algorithms are not significant (data
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Fig. 11: Median of the spatial mixing (left) and waveform (right) recovery
performance of algorithms based on the Wasserstein distance over 84 pseudo-
real EEG datasets with respect to the noise parameter σ. ∗: significative
differences when performing a one-way anova (p < 5.10−4) on the
performance of all algorithms.

not shown). This confirms that Riemannian optimization is a
viable solution for AJD and BSS.

2) Constraints and AJD optimization algorithms: Then,
we study the influence of the constraints and optimization
strategies. On these pseudo-real data, we only observe sig-
nificant differences for the Wasserstein distance (figure 11).
The ANOVAs show that significant differences are found
between algorithms based on the Wasserstein distance only
for the waveform recovery index and σ = {0.1, 0.2}. Post-hoc
comparisons reveal that W-SP-a displays better performance
as compared to the other algorithms.

3) Criteria: Finally, we look at the influence of the choice
of the divergence and target matrices. The ANOVAs reveal no
significant differences and a high variability in the results is
observed (data not shown). Depending on the data, it is not
always the same criterion that performs the best. This is likely
due to high inter-variability of the individual background EEG.

In summary, the differences observed on the pseudo-real
data do not match those we havve found on the simulated data.
However, we still have that all approaches are not equivalent
when looking at subjects separately. Thus, practionners should
try different possibilities in order to determine what criterion
is more appropriate for their data. The Riemannian framework
we propose in this paper can be convenient for this testing.

V. CONCLUSIONS AND PERSPECTIVES

In this article, we developed the first complete Riemannian
optimization framework suited for BSS and AJD handling
three classically used constraints. It can be used providing only
the Euclidean gradient and possibly Hessian of the objective
function of interest. Furthermore, Riemannian optimization
offers a large panel of general optimization algorithms [24]
and research on this topic is very active, see e.g. [51], [52].
Besides, we also provide a thorough study of the AJD problem
of SPD matrices from an information geometry point of view
subsuming previous research on this topic, and bringing new
insights and original methods based on criteria that have not
been considered before. Finally, our numerical experiments
show that Riemannian optimization yields equivalent results
as compared to classical AJD algorithms. The interest of
Riemannian optimization resides in the modularity and flex-
ibility it offers: we proposed a unified framework allowing
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to design new BSS methods and to compare with others, in a
simple manner by just specifying the criteria and constraints in
problem (8). The experiments suggest that there is not a best
AJD criterion in general and that the different AJD criteria
are not always equivalent. In this sense, our analysis brings
new information, while further specific studies are needed to
understand what AJD criterion should be prefered depending
on the data at hand.

This work opens new perspectives on the different topics
we have investigated. Concerning the Riemannian optimiza-
tion framework, we first notice that the generalization to
complex or rectangular matrices is straightforward. Moreover,
we have used the polar decomposition, however other matrix
factorizations may be investigated since they possess different
properties as shown in [53]. We also believe that the choice of
metric (11) is crucial and that different possibilities must be
considered. Indeed, the natural gradient approach [7], [17],
[18], [22] is based on endowing GLn with a Riemannian
metric adapted to BSS and information theory [17]. A well
chosen metric can also allow to embed the non-holonomic
constraint [7], [15], [21], [22] in a Riemannian quotient
manifold [24], which has never been done properly as far as
we know.

AJD criteria are characterized by the choice of a divergence
and target diagonal matrices. It remains to better understand
the respective influence of these two constituents and other
associations besides those we have considered here may yield
useful results. This might help explaining the differences
between the criteria observed in the results and finding a
way to combine the different criteria in order to increase
the robustness and accuracy of the results. Another direction
for further investigation concerns the porperties of the AJD
criteria. Further research is needed to analyze all desirable
properties and their importance for AJD. As pointed out in [9],
there are links between AJD and centers of mass of SPD
matrices. This latter topic is a well studied field [27]–[32]
and studying these links can lead to a better understanding
of the AJD problem. Furthermore, developing methods that
simulataneously solve the AJD problem and find a center of
mass of a set of SPD matrices might yield more robust and
accurate results for both problems.

Finally, this work can be generalized to handle models
beyond linear BSS. Indeed, both the Riemannian optimization
framework and the information geometry approach can be
adapted to independent vector analysis [54], joint BSS [34],
joint independent subspace analysis [55] or bilinear BSS [56].
We will investigate the perspectives above and these general-
izations in future research.
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