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Abstract

The aim of this work is to study the controllability of the bilinear Schrödinger equation on compact
graphs. In particular, we consider the equation (BSE) i∂tψ = −∆ψ + u(t)Bψ in the Hilbert space
L2(G ,C), with G being a compact graph. The Laplacian −∆ is equipped with self-adjoint boundary
conditions, B is a bounded symmetric operator and u ∈ L2((0, T ),R) with T > 0. We provide a
new technique leading to the global exact controllability of the (BSE) in D(|∆|s/2) with s ≥ 3.
Afterwards, we introduce the “energetic controllability”, a weaker notion of controllability useful
when the global exact controllability fails. In conclusion, we develop applications of the main results
involving for instance star graphs.

1 Introduction

In quantum mechanics, any state of a closed system is mathematically represented by a wave function ψ
in the unit sphere of a Hilbert space H . We consider the evolution of a particle confined in a network
shaped as compact graph G and subjected to a controlling external field.

Figure 1: A compact graph is a one-dimensional domain composed by finite vertices (points) connected
by edges (segments) of finite lengths.

A standard choice for such setting is to represent the action of the field by an operator B and its
intensity by a real function u; we also impose H := L2(G ,C). The evolution of ψ is modeled by the
bilinear Schrödinger equation in H{

i∂tψ(t) = Aψ(t) + u(t)Bψ(t), t ∈ (0, T ),

ψ(0) = ψ0, T > 0.
(BSE)

The Laplacian A = −∆ is equipped with self-adjoint boundary conditions, B is a bounded symmetric
operator and u ∈ L2((0, T ),R). When the (BSE) is well-posed, we call Γut the unitary propagator
generated by A+ u(t)B.

The aim of this work is to study the controllability of the bilinear Schrödinger equation (BSE)
according to the structure of the graph G , the definition of the domain of A and the choice of B.

The controllability of finite-dimensional quantum systems modeled by the (BSE), when A and B
are N ×N Hermitian matrices, is well-known for being linked to the rank of the Lie algebra spanned by
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A and B (see [Alt02, Cor07]); nevertheless the Lie algebra rank condition can not be used for infinite-
dimensional quantum systems (see [Cor07]).

The global approximate controllability of the (BSE) has been proved with different techniques in
literature. We refer to [Mir09, Ner10] for Lyapunov techniques, while we cite [BCMS12, BGRS15] for
adiabatic arguments and [BdCC13, BCS14] for Lie-Galerking methods.

The exact controllability of infinite-dimensional quantum systems is in general a more delicate mat-
ter. When we consider the linear Schrödinger equation, the controllability and observability prop-
erties are reciprocally dual. Different results were developed by addressing directly or by duality
the control problem with different techniques: multiplier methods [Lio83, Mac94], microlocal analy-
sis [BLR92, Bur91, Leb92] and Carleman estimates [BM08, LT92, MOR08]. In any case, when one
considers graph type domains, a complete theory is far from being formulated. Indeed, the interaction
between the different components of a graph may generate unexpected phenomena (see [DZ06]).

The bilinear Schrödinger equation is well-know for not being exactly controllable in the Hilbert space
where it is defined when B is a bounded operator and u ∈ L2((0, T ),R) with T > 0 (even though it
is well-posed in such space). We refer to the work [BMS82] by Ball, Mardsen and Slemrod where the
well-posedness and the non-controllability of the equation are proved (see also [Tur00]).
As a consequence, the exact controllability of bilinear quantum systems can not proved with the classical
techniques valid for the linear Schrödinger equation and weaker notions of controllability are necessary.

The turning point for this kind of studies was the idea of controlling the equation in subspaces of
D(A) introduced by Beauchard in [Bea05]. Following this approach, different works were developed for
the (BSE) in G = (0, 1) by considering A = −∆D the Dirichlet Laplacian such that

D(−∆D) = H2((0, 1),C) ∩H1
0 ((0, 1),C)), −∆Dψ := −∆ψ, ∀ψ ∈ D(−∆D).

For instance, in [BL10], Beauchard and Laurent prove the well-posedness and the local exact control-
lability of the bilinear Schrödinger equation in Hs

(0) := D(| − ∆D|s/2) for s = 3. For the global exact

controllability in H3
(0), we refer to [Duc18b], while we mention [Duc18c, Mor14, MN15] for simultaneous

exact controllability results in H3
(0) and H4

(0).
Studying the controllability of the bilinear Schrödinger equation on compact graphs presents an

additional problem, which can be understood by considering (λk)k∈N∗ the ordered sequence of eigenvalues
of A. Nevertheless there exists M∈ N∗ such that

inf
k∈N∗

|λk+M − λk| > 0(1)

(as showed in [Duc18a, relation (2)]), the spectral gap infk∈N∗ |λk+1 − λk| > 0 is only valid when G =
(0, 1). This hypothesis is crucial for the techniques developed in [BL10, Duc18c, Duc18b, Mor14], which
can not be directly applied without imposing further assumptions.

As far as we know, the bilinear Schrödinger equation on compact graphs has only been studied in
the seminal work [Duc18a]. There, the author ensures that, if there exist C > 0 and d̃ ≥ 0 such that

|λk+1 − λk| ≥
C

kd̃
, ∀k ∈ N∗,

then the well-posedness and the global exact controllability of the (BSE) can be guaranteed in some
spaces D(|A|s/2) with s ≥ 3 depending on d̃.

1.1 Main results

In the current manuscript, we introduce an alternative set of assumptions to the one adopted in [Duc18a].
In particular, we hypothesize the existence of an entire function G such that G ∈ L∞(R,R) and so that
there exist J, I > 0 such that

|G(z)| ≤ JeI|z|, ∀z ∈ C.

We also assume that (λk)k∈N∗ are pairwise distinct numbers, {±
√
λk}k∈N∗ are simple zeros of G and

there exist d̃ ≥ 0 and C > 0 such that

|G′(±
√
λk)| ≥ C

k1+d̃
, ∀k ∈ N∗.
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When these assumptions are verified for suitable d̃ ≥ 0, we prove that the global exact controllability of
the (BSE) can be guaranteed in Hs

G := D(|A|s/2) with s ≥ 3 depending on d̃ (see Theorem 3.1). Before
providing an application of the result, we formally define the global exact controllability in such spaces.

Definition 1.1. The (BSE) is said to be globally exactly controllable in Hs
G with s ≥ 3 when, for every

ψ1, ψ2 ∈ Hs
G such that ‖ψ1‖L2(G ,C) = ‖ψ2‖L2(G ,C), there exist T > 0 and u ∈ L2((0, T ),R) such that

ΓuTψ
1 = ψ2.

We consider a star graph G composed by N ∈ N∗ edges {ej}j≤N . Each edge ej is parametrized with
a coordinate going from 0 to the length of the edge Lj . We set the coordinate 0 in the external vertex
belonging to ej . We denote Ve the set of the external vertices of the graph G and v its internal vertex
(we refer to the identities (2) for the formal definitions of external and internal vertices).

e3

0L30 L2

0

L1

e2

e1

v

Figure 2: Parametrization of a star graph with N = 3 edges.

Definition 1.2. For every N ∈ N∗, we define AL(N) such as the set of elements {Lj}j≤N ∈ (R+)N so
that: the numbers

{
1, {Lj}j≤N

}
are linearly independent over Q and all the ratios Lk/Lj are algebraic

irrational numbers.

Theorem 1.3. Let G be a star graph. Let D(A) be the set of functions f ∈ H2(G ,C) such that:

� f(ṽ) = 0 for every external vertex ṽ ∈ Ve (Dirichlet boundary conditions);

� f is continuous in the vertex v and
∑
e3v

∂f
∂xe

(v) = 0 (Neumann-Kirchhoff boundary conditions).

Let the control field B be such that, for every ψ ∈H ,{
Bψ(x) = (x− L1)4ψ(x), x ∈ e1,
Bψ(x) = 0, x ∈ G \ e1.

There exists C ⊂ (R+)N countable such that, for every {Lj}j≤N ∈ AL(N) \ C, the (BSE) is globally
exactly controllable in

H4+ε
G , ∀ε ∈ (0, 1/2).

When the global exact controllability fails, in the spirit of the results provided in [BC06], we introduce
a weaker notion of controllability: the energetic controllability. Let (ϕk)k∈N∗ be an orthonormal system
of H composed by eigenfunctions of A and (µk)k∈N∗ be the relative eigenvalues.

Definition 1.4. The (BSE) is said to be energetically controllable in (µk)k∈N∗ if, for every m,n ∈ N∗,
there exist T > 0 and u ∈ L2((0, T ),R) so that

ΓuTϕm = ϕn.

The energetic controllability guarantees that the energy of the quantum system i∂tψ = Aψ in L2(G ,C)
can be controlled in specific energy levels via the external field u(t)B. An application of the abstract
result, which is stated in Theorem 4.1, is the following theorem.

Theorem 1.5. Let G be a star graph with edges of equal length L. Let D(A) be defined such as in
Theorem 1.3. Let the control field B be such that, for every ψ ∈H ,{

Bψ(x) = (x− L)2ψ(x), x ∈ e1,
Bψ(x) = 0, x ∈ G \ e1.

The (BSE) is energetically controllable in
(
k2π2

4L2

)
k∈N∗ .
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Theorem 1.5 is valid although the spectrum of A presents multiple eigenvalues and the global exact
controllability from Theorem 3.1 is not satisfied (also [Duc18a, Theorem 2.3] is not guaranteed). In
addition, the energetic controllability is ensured with respect to all the energy levels of the quantum

system i∂tψ = Aψ, since the eigenvalues of A non-repeated with their multiplicity are
(
k2π2

4L2

)
k∈N∗ .

The energetic controllability is useful when it is not possible to fully characterize the spectrum of A
because of the complexity of the graph G . By studying the structure of G , it is possible to explicit some
eigenvalues (µk)k∈N∗ and verify if the system is energetically controllable in (µk)k∈N∗ . In Section 4.1, we
discuss some examples where the result is satisfied, e.g graphs containing self-closing edges.

Figure 3: Example of compact graph containing more self-closing edges.

1.2 Scheme of the work

In Section 2, we present the main assumptions adopted in the work and the well-posedness of the (BSE)
in Hs

G with suitable s > 0 (Proposition 2.1).
In Section 3, we prove the global exact controllability of the (BSE) in such spaces. The result is ensured
for generic graphs in Theorem 3.1, while specific star graphs are considered in Theorem 3.2 and Corollary
3.4. Applications of these results are developed in Section 3.2 containing the proof of Theorem 1.3.
In Section 4, we enounce the energetic controllability of the (BSE) in Theorem 4.1. We develop different
applications of the outcome in Section 4.1 where the proof of Theorem 1.5 is also provided.
In Appendix A, we prove the global approximate controllability of the (BSE) in Hs

G with suitable s > 0.
In Appendix B, we present some spectral results adopted in the work, while we study the solvability of
the so-called moments problems in Appendix C.

2 Preliminaries

Let G be a compact graph composed by N ∈ N∗ edges {ej}j≤N of lengths {Lj}j≤N and M ∈ N∗ vertices
{vj}j≤M . We call Ve and Vi the external and the internal vertices of G , i.e.

(2) Ve :=
{
v ∈ {vj}j≤M | ∃!e ∈ {ej}j≤N : v ∈ e

}
, Vi := {vj}j≤M \ Ve.

We study graphs equipped with a metric, which parametrizes each edge ej with a coordinate going from
0 to its length Lj . A graph is compact when it is composed by a finite number of vertices and edges of
finite length. We consider functions f := (f1, ..., fN ) : G → C with domain a compact metric graph G
so that f j : ej → C for every j ≤ N . We denote

H = L2(G ,C) =
∏
j≤N

L2(ej ,C).

The Hilbert space H is equipped with the norm ‖ · ‖L2 and the scalar product

〈ψ,ϕ〉L2 :=
∑
j≤N

〈ψj , ϕj〉L2(ej ,C) =
∑
j≤N

∫
ej

ψj(x)ϕj(x)dx, ∀ψ,ϕ ∈H .

In the bilinear Schrödinger equation (BSE), we consider the Laplacian A being self-adjoint and we
denote G as quantum graph. From now on, when we introduce a quantum graph G , we implicitly define
on G a self-adjoint Laplacian A. Formally, D(A) is characterized via the following boundary conditions.

Boundary conditions. Let G be a quantum compact graph.

(NK) A vertex v ∈ Vi is equipped with Neumann-Kirchhoff boundary conditions when every f ∈ D(A)
is continuous in v and

∑
e3v

∂f
∂xe

(v) = 0 (the derivatives have ingoing directions in v).

(D) A vertex v ∈ Ve is equipped with Dirichlet boundary conditions when f(v) = 0 for every f ∈ D(A).
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(N ) A vertex v ∈ Ve is equipped with Neumann boundary conditions when ∂xf(v) = 0 for every
f ∈ D(A).

Notations. Let G be a quantum compact graph.

� The graph G is said to be equipped with (D) (or (N )) when every v ∈ Ve is equipped with (D) (or
(N )) and every v ∈ Vi with (NK).

� The graph G is said to be equipped with (D/N ) when every v ∈ Ve is equipped with (D) or (N ),
while every v ∈ Vi with (NK).

In our framework, the Laplacian A admits purely discrete spectrum (see [Kuc04, Theorem 18]). We
define (λk)k∈N∗ the ordered sequence of eigenvalues of A and a Hilbert basis of H

(3) Φ := (φk)k∈N∗

composed by corresponding eigenfunctions. From [Duc18a, RemarkA.4], there exist C1, C2 > 0 so that

(4) C1k
2 ≤ λk ≤ C2k

2, ∀k ≥ 2.

For s > 0, we define the spaces Hs = Hs(G ,C) :=
∏N
j=1H

s(ej ,C) and

hs =
{

(xj)j∈N∗ ⊂ C
∣∣ ∞∑
j=1

|jsxj |2 <∞
}

equipped with the norm
∥∥(xj)j∈N∗

∥∥
(s)

=
(∑∞

j=1 |jsxj |2
) 1

2 for every (xj)j∈N∗ ∈ hs. Let [r] be the entire

part of r ∈ R. For s > 0, we denote

Hs
NK :=

{
ψ ∈ Hs | ∂2nx ψ is continuous in v, n <

[
(s+ 1)/2

]
;∑

e∈N(v)

∂2n+1
xe ψ(v) = 0, ∀n ∈ N, n <

[
s/2
]
, ∀v ∈ Vi

}
,

Hs
G = Hs

G (G ,C) := D(As/2), ‖ · ‖(s) := ‖ · ‖HsG =
( ∑
k∈N∗

|ks〈·, φk〉L2 |2
) 1

2

.

We introduce the main assumptions adopted in the manuscript by considering (µk)k∈N∗ ⊆ (λk)k∈N∗ an
ordered sequence of some eigenvalues of A and

ϕ := (ϕk)k∈N∗ ⊆ (φk)k∈N∗

the corresponding eigenfunctions. Let η > 0, a ≥ 0, I := {(j, k) ∈ (N∗)2 : j 6= k} and

H̃ := span{ϕk | k ∈ N∗}
L2

.

Assumptions I (ϕ, η). The bounded symmetric operator B satisfies the following conditions.

1. There exists C > 0 such that

|〈ϕk, Bϕ1〉L2 | ≥ C

k2+η
, ∀k ∈ N∗.

2. For every (j, k), (l,m) ∈ I such that (j, k) 6= (l,m) and µj − µk − µl + µm = 0, it holds

〈ϕj , Bϕj〉L2 − 〈ϕk, Bϕk〉L2 − 〈ϕl, Bϕl〉L2 + 〈ϕm, Bϕm〉L2 6= 0.

Assumptions I (η). The couple (A,B) satisfies Assumptions I(Φ, η) with Φ defined in (3).
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Assumptions II (ϕ, η, a). Let Ran(B|
H2

G∩H̃
) ⊆ H2

G ∩ H̃ and one of the following points be satisfied.

1. When G is equipped with (D/N ) and a + η ∈ (0, 3/2), there exists d ∈ [max{a + η, 1}, 3/2) such
that

Ran(B|
H2+d

G ∩H̃
) ⊆ H2+d ∩H2

G ∩ H̃ .

2. When G is equipped with (N ) and a + η ∈ (0, 7/2), there exist d ∈ [max{a + η, 2}, 7/2) and
d1 ∈ (d, 7/2) such that

Ran(B|
H
d1
NK∩H̃

) ⊆ Hd1
NK ∩ H̃ , Ran(B|

H2+d
G ∩H̃

) ⊆ H2+d ∩H1+d
NK ∩H

2
G ∩ H̃ .

3. When G is equipped with (D) and a+ η ∈ (0, 5/2), there exists d ∈ [max{a+ η, 1}, 5/2) such that

Ran(B|
H2+d

G ∩H̃
) ⊆ H2+d ∩H1+d

NK ∩H
2
G ∩ H̃ .

If a+ η ≥ 2, then there exists d1 ∈ (d, 5/2) such that

Ran(B|
Hd1∩H̃

) ⊆ Hd1 ∩ H̃ .

Assumptions II (η, a). The couple (A,B) satisfies Assumptions II(Φ, η, a) with Φ defined in (3).

2.1 Well-posedness of the bilinear Schrödinger equation

Now, we cite [Duc18a, P roposition 3.1] where the well-posedness of the bilinear Schrödinger equation
(BSE) is ensured in Hs

G with suitable s ≥ 3.

Proposition 2.1. [Duc18a, P roposition 3.1] Let G be a compact quantum graph and (A,B) satisfy
Assumptions II(η, d̃) with η > 0 and d̃ ≥ 0. For any T > 0 and u ∈ L2((0, T ),R), the flow of the (BSE)
is unitary in H and, for any initial data ψ0 ∈ H2+d

G with d from Assumptions II(η, d̃), there exists a

unique mild solution of (BSE) in H2+d
G , i.e. a function ψ ∈ C0([0, T ], H2+d

G ) such that

(5) ψ(t, x) = e−iAtψ0(x)− i
∫ t

0

e−iA(t−s)u(s)Bψ(s, x)ds, ∀t ∈ [0, T ].

Remark 2.2. Let ϕ := (ϕk)k∈N∗ ⊆ (φk)k∈N∗ be an orthonormal system of H made by eigenfunctions
of A and

H̃ := span{ϕk | k ∈ N∗}
L2

.

If (A,B) satisfies Assumptions II(ϕ, η, d̃) with η > 0 and d̃ ≥ 0, then, for every ψ0 ∈ H2+d
G ∪ H̃ with d

from Assumptions II(ϕ, η, d̃) and u ∈ L2((0, T ),R), there exists a unique mild solution of (BSE) in

H2+d
G ∪ H̃ .

The statement follows equivalently to Proposition 2.1 as the propagator Γut preserves the space H2
G ∩ H̃

when B : H2
G ∩ H̃ −→ H2

G ∩ H̃ .

3 Global exact controllability

Theorem 3.1. Let G be a compact quantum graph and (λk)k∈N∗ be the ordered sequence of eigenvalues
of A. Let G ∈ L∞(R,R) be an entire function such that there exist J, I > 0 such that

|G(z)| ≤ JeI|z|, ∀ ∈ C.

The eigenvalues (λk)k∈N∗ are simple, the numbers {±
√
λk}k∈N∗ are simple zeros of G and there exist

d̃ ≥ 0 and C > 0 such that

|G′(±
√
λk)| ≥ C

k1+d̃
, ∀k ∈ N∗.

If the couple (A,B) satisfies Assumptions I(η) and Assumptions II(η, d̃) for η > 0, then the (BSE) is
globally exactly controllable in Hs

G for s = 2 + d and d from Assumptions II(η, d̃).
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Proof. 1) Local exact controllability. For ε, T > 0, let

Osε,T :=
{
ψ ∈ Hs

G

∣∣ ‖ψ‖L2 = 1, ‖ψ − φ1(T )‖(s) < ε
}
, φ1(T ) = e−iλ1Tφ1.

We prove the existence of T, ε > 0 so that, for every ψ ∈ Osε,T , there exists u ∈ L2((0, T ),R) such that
ψ = ΓuTφ1. The result corresponds to the surjectivity, for T > 0 sufficiently large, of the map

Γ
(·)
T φ1 : u ∈ L2((0, T ),R) 7−→ ψ ∈ Osε,T ⊂ Hs

G .

We decompose Γ
(·)
T φ1 =

∑
k∈N∗ φk(T )〈φk(T ),Γ

(·)
T φ1〉L2 and we consider the map α such that

α(·) =
(
〈φk(T ),Γ

(·)
T φ1〉L2

)
k∈N∗ : L2((0, T ),R) −→ Q := {x := (xk)k∈N∗ ∈ hs(C) | ‖x‖`2 = 1}.

The local exact controllability is equivalent to the local surjectivity of α. To this end, we use the
Generalized Inverse Function Theorem ([Lue69, Theorem 1; p. 240]) and we study the surjectivity of
γ(v) := (duα(0)) · v the Fréchet derivative of α. The map γ is the sequence of elements

γk(v) := −i
∫ T

0

v(τ)ei(λk−λ1)sdτ〈φk, Bφ1〉L2 , ∀k ∈ N∗

so that γ : L2((0, T ),R) −→ TδQ = {x := (xk)k∈N∗ ∈ hs(C) | ix1 ∈ R} with α(0) = δ = (δk,1)k∈N∗ . The
surjectivity of γ corresponds to the solvability of the moments problem, for (xk)k∈N∗ ∈ TδQ,

xk〈φj , Bφk〉−1L2 = −i
∫ T

0

u(τ)ei(λk−λ1)τdτ, ∀k ∈ N∗.(6)

In other words, we need to ensure that, for every (xk)k∈N ∈ {(xk)k∈N ∈ hs(C) | ix1 ∈ R} ⊂ hs, there
exists u ∈ L2((0, T ),R) with T > 0 such that the relations (6) are satisfied for every k ∈ N∗. To

this purpose, we notice that
(
xk〈φk, Bφ1〉−1L2

)
k∈N∗ ∈ hs−2−η = hd−η ⊆ hd̃ thanks to the point 1. of

Assumptions I(η). As B is symmetric, we have

〈φ1, Bφ1〉L2 ∈ R, ix1〈φ1, Bφ1〉−1L2 ∈ R.

From Proposition C.7, the solvability of (6) is guaranteed thanks to the identity (1) and since(
xk〈φk, Bφ1〉−1L2

)
k∈N∗ ∈ {(ck)k∈N∗ ∈ hd̃(C) | c1 ∈ R}.

The local exact controllability is proved and the result is also valid for the reversed dynamics (see
[Duc18c, Section 1.3]). Thus, for every ψ ∈ Osε,T , there exists u ∈ L2((0, T ),R) such that φ1 = ΓuTψ.

2) Global exact controllability. Let T, ε > 0 be so that 1) is valid. Thanks to Theorem A.2, for
any ψ1, ψ2 ∈ Hs

G such that ‖ψ1‖L2 = ‖ψ2‖L2 = p, there exist T1, T2 > 0, u1 ∈ L2((0, T1),R) and
u2 ∈ L2((0, T2),R) such that

‖Γu1

T1
p−1ψ1 − φ1‖(s) < ε, ‖Γu2

T2
p−1ψ2 − φ1‖(s) < ε, =⇒ p−1Γu1

T1
ψ1, p

−1Γu2

T2
ψ2 ∈ Osε,T .

From the point 1), there exist u3, u4 ∈ L2((0, T ),R) such that Γu3

T Γu1

T1
ψ1 = Γu4

T Γu2

T2
ψ2 = pφ1. In conclu-

sion, there exists T̃ > 0 and ũ ∈ L2((0, T̃ ),R) such that Γũ
T̃
ψ1 = ψ2.

3.1 Global exact controllability of bilinear quantum systems on star graphs

In the current section, we ensure the global exact controllability when G is a suitable star graph. From
now on, when we denote G as a star graph, we also consider it as a quantum graph.

Theorem 3.2. Let G be a star graph equipped with (D/N ) made by edges long {Lj}j≤N ∈ AL(N). If
the couple (A,B) satisfies Assumptions I(η) and Assumptions II(η, ε) for η, ε > 0, then the (BSE) is
globally exactly controllable in Hs

G for s = 2 + d and d from Assumptions II(η, ε).
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Proof. 1) Star graph equipped with (D). The conditions (D) on Ve imply that, for each k ∈ N∗,

φk = (a1k sin(
√
λkx), ..., ank sin(

√
λkx))

for suitable {alk}l≤N ⊂ C such that (φk)k∈N is orthormal in H . The conditions (NK) in the internal
vertex v ∈ Vi ensure that{

a1k sin(
√
λkL1) = ... = aNk sin(

√
λkLN ),∑

l≤N a
l
k cos(

√
λkLl) = 0,

⇒
N∑
l=1

cot(
√
λkLl) = 0.(7)

We use the provided identities in order to construct an entire function satisfying the hypotheses of
Theorem 3.1. To this purpose, we define the maps

G(x) :=
∏
l≤N

sin(xLl)
∑
l≤N

cot(xLl) G̃(x) :=
∏
l≤N

sin(xLl)
∑
l≤N

Ll

sin2(xLl)
.

As | cos(zLl)| ≤ eLl|z| and | sin(zLl)| ≤ eLl|z| for every l ≤ N and z ∈ C, we notice that G is an entire
function such that

|G(z)| ≤ Ne|z|
∑N
l=1 Ll ∀z ∈ C.

In addition, G(λk) = 0 for every k ∈ N∗ thanks to (7) and G ∈ L∞(R,R), while

G′(x) = −G̃(x) +H(x), H(x) :=
d

dx

( ∏
l≤N

cos(xLl)
)∑
l≤N

cot(xLl).

The identities (7) imply that H(
√
λk) = 0 and then

(8) G′(
√
λk) = −G̃(

√
λk), ∀k ∈ N∗.

Now, for L∗ := minl≤N Ll and x ∈ R, we have

|G̃(x)| =
∏
l≤N | sin(xLl)|

∑
l≤N Ll

∏
k 6=l sin

2(xLk)∏
l≤N sin2(xLl)

≥ L∗
∑
l≤N

∏
k 6=l

| sin(xLk)|.(9)

We refer to [DZ06, Corollary A.10; (2)], which contains a misprint as it is valid for every

λ >
π

2
max{1/Lj : j ≤ N}.

Thanks to the relations (8) and (9), the mentioned corollary ensures that, for every ε > 0, there exists
C1 > 0 such that

|G′(±
√
λk)| ≥ L∗

N∑
l=1

∏
j 6=l

| sin(
√
λkLj)| ≥

C1

(
√
λk)1+ε

, ∀k ∈ N∗ : λk >
π

2
max{1/Lj : j ≤ N}.

Remark 3.3. For every k ∈ N∗ and j ≤ N , we have |φjk(Lj)| 6= 0, otherwise the (NK) conditions would
ensure that φlk(Ll) = φmk (Lm) = 0 with l,m ≤ N so that φlk, φ

m
k 6≡ 0 and there would be satisfied

alk sin(Ll
√
λk) = amk sin(Lm

√
λk) = 0

with alk, a
m
k 6= 0, which is absurd as {Lj}j≤N ∈ AL(N).

Remark 3.3 implies |G′(±
√
λk)| 6= 0 for every k ∈ N∗ and, from the relation (4), there exist ε > 0 and

C2 > 0 such that

|G′(±
√
λk)| ≥ C2

k1+ε
, ∀k ∈ N∗.

We notice that the spectrum of A is simple. Indeed, if there would exist two orthonormal eigenfuctions
f and g of A corresponding to the same eigenvalue λ, then h(x) = f(v)g(x)− g(v)f(x) would be another

8



eigenfunction of A. Now, h is an eigenfunction corresponding to λ and h(v) = 0 that is impossible thanks
to Remark 3.3.
In conclusion, the claim is achieved as Theorem 3.1 is valid with respect to the function G when d̃ = ε.

2) Generic star graph. Let I1 ⊆ {1, ..., N} be the set of indices of those edges containing an external
vertex equipped with (N ) and I2 := {1, .., N} \ I1. The proof follows from the techniques adopted in 1)
by considering Proposition B.2 (instead of [DZ06, Corollary A.10; (2)]) and the entire map

G(x) :=
∏
l∈I2

sin(xLl)
∏
l∈I1

cos(xLl)
(∑
l∈I2

cot(xLl) +
∑
l∈I1

tan(xLl)
)
.

Corollary 3.4. Let G be a star graph equipped with (D/N ). Let G satisfy the following conditions with

Ñ ∈ 2N∗ such that Ñ ≤ N .

� For every j ≤ Ñ/2, the two external vertices of G belonging to e2j−1 and e2j are both equipped with
(D) or (N ).

� The couples of edges {e2j−1, e2j}j≤Ñ/2 are long {Lj}j≤Ñ/2, while the edges {ej}Ñ<j≤N measure

{Lj}Ñ<j≤N . In addition, {Lj}j≤ Ñ2 ∪ {Lj}Ñ<j≤N ∈ AL
(
Ñ
2 +N − Ñ

)
.

If (A,B) satisfies Assumptions I(η) and Assumptions II(η, ε) for η, ε > 0, then the (BSE) is globally
exactly controllable in Hs

G for s = 2 + d and d from Assumptions II(η, ε).

e1 e2

e3

e4

Boundaries: Neumann-Kirchhoff Dirichlet/Neumann.

e5

e6

Figure 4: Example of graph described in Corollary 3.4 with Ñ = 4 and N = 6.

Proof. Let I1 ⊆ {1, ..., Ñ/2} be the set of j such that e2j−1 and e2j contain two external vertices of G

equipped with (N ) and I2 := {1, .., Ñ/2} \ I1. Let I3 ⊆ {Ñ + 1, ..., N} be the set of j such that ej
contains an external vertex of G equipped with (N ) and I4 := {Ñ + 1, ..., N} \ I3. Let

(λ1k)k∈N∗ :=
( (2k − 1)2π2

4L2
j

)
j,k∈N∗
j∈I1

, (λ2k)k∈N∗ :=
(k2π2

L2
j

)
j,k∈N∗
j∈I2

.

We notice that (λ1k)k∈N∗ ∪ (λ2k)k∈N∗ ⊂ (λk)k∈N∗ are the only eigenvalues of A corresponding to eigen-
functions vanishing in the internal vertex v. For every eigenfuction f ∈ (φk)k∈N∗ of A corresponding to
an eigenvalue

λ =
(2k − 1)2π2

4L2
j

∈ (λ1k)k∈N∗ , k ∈ N∗, j ∈ I1,

the eigenfunction f is uniquely defined (up to multiplication for α ∈ C such that |α| = 1) by the identities

f2j−1(x) = −f2j(x) =
√
L−1j cos(

√
λx), f l ≡ 0, ∀l ∈ {1, ..., N} \ {2j − 1, 2j}.

Equivalently, it is valid with (λ2k)k∈N∗ and then the eigenvalues (λ1k)k∈N∗ ∪ (λ2k)k∈N∗ are simple. In
conclusion, the discrete spectrum of A is simple since, if there would exist a multiple eigenvalue

λ ∈ (λk)k∈N∗ \
(

(λ1k)k∈N∗ ∪ (λ2k)k∈N∗
)
,

then there would exist two orthonormal eigenfuctions f and g corresponding to the same eigenvalue λ.
Now, h(x) = f(v)g(x)−g(v)f(x) would be another eigenfunction corresponding to λ such that h(v) = 0,
which is impossible as it would imply that

λ ∈ (λ1k)k∈N∗ ∪ (λ2k)k∈N∗ .
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Thus, the eigenvalues (λk)k∈N∗ are simple. The remaining part of proof follows the one of Theorem 3.2
thanks to Proposition B.2 by considering the entire function

G(x) :=
∏

l∈I2∪I4

sin(xLl)
∏

l∈I1∪I3

cos(xLl)
(

2
∑
l∈I2

cot(xLl) + 2
∑
l∈I1

tan(xLl) +
∑
l∈I4

cot(xLl) +
∑
l∈I3

tan(xLl)
)
.

3.2 Applications and proof of Theorem 1.3

In the following theorem, we apply Theorem 3.2 for a specific problem.

Theorem 3.5. Let G be a star graph equipped with (N ). For every ψ ∈H , let B be such that

B(ψ1, ..., ψN ) =
(
(5x6 − 24x5L1 + 45x4L2

1 − 40x3L3
1 + 15x2L4

1 − L6
1)ψ1, 0, ..., 0).

There exists C ⊂ (R+)N countable so that, for every {Lj}j≤N ∈ AL(N) \ C, the problem (BSE) is
globally exactly controllable in

H5+ε
G , ∀ε ∈ (0, 1/2).

Proof. The conditions (N ) in Vi imply the existence, for every k ∈ N∗, of {alk}l≤N ⊂ C such that

φk = (a1k cos(x
√
λk), ..., aNk cos(x

√
λk)).

The coefficients {alk}l≤N ⊂ C are so that (φk)k∈N∗ forms a Hilbert basis of H and then

(10) 1 =
∑
l≤N

∫ Ll

0

|alk|2 cos2(x
√
λk)dx =

∑
l≤N

|alk|2
(Ll

2
+

sin(2Ll
√
λk)

4
√
λk

)
.

For every k ∈ N∗, the (NK) boundary conditions in Vi ensure

a1k cos(
√
λkL1) = ... = aNk cos(

√
λkLN ),

∑
l≤N

alk sin(
√
λkLl) = 0,

∑
l≤N

tan(
√
λkLl) = 0,

∑
l≤N

|alk|2sin(2Ll
√
λk) = 0.

(11)

The last identities and (10) imply 1 =
∑N
l=1 |alk|2Ll/2. Thanks to (11), we have alk = a1k

cos(
√
λkL1)

cos(
√
λkLl)

for

l 6= 1 and k ∈ N∗. Thus, |a1k|2
(
L1 +

∑N
l=2 Ll

cos2(
√
λkL1)

cos2(
√
λkLl)

)
= 2 for every k ∈ N∗ and

|a1k|2 = 2

N∏
m=2

cos2(
√
λkLm)

( N∑
j=1

Lj
∏
m 6=j

cos2(
√
λkLm)

)−1
.(12)

Verifying Assumptions I(3 + ε) with ε > 0. For every k ∈ N∗, thanks to the relation (11)

∏
l≤N

cos(
√
λkLl)

∑
l≤N

tan(
√
λkLl) = 0, =⇒

N∑
l=1

sin(
√
λkLl)

∏
m 6=l

cos(
√
λkLm) = 0.

Thanks to the relation (4) and Corollary B.3, for every ε > 0, there exist C1, C2 > 0 such that,

|a1k| ≥
√

2∑N
l=1 Ll cos−2(

√
λkLl)

≥
√

2∑N
l=1 LlC

−2
1 λ1+εk

≥ C2

k1+ε
, ∀k ∈ N∗.(13)

In addition, 〈φl1, Bφlk〉L2(el,C) = 0 for 2 ≤ l ≤ N and, for every k ∈ N∗,

〈φ1, Bφk〉L2 = − 120a1ka
1
1L

6
1

(
√
λk +

√
λ1)4

− 120a1ka
1
1L

6
1

(
√
λk −

√
λ1)4

+ o(
√
λk
−5

).(14)
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From the relations (13) and (14), thanks to the relation (4), for every ε > 0, there exists C3 > 0, such
that for k ∈ N∗ sufficiently large,

|〈φ1, Bφk〉L2 | ≥ C3

k5+ε
.(15)

Now, as done in [Duc18a, Example 1.2], it is possible to compute ak(·) and Bk(·) with k ∈ N∗, analytic
functions in R+, so that

ak(L1)2 = (a1k)2, a1(L1)ak(L1)Bk(L1) = 〈φ1, Bφk〉L2

and each a1(·)ak(·)Bk(·) is non-constant and analytic. Each a1(·)ak(·)Bk(·) has discrete zeros Ṽk ⊂ R+

and Ṽ =
⋃
k∈N∗ Ṽk is countable. For every {Ll}l≤N ∈ AL(N) so that L1 6∈ Ṽ ,

(16) |〈φ1, Bφk〉L2 | 6= 0, ∀k ∈ N∗.

Thus, the point 1. of Assumptions I(3 + ε) is ensured thanks to the relations (15) and (16) since, for
every ε > 0, there exists C4 > 0 such that

|〈φ1, Bφk〉L2 | ≥ C4

k5+ε
, ∀k ∈ N∗.

Let (k, j), (m,n) ∈ I, (k, j) 6= (m,n) for I := {(j, k) ∈ (N∗)2 : j 6= k}. We prove the validity of the
point 2. of Assumptions I(3 + ε). As above, we compute Fk(·) with k ∈ N∗, analytic in R+, such that
〈φk, Bφk〉L2 = Fk(L1). Each Fj,k,l,m(·) := Fj(·) − Fk(·) − Fl(·) + Fm(·) is non-constant and analytic in
R+, the set of its positive zeros Vj,k,l,m is discrete and

V :=
⋃

(j,k),(l,m)∈I : (j,k) 6=(l,m)

Vj,k,l,m

is countable. For {Ll}l≤N ∈ AL(N) so that L1 6∈ V ∪ Ṽ , the point 2. of Assumptions I(3 + ε) with
ε > 0 is satisfied.

Verifying Assumptions II(3 + ε1, ε2) with ε1, ε2 > 0 so that ε1 + ε2 ∈
(
0, 12

)
. Let

P (x) := (5x6 − 24x5L1 + 45x4L2
1 − 40x3L3

1 + 15x2L4
1 − L6

1).

For m > 0, we notice B : Hm −→ Hm and ∂x(Bψ)(ṽ) = 0 for every ṽ ∈ Ve since ∂xP (0) = 0. Now,
∂x(Bψ)(v) = (Bψ)(v) = 0 with v ∈ Vi as ∂xP (L1) = P (L1) = 0 and then B : H2

G → H2
G . Moreover,

∂2xP (L1) = ∂3xP (L1) = 0, which imply B : Hm
NK −→ Hm

NK for every m ∈
(

0, 92

)
. For d ∈

[
3 + ε1 + ε2,

7
2

)
and d1 ∈

(
d, 72

)
, there follow

Ran(B|
H
d1
NK

) ⊆ Hd1
NK, Ran(B|H2+d

G
) ⊆ Ran(B|H2+d∩H1+d

NK∩H2
G

) ⊆ H2+d ∩H1+d
NK ∩H

2
G .

The point 2. of Assumptions II(3 + ε1, ε2) with ε1, ε2 > 0 so that ε1 + ε2 ∈
(
0, 12
)

is valid.

Conclusion. The couple (A,B) satisfies Assumptions I(3 + ε) and Assumptions II(3 + ε1, ε2) with
ε1, ε2 > 0 so that ε1 + ε2 ∈

(
0, 12
)
. Theorem 3.2 guarantees the global exact controllability of the (BSE)

in Hs
G with s = 2 + d and d ∈

[
3 + ε1 + ε2,

7
2

)
.

Proof of Theorem 1.3. Theorem 1.3 is proved as [Duc18a, Example 1.2] that is stated for N = 4. The
only difference between the two results is that Theorem 1.3 is ensured from the validity of Theorem 3.2
instead of [Duc18a, Theorem 2.4], which is only valid for N ≤ 4.

4 Energetic controllability

Let us recall the notation (ϕk)k∈N∗ ⊆ (φk)k∈N∗ indicating an orthonormal system of H made by some
eigenfunctions of A. Let (µk)k∈N∗ be the ordered sequence of corresponding eigenvalues. We refer to
Definition 1.4 for the formal definition of energetic controllability.
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Theorem 4.1. Let G be a compact quantum graph and one of the following points be verified.

1. There exists an entire function G such that G ∈ L∞(R,R) and there exist J, I > 0 so that

|G(z)| ≤ JeI|z|, ∀z ∈ C.

The numbers {±√µk}k∈N∗ are simple zeros of G and there exist d̃ ≥ 0 and C > 0 so that

|G′(±√µk)| ≥ C

k1+d̃
, ∀k ∈ N∗.

2. For every ε > 0, there exist C > 0 and d̃ ≥ 0 so that |µk+1 − µk| ≥ C

kd̃
for each k ∈ N∗.

If (A,B) satisfies Assumptions I(ϕ, η) and Assumptions II(ϕ, η, d̃) for η > 0, then the (BSE) is globally

exactly controllable in Hs
G ∩ H̃ for s = 2 + d with d from Assumptions II(ϕ, η, d̃) and energetically

controllable in (µk)k∈N∗ .

Proof. From Remark 2.2, the (BSE) is well-posed in Hs
G ∩ H̃ with s = 2 + d and d from Assumptions

II(ϕ, η, d̃). The statement of Theorem 3.1 holds in H̃ when the point 1. is valid, while the validity

of [Duc18a, Theorem 2.3] in H̃ is guaranteed by 2. . The global exact controllability is provided in

Hs
G ∩ H̃ and the energetic controllability follows as ϕk ∈ Hs

G ∩ H̃ for every k ∈ N∗.

Let G be a generic compact quantum graph. By watching the structure of the graph and the boundary
conditions of D(A), it is possible to construct some eigenfuctions (ϕk)k∈N∗ of A corresponding to some
eigenvalues (µk)k∈N∗ . For instance, we consider G containing a self-closing edge e1 of length 1.

e1

Figure 5: Example of compact graph containing a self-closing edge.

We define ϕ := (ϕk)k∈N∗ such that ϕk =
(√

2 sin(2kπx), 0, ..., 0
)

and the corresponding eigenvalues
(µk)k∈N∗ = (4k2π2)k∈N∗ ⊆ (λk)k∈N∗ , which satisfy the gap condition

inf
k∈N∗

|µk+1 − µk| = 12π2 > 0.

If Assumptions I(ϕ, η) and Assumptions II(ϕ, η, 0) are satisfied for η > 0, then Theorem 4.1 implies the
energetic controllability in (µk)k∈N∗ . As we do in the proof of Theorem 4.4, this approach is also valid
when G contains more self-closing edges (e.g. Figure 3).

Remark. The idea described above can be adopted when G contains suitable sub-graphs denoted “uniform
chains”. A uniform chain is a sequence of edges of equal length L connecting M ∈ N∗ vertices {vj}j≤M
such that, if M ≥ 3, then v2, ..., vM−1 ∈ Vi. Moreover, one of the following assumptions is valid.

� The vertices v1, vM ∈ Ve are equipped with (D).

� The vertices v1 = vM belong to Vi.

� The number of vertices M ∈ {2, 3} and v1, vM ∈ Ve are equipped with (N ).

Boundaries: Neumann-Kirchhoff Neumann Dirichlet.

Figure 6: The figure underlines the uniform chains in a generic compact graph.
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Let G contain Ñ ∈ N∗ uniform chains {G̃j}j≤Ñ , composed by edges of lengths {Lj}j≤Ñ ∈ AL(Ñ). Let

I1 ⊆ {1, ..., Ñ} and I2 ⊆ {1, ..., Ñ} \ I1 be respectively the sets of indices j such that the external vertices

of G̃j are equipped with (N ) and (D), while I3 := {1, ..., Ñ} \ (I1 ∪ I2). We consider the eigenvalues
(µk)k∈N∗ obtained by reordering( (2k − 1)2π2

4L2
j

)
k,j∈N∗
j∈I1

∪
(k2π2

L2
j

)
k,j∈N∗
j∈I2

∪
( (2k − 1)2π2

L2
j

)
k,j∈N∗
j∈I3

.

As in the proof of [Duc18a, Lemma A.2], the Roth’s Theorem [Duc18a, P roposition A.1] ensures that, if

{Lj}j≤Ñ ∈ AL(Ñ), then for every ε > 0, there exists C > 0 so that

|µk+1 − µk| ≥
Cε
kε
, ∀k ∈ N∗,

with ε > 0 and Cε > 0 depending on ε. In conclusion, if Assumptions I(ϕ, η) and Assumptions II(ϕ, η, ε)
are satisfied for η > 0, then Theorem 4.1 implies the energetic controllability in (µk)k∈N∗

4.1 Applications and proof of Theorem 1.5

Proof of Theorem 1.5. Let us assume N = 3. The (D) conditions to the external vertices Ve imply

φk = (a1k sin(
√
µkx), a2k sin(

√
µkx), a3k sin(

√
µkx))

with suitable (a1k, a
2
k, a

3
k) ∈ C3. From the (NK) in v ∈ Vi, there follow

∑
l≤3 a

l
k cos(

√
µkL) = 0 and

amk sin(
√
µkL) = c ∈ R for every m ≤ 3. When c 6= 0, we have the eigenvalues

( (2k−1)2π2

4L2

)
k∈N∗ corre-

sponding to the eigenfunctions (gk)k∈N∗ so that

gk =
(√ 2

3L
sin
( (2k − 1)π

2L
x
)
,

√
2

3L
sin
( (2k − 1)π

2L
x
)
,

√
2

3L
sin
( (2k − 1)π

2L
x
))
, ∀k ∈ N∗.

When c = 0, we obtain the eigenvalues
(
k2π2

L2

)
k∈N∗ of multiplicity two that we associate to the couple of

sequences of eigenfunctions (f1k )k∈N∗ and (f2k )k∈N∗ such that, for every k ∈ N∗,

f1k :=
(
−
√

4

3L
sin
(kπ
L
x
)
,

√
1

3L
sin
(kπ
L
x
)
,

√
1

3L
sin
(kπ
L
x
))
,

f2k :=
(

0,−
√

1

L
sin
(kπ
L
x
)
,

√
1

L
sin
(kπ
L
x
))
.

Moreover, (f1k )k∈N∗∪(f2k )k∈N∗∪(gk)k∈N∗ is an Hilbert basis of H and the eigenvalues of A (not considering

their multiplicity) are
(
k2π2

L2

)
k∈N∗ ∪

( (2k−1)2π2

4L2

)
k∈N∗

Verifying Assumptions I(ϕ,1). We reorder (f1k )k∈N∗ ∪ (gk)k∈N∗ in ϕ = (ϕk)k∈N∗ . The point 1. of
Assumptions I(ϕ, 1) is verified as there exists C1, C2 > 0 such that

|〈ϕ1, Bϕk〉L2 | ≥
C1
√
µk
√
µ1

(µk − µ1)2
≥ C2

k3
, ∀k ∈ N∗.

After, there exist C3, C4 > 0 so that Bk,k := 〈ϕk, Bϕk〉L2 = C3 +C4k
−2 for every k ∈ N∗ and µk = π2k2

4L2 .

Now, if µj − µk − µl + µm = π2

4L2 (j2 − k2 − l2 +m2) = 0, then

Bj,j −Bk,k −Bl,l +Bm,m = C4(j−2 − k−2 − l−2 +m−2) 6= 0,

which implies the point 2. of Assumptions I(ϕ, 1).

Verifying Assumptions II(ϕ,1,0) and conclusion. The operator B stabilizes the spaces Hm with

m > 0 and span{ϕk : k ∈ N∗}
L2

∩H2
G , ensuring the point 1. of Assumptions II(ϕ, 1, 0). Since

inf
j,k∈N∗

|µk − µj | =
π2

4L2
,
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the point 2. of Theorem 4.1 holds and the global exact controllability is proved in H3
G ∩ H̃ . As ϕk ∈

H3
G ∩ H̃ for every k ∈ N∗, the energetic controllability follows in

(
k2π2

4L2

)
k∈N∗ .

When N > 3, the spectrum contains simple eigenvalues relative to some eigenfunctions (gk)k∈N∗ and
multiple eigenvalues each one corresponding to N − 1 eigenfunctions {fk;j}l≤N−1 with k ∈ N∗. For each
k ∈ N∗, we construct {fk;j}l≤N−1 such that only the functions {fk;j}l≤N−2 vanish in e1. We reorder
(fk;N−1)k∈N∗ ∪ (gk)k∈N∗ in ϕ = (ϕk)k∈N∗ and the proof is achieved as for N = 3.

Theorem 4.2. Let G be a star graph equipped with (D/N ) and containing two edges e1 and e2 long
1. Let e1 and e2 connect the internal vertex of G , equipped with (NK), with two external vertices both
equipped with (D).

e1 e2

Boundaries: Neumann-Kirchhoff Dirichlet Dirichlet/Neumann.

Figure 7: Example of star graph described by Theorem 4.2 with N = 5.

Let Bψ =
(
x2(ψ1(x) − ψ2(x)), x2(ψ2(x) − ψ1(x)), 0, ..., 0

)
for every ψ ∈ H . There exists (ϕk)k∈N∗ ⊂

(φk)k∈N∗ such that the (BSE) is globally exactly controllable in H3
G ∩ H̃ and energetically controllable

in (k2π2)k∈N∗ .

Proof. Let µ = (µk)k∈N∗ and ϕ = (ϕk)k∈N∗ be such that µk = k2π2, ϕ1
k = −ϕ2

k = sin(kπx) and ϕlk = 0
for every k ∈ N∗ and 3 ≤ l ≤ N. The claim follows as Theorem 29 from the validity of the point 2. of
Theorem 4.1 with d̃ = 0.

Theorem 4.3. Let G be a star graph equipped with (D) and composed by N
2 couples of edges {e2j−1, e2j}j≤N2

long {Lj}j≤N2 ∈ AL(N2 ) with N ∈ 2N∗.

e1 e2

Boundaries: Neumann-Kirchhoff Dirichlet.

e3

e4

e5

e6

Figure 8: Example of star graph described by Theorem 4.3 with N = 6.

Let B be such that Bψ = ((Bψ)1, ..., (Bψ)N ) for every ψ ∈H and

(Bψ)2j = −(Bψ)2j−1 =

N/2∑
l=1

L
1/2
l

L
1/2
j

x2
(
ψ2l
(Ll
Lj
x
)
− ψ2l−1

(Ll
Lj
x
))
, ∀j ≤ N

2
.

There exists C ⊂ (R+)N countable so that, for every {Lj}j≤N ∈ AL(N) \ C, there exists (ϕk)k∈N∗ ⊆
(φk)k∈N∗ such that (BSE) is globally exactly controllable in H3+ε

G ∩H̃ with ε ∈ (0, 1/2) and energetically

controllable in
(
k2π2

L2
j

)
k,j∈N∗
j≤N/2

.

Proof. Let (µk)k∈N∗ ⊂ (λk)k∈N∗ be obtained by reordering
(
k2π2

L2
j

)
k∈N∗ for every j ≤ N/2 and (ϕk)k∈N∗ be

an orthonormal system of H made by corresponding eigenfunctions. For k ∈ N∗, there exist m(k) ∈ N∗
and l(k) ≤ N/2 so that ϕnk ≡ 0 for n 6= 2l(k), 2l(k)− 1 and

µk =
m(k)2π2

L2
l(k)

, ϕ
2l(k)−1
k (x) = −ϕ2l(k)

k (x) =

√
1

Ll(k)
sin (
√
µkx).
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Let [r] be the entire part of r ∈ R+. For k ∈ N∗ and C = 4 minl≤N Ll, we have

|〈ϕ1, Bϕk〉L2 | =

∣∣∣∣∣
N∑
l=1

〈
ϕlk(x),

N/2∑
n=1

L
1
2
nx2

L
1
2

[(l+1)/2]

(
ϕ2n−1
1

( Ln
L[(l+1)/2]

x
)
− ϕ2n

1

( Ln
L[(l+1)/2]

x
))〉

L2(el)

∣∣∣∣∣
=
∣∣∣ ∫ Ll(k)

0

4x2

Ll(k)
sin
(m(1)πx

Ll(k)

)
sin
(m(k)πx

Ll(k)

)
dx
∣∣∣ ≥ C∣∣ ∫ 1

0

x2 sin(m(1)πx) sin(m(k)πx)dx
∣∣.

Assumptions I(ϕ, 1) and Assumptions II(ϕ, 1, ε) with ε ∈ (0, 12 ) hold as in Theorem 1.5 and Theorem 3.5.
We consider the techniques adopted in the proof of [Duc18a, Lemma A.2] which are due to the Roth’s
Theorem [Duc18a, P roposition A.1]. For every ε > 0, there exists Cε > 0 so that

|µk+1 − µk| ≥
Cε
kε
, ∀k ∈ N∗.

The claim follows since the hypotheses 2. of Theorem 4.1 is verified with d̃ = ε ∈ (0, 12 ).

Theorem 4.4. Let G be a compact quantum graph. Let the first Ñ ≤ N edges {ej}j≤Ñ of the graph be

self-closing edges of lengths {Lj}j≤Ñ (e.g Figure 3). For ψ = (ψ1, ...ψN ), let B be such that

(Bψ)l =
∑
j≤Ñ

x2
(Ljx
Ll
− Lj

)
ψj
(Lj
Ll
x
)
, (Bψ)m ≡ 0, ∀l ≤ Ñ , Ñ < m ≤ N.

There exists C ⊂ (R+)Ñ countable so that, if {Lj}j≤Ñ ∈ AL(Ñ) \ C, then there exists (ϕk)k∈N∗ ⊆
(φk)k∈N∗ such that (BSE) is globally exactly controllable in H3+ε

G ∪H̃ with ε ∈ (0, 1/2) and energetically

controllable in
(
k2π2

L2
j

)
k,j∈N∗
j≤Ñ

.

Proof. Let (ϕk)k∈N∗ be such that, for each k ∈ N∗, there exist m(k) ∈ N∗ and l(k) ≤ Ñ such that

µk = 4m(k)2π2

L2
l(k)

, ϕ
l(k)
k (x) =

√
2

Ll(k)
sin (
√
µkx) and ϕnk ≡ 0 for every n 6= l(k) and n ≤ N . Now, (ϕk)k∈N∗

is an orthonormal system made by eigenfunctions of A and the claim yields as Theorem 4.3.

Acknowledgments. The author is grateful to Olivier Glass and Nabile Boussäıd for having carefully
reviewed this work. He also thanks Käıs Ammari for suggesting him the problem and the colleagues
Andrea Piras, Riccardo Adami, Enrico Serra and Paolo Tilli for the fruitful conversations.

A Appendix: Global approximate controllability

Definition A.1. The (BSE) is said to be globally approximately controllable in Hs
G with s > 0 when,

for every ψ ∈ Hs
G , Γ̂ ∈ U(H ) such that Γ̂ψ ∈ Hs

G and ε > 0, there exist T > 0 and u ∈ L2((0, T ),R)

such that ‖Γ̂ψ − ΓuTψ‖(s) < ε.

Theorem A.2. Let (A,B) satisfy Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0, then
the (BSE) is globally approximately controllable in Hs

G for s = 2 + d with d from Assumptions II(η, d̃).

Proof. In the point 1) of the proof, we suppose that (A,B) admits a non-degenerate chain of connect-
edness (see [BdCC13, Definition 3]). We treat the general case in the point 2) of the proof.

1) (a) Preliminaries. Let πm be the orthogonal projector πm : H → Hm := span{φj : j ≤ m}
L2

for every m ∈ N∗. Up to reordering of (φk)k∈N∗ , the couples (πm(A + u0B)πm, πmBπm) for m ∈ N∗
admit non-degenerate chains of connectedness in Hm. Let ‖ · ‖BV (T ) = ‖ · ‖BV ((0,T ),R) and ||| · ||| (s) :=

||| · ||| L(HsG ,HsG ) for s > 0. Let B : Hs1
G → Hs1

G with s1 > 0 and s ∈ [0, s1 + 2).

Claim. ∀ε > 0, ∃N1 ∈ N∗, Γ̃N1
∈ U(H ) : πN1

Γ̃N1
πN1
∈ SU(HN1

),

(17) ‖Γ̃N1
φj − Γ̂φj‖(s) < ε, ∀j ≤ N.
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Let N,N1 ∈ N∗ be such that N1 ≥ N . We apply the orthonormalizing Gram-Schmidt process to
(πN1

Γ̂φj)j≤N and we define the sequence (φ̃j)j≤N that we complete in (φ̃j)j≤N1
, an orthonormal basis

of HN1
. The operator Γ̃N1

is the unitary map such that Γ̃N1
φj = φ̃j for every j ≤ N1. The provided

definition implies limN1→∞ ‖Γ̃N1
φj − Γ̂φj‖(s) = 0 for every j ≤ N. Thus, for every ε > 0, there exists

N1 ∈ N∗ large enough satisfying the claim.

1) (b) Finite dimensional controllability. Let Tad be the set of (j, k) ∈ {1, ..., N1}2 such that
Bj,k := 〈φj , Bφk〉L2 6= 0 and |λj−λk| = |λm−λl| with m, l ∈ N∗ implies {j, k} = {m, l} for Bm,l = 0. For
every (j, k) ∈ {1, ..., N1}2 and θ ∈ [0, 2π), we define Eθj,k the N1×N1 matrix with elements (Eθj,k)l,m = 0,

(Eθj,k)j,k = eiθ and (Eθj,k)k,j = −e−iθ for (l,m) ∈ {1, ..., N1}2 \ {(j, k), (k, j)}. Let Ead =
{
Eθj,k : (j, k) ∈

Tad, θ ∈ [0, 2π)
}

and Lie(Ead). Fixed v a piecewise constant control taking value in Ead and τ > 0, we
introduce the control system on SU(HN1){

ẋ(t) = x(t)v(t), t ∈ (0, τ),

x(0) = IdSU(HN1
).

(18)

Claim. (18) is controllable, i.e. for R ∈ SU(HN1), there exist p ∈ N∗, M1, ...,Mp ∈ Ead,
α1, ..., αp ∈ R+ such that R = eα1M1 ◦ ... ◦ eαpMp .

For every (j, k) ∈ {1, ..., N1}2, we define the N1 ×N1 matrices Rj,k, Cj,k and Dj as follow. For (l,m) ∈
{1, ..., N1}2 \ {(j, k), (k, j)},we have (Rj,k)l,m = 0 and (Rj,k)j,k = −(Rj,k)k,j = 1, while (Cj,k)l,m = 0
and (Cj,k)j,k = (Cj,k)k,j = i. Moreover, for (l,m) ∈ {1, ..., N1}2 \ {(1, 1), (j, j)}, (Dj)l,m = 0 and
(Dj)1,1 = −(Dj)j,j = i. We consider the basis of su(HN1)

e := {Rj,k}j,k≤N1 ∪ {Cj,k}j,k≤N1 ∪ {Dj}j≤N1 .

Thanks to [Sac00, Theorem 6.1], the controllability of (18) is equivalent to prove that Lie(Ead) ⊇
su(HN1) for su(HN1) the Lie algebra of SU(HN1). The claim si valid as it is possible to obtain the
matrices Rj,k, Cj,k and Dj for every j, k ≤ N1 by iterated Lie brackets of elements in Ead.

1) (c) Finite dimensional estimates. From 2) and πN1 Γ̃N1πN1 ∈ SU(HN1), there exist p ∈ N∗,
M1, ...,Mp ∈ Ead, α1, ..., αp ∈ R+ so that

(19) πN1
Γ̃N1

πN1
= eα1M1 ◦ ... ◦ eαpMp .

Claim. For every l ≤ p and eαlMl from (19), there exist (T ln)l∈N∗ ⊂ R+ and (uln)n∈N∗ such that
uln : (0, T ln)→ R for every n ∈ N∗ and

(20) lim
n→∞

‖Γu
l
n

T ln
φk − eαlMlφk‖(s) = 0, ∀k ≤ N1,

sup
n∈N∗

(
‖uln‖BV (Tn), ‖u

l
n‖L∞((0,Tn),R), Tn‖u

l
n‖L∞((0,Tn),R)

)
<∞.(21)

We consider the results developed in [Cha12, Section 3.1 & Section 3.2] by Chambrion and leading to
[Cha12, P roposition 6] (also adopted in [Duc18b]). Each eαlMl is a rotation in a two dimensional space
for every l ∈ {1, ..., p} and the mentioned work allows to explicit {T ln}l∈N∗ ⊂ R+ and {uln}n∈N∗ satisfying

(21) such that uln : (0, T ln) → R for every n ∈ N∗ and limn→∞ ‖πN1
Γ
uln
T ln
φk − eαlMlφk‖L2 = 0 for every

k ≤ N1. As eαlMl ∈ SU(HN1
), we have

(22) lim
n→∞

‖Γu
l
n

T ln
φk − eαlMlφk‖L2 = 0, ∀k ≤ N1.

We consider the theory developed by Kato in [Kat53] and i(A+u(t)B− ic) is maximal dissipative in Hs1
G

for suitable c > |||B ||| (2)‖u‖L∞((0,T ),R). Let µ > c and Ĥs1+2
G := D(As1(iµ − A)) ≡ Hs1+2

G . We know

B : Ĥs1+2
G ⊂ Hs1

G → Hs1
G and the arguments of [Duc18c, Remark 1.1] imply that B ∈ L(Ĥs1+2

G , Hs1
G ).

For T > 0 and u ∈ BV ((0, T ),R), we have |||u(t)B(iµ−A)−1 ||| (s1) < 1 and we denote

M := sup
t∈[0,T ]

||| (iµ−A− u(t)B)−1 |||
L(H

s1
G ,Ĥ

s1+2

G )
≤ sup
t∈[0,T ]

∑
l∈N∗

||| (u(t)B(iµ−A)−1)l ||| (s1) < +∞,
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N := ||| iµ−A− u(·)B |||
BV
(
[0,T ],L(Ĥ

s1+2

G ,H
s1
G )
) < +∞, C1 := |||A(A+ u(T )B − iµ)−1 ||| (s1) <∞.

We call Uut the propagator generated by (A+uB−ic) such that Uut ψ = e−ctΓut ψ for every ψ ∈H . Thanks
to [Kat53, Section 3.10], for every ψ ∈ Hs1+2

G , ‖(A+u(T )B− iµ)Uut ψ‖(s1) ≤MeMN‖(A− iµ)ψ‖(s1) and

‖ΓuTψ‖(s1+2) = ‖AΓuTψ‖(s1) ≤ e
cT |||A(A+ u(T )B − iµ)−1 ||| (s1)‖(A+ u(T )B − iµ)Uut ψ‖(s1)

≤ C1MeMN+cT ||| (A− iµ)A−1 ||| (s1)‖Aψ‖(s1) ≤ C1MeMN+cT
(

1 +
µ

π2

)
‖ψ‖(s1+2).

For every T > 0, u ∈ BV ((0, T ),R) and ψ ∈ Hs1+2
G , there exists C(K) > 0 depending on K =(

‖u‖BV (T ), ‖u‖L∞((0,T ),R), T‖u‖L∞((0,T ),R)
)

such that ‖ΓuTψ‖(s1+2) ≤ C(K)‖ψ‖(s1+2). From classical in-
terpolation techniques, for every s ∈ [0, s1 + 2], there exists C > 0 such that

|||Γu
l
n

T ln
||| (s) ≤ C.(23)

For every ψ ∈ Hs1+2
G , from the Cauchy-Schwarz inequality, ‖Aψ‖2L2 ≤ ‖A2ψ‖L2‖ψ‖L2 and ‖A 3

2ψ‖4L2 ≤(
〈A2ψ,Aψ〉L2

)2 ≤ ‖A2ψ‖2L2‖Aψ‖2L2 . By iterating the procedure, there exist n ∈ N∗ and C1 > 0 such

that ‖ψ‖n+1
(s) ≤ C1‖ψ‖L2‖ψ‖n(s1+2). In conclusion, from (22) and (23), the last relation leads to (20).

1) (d) Infinite dimensional estimates.

Claim. There exists K > 0 such that for every ε > 0, there exist T > 0 and u ∈ L2((0, T ),R) such

that ‖ΓuTφk−Γ̂φk‖(s) ≤ ε for every k ≤ N and sup
(
‖u‖BV (T ), ‖u‖L∞((0,T ),R), T‖u‖L∞((0,T ),R)

)
< K.

Let p = 2 (the following result is valid for any p ∈ N∗). Thanks to (20), for every ε > 0 and N1 ∈ N∗,
there exists n ∈ N∗ large enough such that, for every k ≤ N ,

‖Γu
2
n

T 2
n
Γ
u1
n

T 1
n
φk − eα2M2eα1M1φk‖(s) ≤ |||Γ

u2
n

T 2
n
||| (s)‖Γ

u1
n

T 1
n
φk − eα1M1φk‖(s) +

N1∑
l=1

‖
(
Γ
u2
n

T 2
n
φl − eα2M2φl

)
〈φl, eα1M1φk〉L2‖(s)

≤ |||Γu
2
n

T 2
n
||| (s)‖Γ

u1
n

T 1
n
φk − eα1M1φk‖(s) + ‖eα1M1φk‖L2

( N1∑
l=1

‖
(
Γ
u2
n

T 2
n
φl − eα2M2φl

)
‖2(s)
) 1

2 ≤ ε.

In the previous inequality, we considered that eα1M1φk ∈HN1
and that |||Γu

2
n

T 2
n
||| (s) is uniformly bounded.

Thanks to the identities (17) and (19), the triangular inequality achieves the claim.

Claim. When B : Hs1
G → Hs1

G for s1 > 0, the global approximate controllability is verified in Hs
G

with s ∈ [s1, s1 + 2)

For every ψ ∈ Hs
G and Γ̂ ∈ U(H ) so that Γ̂ψ ∈ Hs

G , the quantity ‖ΓuTψ − Γ̂ψ‖(s) is uniformly bounded
in T > 0 and u ∈ L2((0, T ),R) when

(24) sup
(
‖u‖BV (T ), ‖u‖L∞((0,T ),R), T‖u‖L∞((0,T ),R)

)
< K

thanks to (23). Then, for any ε > 0, there exists N ∈ N∗ so that
(∑

k>N

∣∣ks〈φk,ΓuTψ− Γ̂ψ〉L2

∣∣2)1/2 ≤ ε
for every T > 0 and u ∈ L2((0, T ),R) satisfying (24). Now,

‖ΓuTψ − Γ̂ψ‖(s) ≤
( ∑
k≤N

∣∣ks〈φk,ΓuTψ − Γ̂ψ〉L2

∣∣2)1/2 + ε ≤ Ns‖ψ‖L2

∑
k≤N

‖(ΓuT )−1φk − Γ̂−1φk‖(s) + ε.

The point 4) is also valid for the reversed dynamics (see [Duc18c, Section 1.3]) and there exist T > 0

and u ∈ L2((0, T ),R) satisfying (24) so that ‖(ΓuT )−1φk − Γ̂−1φk‖(s) ≤ ε‖ψ‖−1L2N
−s−1 for every k ≤ N ,

which implies ‖ΓuTψ − Γ̂ψ‖(s) ≤ 2ε.

1) (e) Conclusion. Let d be defined in Assumptions II(η, d̃). If d < 2, then B : H2
G → H2

G and the global

approximate controllability is verified in Hd+2
G since d+ 2 < 4. If d ∈ [2, 5/2), then B : Hd1 → Hd1 with
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d1 ∈ (d, 5/2) from Assumptions II(η, d̃). Now, Hd1
G = Hd1 ∩ H2

G , thanks to [Duc18a, P roposition 3.2],

and B : H2
G → H2

G implies B : Hd1
G → Hd1

G . The global approximate controllability is verified in Hd+2
G

since d+2 < d1+2. If d ∈ [5/2, 7/2), then B : Hd1
NK → Hd1

NK for d1 ∈ (d, 7/2) and Hd1
G = Hd1

NK∩H2
G from

[Duc18a, P roposition 3.2]. Now, B : H2
G → H2

G that implies B : Hd1
G → Hd1

G . The global approximate

controllability is verified in Hd+2
G since d+ 2 < d1 + 2.

2) Generalization. Let (A,B) do not admit a non-degenerate chain of connectedness. We decompose

A+ u(·)B = (A+ u0B) + u1(·)B, u0 ∈ R, u1 ∈ L2((0, T ),R).

We notice that, if (A,B) satisfies Assumptions I(η) and Assumptions II(η, d̃) for η > 0 and d̃ ≥ 0,
then [Duc18a, Lemma C.2 & Remark C.4] are valid. We consider u0 belonging to the neighborhoods
provided by [Duc18a, Lemma C.2 & Remark C.4] and we denote (φu0

k )k∈N a Hilbert basis of H made
by eigenfunctions of A + u0B. The steps of the point 1) can be repeated by considering the sequence

(φu0

k )k∈N instead of (φk)k∈N and the spaces D(|A + u0B|
s1
2 ) in substitution of Hs1

G with s1 > 0. The

claim is equivalently proved since
∥∥|A+ u0B|

s1
2 ·
∥∥ � ‖ · ‖(s1) with s1 ∈ [s, s+ 2), s = 2 + d and d from

Assumptions II(η, d̃) thanks to [Duc18a, Remark C.4].

B Appendix: Spectral properties

For x ∈ R, we denote E(x) the closest integer number to x, |||x ||| = minz∈Z |x−z| and F (x) = x−E(x).
We notice |F (x)| = |||x ||| and − 1

2 ≤ F (z) ≤ 1
2 . Let {Lj}j≤N ∈ (R+)N and i ≤ N , we also define

n(x) := E
(
x− 1

2

)
, r(x) := F

(
x− 1

2

)
, d(x) := |||x− 1

2
||| , m̃i(x) := n

(Li
π
x
)
.

In this appendix, we pursue [Duc18a, Appendix A], which is based on the techniques from [DZ06, Appendix A].

Lemma B.1. Let {Lk}k≤N ⊂ R+, I1 ⊆ {1, ..., N}, I2 := {1, ..., N} \ I1 and

a(·) :=
∏
i∈I2

| sin((·)Li)|
∑
i∈I1

∏
j∈I1
j 6=i

| cos((·)Lj)|+
∏
i∈I1

| cos((·)Li)|
∑
i∈I2

∏
j∈I2
j 6=i

| sin((·)Lj)|.

Let {L̃j}j≤N ⊂ R+ be such that L̃j = 2Lj when j ∈ I1 and L̃j = Lj when j ∈ I2. There exists C > 0
such that, for every x ∈ R, there holds

a(x) ≥ C min
(

min
i≤N

∏
j 6=i

|||
(
m̃i(x) +

1

2

) L̃j
Li
||| , min

i≤N

∏
j 6=i

|||mi(x)
L̃j
Li
|||
)
.

Proof. From [DZ06, relation (A.3)], for every x ∈ R, there follows

(25) 2d(x) ≤ | cos(πx)| ≤ πd(x).

As 2d
((
m̃i(x) + 1

2

)Lj
Li

)
≤
∣∣ cos

((
m̃i(x) + 1

2

)Lj
Li
π
)∣∣ and m̃i(x) + 1

2 = Li
π x− r

(
Li
π x
)

for x ∈ R and i, j ≤ N ,

2d
((
m̃i(x) +

1

2

)Lj
Li

)
≤ | cos(Ljx)|+

∣∣∣∣sin(πLjLi
∣∣∣r(Li

π
x
)∣∣∣)∣∣∣∣ .(26)

Now, | sin(π|r(·)|)| ≤ π ||| |r(·)| ||| ≤ π|r(·)| = πd(·) ≤ π
2 | cos(π(·))| thanks to [DZ06, relation (A.3)] and

(25). For every x ∈ R, it holds

(27)

∣∣∣∣sin(πLjLi
∣∣∣r(Li

π
x
)∣∣∣)∣∣∣∣ ≤ πLjLi

∣∣∣r(Li
π
x
)∣∣∣ ≤ πLj

2Li
| cos(Lix)|.

From (26) and (27), there exists C1 > 0 such that, for every i, j ≤ N ,

2d
((
m̃i(x) +

1

2

)Lj
Li

)
≤ | cos(Ljx)|+ πLj

2Li
| cos(Lix)|, ∀x ∈ R+,(28)
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=⇒ C1

∏
j∈I1
j 6=i

d
((
m̃i(x) +

1

2

)Lj
Li

)
≤
∏
j∈I1
j 6=i

| cos(Ljx)|+ | cos(Lix)|.

From [DZ06, relation (A.3)], as done in (26) and (27), there exists C2 > 0 such that

2 |||
(
m̃i(x) +

1

2

)Lj
Li
||| ≤ | sin(Ljx)|+ πLj

2Li
| cos(Lix)|, ∀x ∈ R,(29)

=⇒ C2

∏
j∈I1
j 6=i

d
((
m̃i(x) +

1

2

)Lj
Li

) ∏
j∈I2
j 6=i

|||
(
m̃i(x) +

1

2

)Lj
Li
||| ≤

∏
j∈I2
j 6=i

| sin(Ljx)|
∏
j∈I1
j 6=i

| cos(Ljx)|+ | cos(Lix)|.

Now, d(x) = ||| 12 (2x − 1) ||| ≥ 1
2 ||| 2x − 1 ||| = 1

2 ||| 2x ||| for every x ∈ R and d
((
m̃i(x) + 1

2

)Lj
Li

)
≥

1
2 |||
(
m̃i(x) + 1

2

)
2Lj
Li
||| , which imply

C2

∏
j≤N
j 6=i

1

2
|||
(
m̃i(·) +

1

2

) L̃j
Li
||| ≤ a(·) + | cos(Li(·))|.(30)

Equivalently, from the proof of [DZ06, P roposition A.1], for every x ∈ R,

2 |||mi(x)
Lj
Li
||| ≤ | sin(Ljx)|+ πLj

2Li
| sin(Lix)|, 2d

(
mi(x)

Lj
Li

)
≤ | cos(Ljx)|+ πLj

2Li
| sin(Lix)|,

(31)

=⇒ C2

∏
j≤N
j 6=i

1

2
|||mi(·) L̃j

Li
||| ≤ a(·) + | sin(Li(·))|.(32)

The claim follows as [DZ06, P roposition A.1]. Indeed, if (λk)k∈N∗ ⊂ R+ is so that a(λk)
k→∞−−−−→ 0, then

there exist some i0 ≤ N such that | sin(λkLi0)| k→∞−−−−→ 0 or | cos(λkLi0)| k→∞−−−−→ 0. By considering (30)
and (32) with i = i0, we have

z(λk) := min
(

min
i≤N

∏
j 6=i

|||
(
m̃i(λk) +

1

2

) L̃j
Li
||| ,min

i≤N

∏
j 6=i

|||mi(λk)
L̃j
Li
|||
)

k−→∞−−−−→ 0.

As [DZ06, P roposition A.1], the lemma is proved since z(λk) converges to 0 at least as fast as a(λk)
thanks to the identities (28), (29) and (31).

Proposition B.2. Let {Lj}j≤N ⊂ R, I1 ⊆ {1, ..., N} and I2 := {1, ..., N} \ I1. If {Lj}j≤N ∈ AL(N),
then, for every ε > 0, there exists Cε > 0 such that, for every x > max{π/2Lj : j ≤ N}, we have∏

j∈I2

| sin(xLj)|
∑
j∈I1

∏
k∈I1
k 6=j

| cos(xLk)|+
∏
j∈I1

| cos(xLj)|
∑
j∈I2

∏
k∈I2
k 6=j

| sin(xLk)| ≥ Cε
x1+ε

.

Proof. The claim is due to Lemma B.1 and to the Schmidt’s Theorem [DZ06, Theorem A.8], which
implies that, for every ε > 0 and i ≤ N , there exist C1(i), C2(i), C3(i) > 0 such that, for every x ∈ R,

∏
j≤N
j 6=i

|||
(
m̃i(x) +

1

2

) L̃j
Li
||| ≥ C1(i)

(2m̃i(x) + 1)1+ε
≥ C1(i)(

2Li
π x+ 1

)1+ε ≥ C2(i)

x1+ε(33)

and
∏
j≤N
j 6=i

|||mi(x)
L̃j
Li
||| ≥ C3(i)x−1−ε for every x > π

2 max{1/Lj : j ≤ N}. The statement follows

with Cε := min
(

mini≤N C2(i),mini≤N C3(i)
)
.
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Corollary B.3. Let {Lk}k≤N ∈ AL(N) with N ∈ N. Let {ωn}n∈N be the unbounded sequence of positive
solutions of the equation

(34)
∑
l≤N

sin(xLl)
∏
m6=l

cos(xLm) = 0, x ∈ R.

For every ε > 0, there exists Cε > 0 so that | cos(ωnLl)| ≥ Cε
ω1+ε
n

for every l ≤ N and n ∈ N.

Proof. If there exists {ωnk}k∈N, subsequence of {ωn}n∈N, such that | cos(Ljωnk)| k→∞−−−−→ 0 for some j ≤ N ,

then there exists i ≤ N such that i 6= j and | cos(Liωnk)| k→∞−−−−→ 0 thanks to (34). From (28), we have∏
j 6=i d

((
m̃i(ωnk) + 1

2

)
Lj
Li

)
k→∞−−−−→ 0 and (as in the proof of Proposition B.1) there exists C2 > 0 so that

C2| cos(Liωn)| ≥
∏
j 6=i

d
((
m̃i(ωn) +

1

2

)Lj
Li

)
=
∏
j 6=i

||| 1
2

((
m̃i(ωn) +

1

2

)2Lj
Li
− 1
)
||| .

The last identity and the techniques leading to the equation (33) achieve the claim.

C Appendix: Moments problems

Let Z∗ = Z \ {0} and Λ = (λk)k∈Z∗ ⊂ R+ be an ordered sequence of pairwise distinct numbers such that
there exist M∈ N∗ \ {1} and δ > 0 such that

inf
{k∈Z∗ : k+M6=0}

|λk+M − λk| ≥ δM.(35)

From (35), there does not exist M consecutive k, k + 1 ∈ Z∗ such that |λk+1 − λk| < δ. This leads
to a partition of Z∗ in subsets that we call Em with m ∈ Z∗. This partition also defines an equivalence
relation in Z∗ such that k ∼ n if and only if there exists m ∈ Z∗ such that k, n ∈ Em. Now, {Em}m∈Z∗
are the corresponding equivalence classes and i(m) := |Em| ≤ M−1. For every x := (xk)k∈Z∗ , we define
xm := (xl)l∈Em for m ∈ Z∗.

Let ĥ = (hj)j≤i(m) ∈ Ci(m) with m ∈ Z∗. For every m ∈ Z∗, we denote Fm(ĥ) : Ci(m) → Ci(m) the
matrix with elements, for every j, k ≤ i(m),

Fm;j,k(ĥ) :=


∏
l 6=j
l≤k

(hj − hl)−1, j ≤ k,

1, j = k = 1,

0, j > k.

For each k ∈ Z∗, there exists m(k) ∈ Z∗ such that k ∈ Em(k). Let F (Λ) be the linear operator on
`2(Z∗,C) such that F (Λ) : D(F (Λ))→ `2(Z∗,C) and

(F (Λ)x)k =
(
Fm(k)(Λ

m(k))xm(k)
)
k
, ∀x = (xk)k∈Z∗ ∈ D(F (Λ)),

H(Λ) := D(F (Λ)) =
{
x := (xk)k∈Z∗ ∈ `2(Z∗,C) : F (Λ)x ∈ `2(Z∗,C)

}
.

Remark C.1. We call Fm(Λm)−1 the inverse matrix of Fm(Λm) for m ∈ Z∗. Now, F (Λ) : H(Λ) →
Ran(F (Λ)) is invertible and F (Λ)−1 is so that

(F (Λ)−1x)k =
(
Fm(k)(Λ

m(k))−1xm(k)
)
k
, ∀x ∈ Ran(F (Λ)), k ∈ Z∗.

Let F (Λ)∗ be the infinite matrix so that (F (Λ)∗x)k =
(
Fm(k)(Λ

m(k))∗xm(k)
)
k

for any x = (xk)k∈Z∗

and k ∈ Z∗, where Fm(k)(Λ
m(k))∗ is the transposed matrix of Fm(k)(Λ

m(k)). For T > 0, let e and Ξ be
sequences of functions in L2((0, T ),C) so that

e := (eiλk(·))k∈Z∗ , Ξ := (ξk(·))k∈Z∗ = F (Λ)∗e.
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Remark C.2. When H(Λ) is dense in `2(Z∗,C), we consider F (Λ)∗ as the unique adjoint operator
of F (Λ) in `2(Z∗,C) with domain H(Λ)∗ := D(F (Λ)∗). As in Remark C.1, we define (F (Λ)∗)−1 the
inverse operator of F (Λ)∗ : H(Λ)∗ → Ran(F (Λ)∗) and (F (Λ)∗)−1 = (F (Λ)−1)∗.

Theorem C.3 (Theorem 3.29; [DZ06]). Let (λk)k∈Z∗ be an ordered sequence of pairwise distinct real

numbers satisfying (35). If T > 2π/δ, then (ξk)k∈Z∗ forms a Riesz Basis in the space X := span{ξk| k ∈ Z∗}
L2

.

Lemma C.4. Let ν := (νk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers satisfying (35).
Let G be an entire function such that G ∈ L∞(R,R) and there exist J, I > 0 such that |G(z)| ≤ JeI|z|

for every z ∈ C. If (νk)k∈Z∗ are simple zeros of G such that there exist d̃ ≥ 0, C > 0 such that

(36) |G′(νk)| ≥ C

|k|1+d̃
, ∀k ∈ Z∗, νk 6= 0,

then there exists C > 0 so that Tr
(
Fm(νm)∗Fm(νm)

)
≤ C min{|l| ∈ Em}2(1+d̃) for every m ∈ Z∗.

Proof. The proof is composed as follows.

1. First, we construct (vk)k∈Z∗ a biorthogonal sequence to (eiνk(·))k∈Z∗ in L2((0, T ),C) with T > 0
sufficiently large and we estimate the L2−norm of vk for every k ∈ Z∗.

2. Second, we characterize (ξk)k∈Z∗ = F (Λ)∗(eiνk(·))k∈Z∗ , a Riesz basis of a suitable subspace of
L2((0, T ),C), and its biorthogonal sequence.

3. Third, we use the obtained estimates in order to provide an upper bound for |(F (ν)x)k| with k ∈ N∗
and x ∈ `2(Z∗,C). The result leads to the statement.

Construction of a biorthogonal sequence. Let T > max(2π/δ, 2I). For every k ∈ Z∗, we define
Gk(z) := G(z)(z − νk)−1. Thanks to the Paley-Wiener’s Theorem [DZ06, Theorem 3.19], for every k ∈
Z∗, there exists wk ∈ L2(R,R) with support in [−I, I] such that

Gk(z) =

∫ I

−I
eizswk(s)ds =

∫ T/2

−T/2
eizswk(s)ds =

∫ T

0

eizte−iz
T
2 wk(t− T/2)dt.

For j, k ∈ Z∗ and ck := G′(νk), we call vk(t) := eiνk
T
2 wk(t−T/2) and 〈vk, eiνj(·)〉L2((0,T ),C) = δk,jGk(νk) =

δk,jG
′(νk) = δk,jck. The sequence (vk)k∈Z∗ is biorthogonal to (eiνk(·)/ck)k∈Z∗ and (vk/ck)k∈Z∗ is biorthog-

onal to (eiνk(·))k∈Z∗ . Thanks to the Plancherel’s identity, ‖vk‖L2((0,T ),C) = ‖Gk‖L2(R,R). We show that,
from the Phragmén-Lindelöf Theorem (e.g. [You80, p. 82; Theorem 11]), there exists C1 > 0 such that

(37) ‖vk‖L2((0,T ),C) = ‖Gk‖L2(R,R) ≤ C1, ∀k ∈ Z∗.

First, G is entire, while there exist I and J such that |G(z)| ≤ JeI|z| for every z ∈ C. Second,
there exists M > 0 so that |G(x)| ≤ M for every x ∈ R. From [You80, p. 82; Theorem 11], we have
|G(x+ iy)| ≤MeI|y| for x, y ∈ R. For every k ∈ Z∗, there exists c1 > 0, not depending on k, so that

‖Gk‖2L2(R) =

∫
R
Gk(x)Gk(x) dx =

∫
R

G(x)G(x)

(x− νk)2
dx ≤

∫
|x−νk|≤1

G(x)G(x)(x− νk)−2 dx+M2c1.

The Cauchy Integral Theorem leads to (37) as there exists c2 > 0, not depending on k, so that∫
|x−νk|≤1

G(x)G(x)
(x−νk)2 dx ≤

∫ π
0

∣∣G(νk + eiθ)G(νk + eiθ)
∣∣dθ ≤M2

∫ π
0
e2I sin(θ) dθ ≤M2c2.

Construction of a Riesz basis. Let ν := (νk)k∈Z∗ and e := (eiνk(·))k∈Z∗ ⊂ L2((0, T ),C). Thanks
to Proposition C.3, the sequence of functions Ξ = (ξk)k∈Z∗ := ((F (ν)∗e)k)k∈Z∗ forms a Riesz basis in

X := span{ξk : k ∈ Z∗}
L2

. We call ṽ := (ṽk)k∈Z∗ the corresponding biorthogonal sequence which is
also a Riesz basis of X. From Remark C.2, the map F (ν) is invertible from H(ν)∗ to Ran(F (ν)∗) and
(F (ν)∗)−1 = (F (ν)−1)∗. As v/c = (vk/ck)k∈Z∗ is biorthogonal to (eiνk(·))k∈Z∗ , we have (vk/ck)k∈Z∗ =
F (ν)ṽ. Indeed, δk,j = 〈vk/ck, ((F (Λ)∗)−1Ξ)j〉L2((0,T ),C) = 〈(F (Λ)−1v/c)k, ξj〉L2((0,T ),C) for every j, k ∈
Z∗, which implies (F (Λ)−1v/c)k = ṽk. The uniqueness of the biorthogonal family to Ξ implies the
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uniqueness of the biorthogonal family to e. From [BL10, Appendix B;Proposition 19.(2)], there exist
C2, C3 > 0 such that

(38) C2‖x‖2`2 ≤
∫ T

0

|u(s)|2ds ≤ C3‖x‖2`2 , ∀u(t) =
∑
k∈Z∗

ξkxk, x ∈ `2(Z∗,C).

Conclusion. When u(t) =
∑
k∈Z∗ ξkxk with x ∈ `2(Z∗,C), the biorthogonality yields to xk =

〈ṽk, u〉L2((0,T ),C) for every k ∈ Z∗. We call m(k) ∈ Z∗ the number such that k ∈ Em(k). Thanks to
(36), (37), and (38), there exist C4, C5 > 0 such that, for every k ∈ Z∗, we have

|(F (ν)x)k| = |〈(F (ν)(〈ṽl, u〉L2((0,T ),C))l∈Z)k| = |〈vk/ck, u〉L2((0,T ),C)| ≤ ‖vk‖L2((0,T ),C)‖u‖L2((0,T ),C)|ck|−1

≤ C
1
2
3 ‖Gk‖L2(R,R)‖x‖`2 |G′(νk)|−1 ≤ C4|k|1+d̃‖x‖`2 ≤ C5 min

l∈Em(k)

|l|1+d̃‖x‖`2 .

Thus, there exists C6 > 0 so that |(Fm;j,k(νm))| ≤ C6 minl∈Em |l|1+d̃ for every j, k ≤ i(m), which leads
to the statement.

Proposition C.5. Let (λk)k∈Z∗ be an ordered sequence of pairwise distinct real numbers such that
(νk)k∈Z∗ =

(
sgn(λk)

√
|λk|

)
k∈Z∗ satisfies (35). Let exist C1, C2 > 0 such that

(39) C1|k| ≤ |νk| ≤ C2|k|, ∀k ∈ Z∗, νk 6= 0.

Let G be an entire function so that (νk)k∈Z∗ are its simple zeros, G ∈ L∞(R,R) and there exist J, I > 0
such that |G(z)| ≤ JeI|z| for every z ∈ C. If there exist d̃ ≥ 0 and C > 0 such that |G′(νk)| ≥ C

|k|1+d̃
for

every k ∈ Z∗ such that νk 6= 0, then

H(Λ) ⊆ hd̃(Z∗,C).

Proof. We show how the upper bound of Tr
(
Fm(νm)∗Fm(νm)

)
for every m ∈ Z∗ provided by Lemma

C.4 leads to an upper bound of Tr
(
Fm(Λm)∗Fm(Λm)

)
. We conclude by discussing how the estimate

achieves the claim.

1) Preliminaries. As inf k∈Z∗
k+M6=0

|νk+M − νk| ≥ δMmink∈Z∗
νk 6=0

(|νk|, 1) with δ > 0 and M∈ N∗ \ {1},

inf
k∈Z∗
k+M6=0

|λk+M − λk| = inf
k∈Z∗
k+M6=0

∣∣|νk+M| − |νk|∣∣∣∣|νk+M|+ |νk|∣∣ ≥ min
k∈Z∗
νk 6=0

(|νk|, 1)δM

since (λk)k∈Z∗ =
(
sgn(νk)ν2k

)
k∈Z∗ . Now, Λ := (λk)k∈Z∗ and ν := (νk)k∈Z∗ satisfy (35) with respect

to δ′ := min k∈Z∗
νk 6=0
{|νk|, 1}δ and M. This implies that the theory exposed in this appendix and the

definitions of the equivalence classes Em in Z∗ are valid for both the sequences Λ and ν. We notice
|λl − λk| ≥ min{|νl|, |νk|}|νl − νk| for l, k ∈ Z∗. Let m ∈ Z∗ and I ⊆ Em so that I 6= ∅. Now,
|I| ≤ |Em| ≤ M− 1 and∏

j,k∈I

|λk − λj | ≥ min
l∈I
νl 6=0

|νl||I|
∏
j,k∈I

|νk − νj | ≥ C1min
l∈I
νl 6=0

|νl|
∏
j,k∈I

|νk − νj |

for C1 = minl∈Z∗
νl 6=0

(|νl|M−2, 1). Thus, there exists C2 > 0 so that, for every m and j, k ∈ Em, we have

|Fm;j,k(Λm)| ≤ C2|Fm;j,k(νm)|min{|νl|−1 : l ∈ Em, νl 6= 0}. Thanks to (39) and Lemma C.4, there
exists C3 > 0 such that

Tr
(
Fm(Λm)∗Fm(Λm)

)
≤ C2

2 min
l∈Em
νl 6=0

|νl|−2 Tr
(
Fm(νm)∗Fm(νm)

)
≤ C3 min

l∈Em
|l|2d̃.

2) Conclusion. Let ρ(M) be the spectral radius of a matrix M and let |||M ||| =
√
ρ(M∗M) be its

euclidean norm. As
(
Fm(Λm)∗Fm(Λm)

)
is positive-definite,

|||Fm(Λm) ||| 2 = ρ
(
Fm(Λm)∗Fm(Λm)

)
≤ Tr

(
Fm(Λm)∗Fm(Λm)

)
≤ C3 min

l∈Em
|l|2d̃, m ∈ Z∗.
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In conclusion, hd̃(Z∗,C) ⊂ H(Λ) as, for every x = (xk)k∈Z∗ ∈ hd̃(Z∗,C),

‖F (Λ)x‖2`2 ≤
∑
m∈Z∗

|||Fm(Λm) ||| 2
∑
l∈Em

|xl|2 ≤ C3

∑
m∈Z∗

min
l∈Em

|l|2d̃
∑
l∈Em

|xl|2 ≤ C3‖x‖2hd̃ < +∞.

Remark C.6. If Proposition C.5 is satisfied with Λ = (λk)k∈Z∗ and d̃ ≥ 0, then H(Λ) ⊇ hd̃(Z∗,C),
which is dense in `2(Z∗,C). Thanks to Remark C.2, we consider F (Λ)∗ as the unique adjoint operator of
F (Λ). As Tr(Fm(Λm)∗Fm(Λm)) = Tr(Fm(Λm)Fm(Λm)∗) for every m ∈ Z∗, the techniques developed

in the proof of Proposition C.5 lead to H(Λ)∗ ⊇ hd̃(Z∗,C).

Proposition C.7. Let (ωk)k∈N∗ ⊂ R+ ∪{0} be an ordered sequence of pairwise distinct numbers so that
there exist δ, C1, C2 > 0 and M∈ N∗ \ {1} such that

inf
k∈N∗

|ωk+M − ωk| ≥ δM, C1k
2 ≤ |ωk| ≤ C2k

2, ∀k ∈ N∗ \ {1}.

Let G be an entire function so that {±√ωk}k∈N∗ are its simple zeros, G ∈ L∞(R,R) and there exist

J, I > 0 such that |G(z)| ≤ JeI|z| for every z ∈ C. If there exist d̃ ≥ 0 and C > 0 such that

|G′(±
√
ωk)| ≥ C

k1+d̃
, ∀j ∈ N∗,

then, for T > 2π/δ and for every (xk)k∈N∗ ∈ hd̃(N∗,C) with x1 ∈ R, there exists u ∈ L2((0, T ),R) such
that

xk =

∫ T

0

u(τ)ei(ωk−ω1)τdτ, ∀k ∈ N∗.(40)

Proof. Let ν := (νk)k∈Z∗ be such that νk = −√ωk for k > 0 and νk =
√
ω−k for k < 0. Let

Λ := (λk)k∈Z∗ : λk = −ωk, ∀k > 0; λk = ω−k, ∀k < 0,

Θ := (θk)k∈Z∗\{−1} : θk = −ωk + ω1, ∀k > 0; θk = ω−k − ω1, ∀k < −1.

We consider M′ ∈ N∗ \ {1} and δ′ > 0 so that ν and Λ satisfy (35) with respect to M′ and δ′, while

(41) inf{
k∈Z∗\{−1} : k+M′∈Z∗\{−1}

} |θk+M′ − θk| ≥ δ′M′.
Let {Em}m∈Z∗ be the equivalence classes in Z∗ defined by ν and Λ (as in the proof of Proposition C.5).
Let −1 ∈ E−1. Now, {Em}m∈Z∗\{−1} ∪ {E−1 \ {−1}} are the equivalence classes in Z∗ \ {−1} defined

by (41). Proposition C.5 and Remark C.6 imply H(Λ)∗ ⊇ hd̃(Z∗,C). Let F (Θ) be the operator defined
in `2(Z∗ \ {−1},C). For m 6= −1, Fm(Θm) = Fm(Λm) and Fm(Θm)∗ = Fm(Λm)∗. As in Remark C.6,

H(Θ) ⊇ hd̃(Z∗ \ {−1},C), H(Θ)∗ ⊇ hd̃(Z∗ \ {−1},C).

For T > 0, we define in L2 := L2((0, T ),C) the sequences of functions

e := (eiθk(·))k∈Z∗\{−1}, Ξ := (ξk(·))k∈Z∗\{−1} = F (Θ)∗e.

When T > 2π/δ, Theorem C.3 ensures that (ξk)k∈Z∗\{−1} is a Riesz Basis in X := spank∈Z∗\{−1}(ξk)
L2

.
Thanks to [BL10, Appendix B; Proposition 19.(2)], the map M : g ∈ X 7→ (〈ξk, g〉L2(0,T ))k∈Z∗\{−1} ∈
`2(Z∗ \ {−1},C) is invertible and

〈ξk, g〉L2(0,T ) = (F (Θ)∗〈e, g〉L2(0,T ))k, ∀k ∈ Z∗ \ {−1}.

Let X̃ := M−1◦F (Θ)∗
(
hd̃(Z∗\{−1},C)

)
. The map (F (Θ)∗)−1◦M : g ∈ X̃ 7→ (〈e, g〉L2(0,T ))k∈Z∗\{−1} ∈

hd̃(Z∗ \ {−1},C) is invertible. For every (xk)k∈Z∗\{−1} ∈ hd̃(Z∗ \ {−1},C), there exists u ∈ L2((0, T ),C)
such that

(42) xk =

∫ T

0

u(τ)e−iθkτdτ, ∀k ∈ Z∗ \ {−1}.
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Given (xk)k∈N∗ ∈ hd̃(N∗,C), we introduce (x̃k)k∈Z∗\{−1} ∈ hd̃(Z∗ \{−1},C) such that x̃k = xk for k > 0,
while x̃k = x−k for k < −1. Thanks to (42) and to the definition of Θ, there exists u ∈ L2((0, T ),C)
such that ∫ T

0

u(s)ei(ωk−ω1)sds = xk =

∫ T

0

u(s)ei(ωk−ω1)sds, k ∈ N∗ \ {1}.

If x1 ∈ R, then u is real and (40) is solvable with u ∈ L2((0, T ),R).
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