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Abstract

The aim of this work is to study the controllability of the bilinear Schrédinger equation on compact
graphs. In particular, we consider the equation (BSE) i0:¢) = —Av + u(t) Bt in the Hilbert space
L*(¥,C), with ¢ being a compact graph. The Laplacian —A is equipped with self-adjoint boundary
conditions, B is a bounded symmetric operator and v € L*((0,T),R) with T > 0. We provide a
new technique leading to the global exact controllability of the (BSE) in D(|A|*/?) with s > 3.
Afterwards, we introduce the “energetic controllability”, a weaker notion of controllability useful
when the global exact controllability fails. In conclusion, we develop applications of the main results
involving for instance star graphs.

1 Introduction

In quantum mechanics, any state of a closed system is mathematically represented by a wave function
in the unit sphere of a Hilbert space 5#. We consider the evolution of a particle confined in a network
shaped as compact graph ¢ and subjected to a controlling external field.

— D = O
Figure 1: A compact graph is a one-dimensional domain composed by finite vertices (points) connected
by edges (segments) of finite lengths.

A standard choice for such setting is to represent the action of the field by an operator B and its
intensity by a real function u; we also impose % := L?(4,C). The evolution of v is modeled by the
bilinear Schrédinger equation in 7

B8 0w(t) = AV(D) +u(OBYD), 1€ (0,T),
(0) = to, T>0.

The Laplacian A = —A is equipped with self-adjoint boundary conditions, B is a bounded symmetric
operator and u € L*((0,T),R). When the (BSE) is well-posed, we call I'¥ the unitary propagator
generated by A + u(t)B.

The aim of this work is to study the controllability of the bilinear Schrédinger equation (BSE)
according to the structure of the graph ¢, the definition of the domain of A and the choice of B.

The controllability of finite-dimensional quantum systems modeled by the (BSE), when A and B
are N x N Hermitian matrices, is well-known for being linked to the rank of the Lie algebra spanned by



A and B (see [Alt02, Cor07]); nevertheless the Lie algebra rank condition can not be used for infinite-
dimensional quantum systems (see [Cor07]).

The global approxzimate controllability of the (BSE) has been proved with different techniques in
literature. We refer to [Mir09, Ner10] for Lyapunov techniques, while we cite [BCMS12, BGRS15] for
adiabatic arguments and [BACC13, BCS14] for Lie-Galerking methods.

The exact controllability of infinite-dimensional quantum systems is in general a more delicate mat-
ter. When we consider the linear Schrodinger equation, the controllability and observability prop-
erties are reciprocally dual. Different results were developed by addressing directly or by duality
the control problem with different techniques: multiplier methods [Lio83, Mac94], microlocal analy-
sis [BLR92, Bur91, Leb92] and Carleman estimates [BM08, LT92, MORO0S8]. In any case, when one
considers graph type domains, a complete theory is far from being formulated. Indeed, the interaction
between the different components of a graph may generate unexpected phenomena (see [DZ06]).

The bilinear Schrodinger equation is well-know for not being exactly controllable in the Hilbert space
where it is defined when B is a bounded operator and v € L?((0,T),R) with 7' > 0 (even though it
is well-posed in such space). We refer to the work [BMS82] by Ball, Mardsen and Slemrod where the
well-posedness and the non-controllability of the equation are proved (see also [Tur00]).

As a consequence, the exact controllability of bilinear quantum systems can not proved with the classical
techniques valid for the linear Schrodinger equation and weaker notions of controllability are necessary.

The turning point for this kind of studies was the idea of controlling the equation in subspaces of
D(A) introduced by Beauchard in [Bea05]. Following this approach, different works were developed for
the (BSE) in 4 = (0,1) by considering A = —Ap the Dirichlet Laplacian such that

D(-Ap) = H?((0,1),C) N Hy((0,1),C)),  —Apyp:=-Ay, V€ D(-Ap).

For instance, in [BL10], Beauchard and Laurent prove the well-posedness and the local exact control-
lability of the bilinear Schrodinger equation in Hf, = D(| — Ap|*/?) for s = 3. For the global exact
controllability in H(30)’ we refer to [Duc18b], while we mention [Ducl8c, Morl4, MN15] for simultaneous
exact controllability results in H 30 and H 40 .

Studying the controllability of the bilinear Schrédinger equation on compact graphs presents an
additional problem, which can be understood by considering (A;)ren+ the ordered sequence of eigenvalues
of A. Nevertheless there exists M € N* such that

(1) JAnf Ak pt = Akl >0

(as showed in [Ducl8a, relation (2)]), the spectral gap infren~ [Ag+1 — Ax| > 0 is only valid when ¥ =
(0,1). This hypothesis is crucial for the techniques developed in [BL10, Ducl8¢, Ducl8b, Morl4], which
can not be directly applied without imposing further assumptions.

As far as we know, the bilinear Schrodinger equation on compact graphs has only been studied in
the seminal work [Ducl8a]. There, the author ensures that, if there exist C' > 0 and d > 0 such that

C
[Ak+1 — Ag| >

=, Vk € N*,
Ld

then the well-posedness and the global exact controllability of the (BSE) can be guaranteed in some
spaces D(|A|*/?) with s > 3 depending on d.

1.1 Main results

In the current manuscript, we introduce an alternative set of assumptions to the one adopted in [Duc18a].
In particular, we hypothesize the existence of an entire function G such that G € L*°(R,R) and so that
there exist J, I > 0 such that

IG(2)] < Jel*l, vzecC.

We also assume that (Ag)ren- are pairwise distinct numbers, {£+v/Ag}ren+ are simple zeros of G' and
there exist d > 0 and C > 0 such that

V)] 2 -2

. Vk € N*.
k1+d




When these assumptions are verified for suitable d>0, we prove that the global exact controllability of
the (BSE) can be guaranteed in HZ, := D(]A|*/2) with s > 3 depending on d (see Theorem 3.1). Before
providing an application of the result, we formally define the global exact controllability in such spaces.

Definition 1.1. The (BSE) is said to be globally exactly controllable in Hg, with s > 3 when, for every
Y 9? € HE such that ||| 2@ c) = |¥?[|L2(9.c), there exist T > 0 and u € L*((0,T),R) such that

syt =y

We consider a star graph ¢ composed by N € N* edges {e;};<n. Each edge e; is parametrized with
a coordinate going from O to the length of the edge L;. We set the coordinate 0 in the external vertex
belonging to e;. We denote V. the set of the external vertices of the graph ¢ and v its internal vertex
(we refer to the identities (2) for the formal definitions of external and internal vertices).

e 0
v €3 -y

0 > :.L2 LE} - - 0

Figure 2: Parametrization of a star graph with N = 3 edges.

Definition 1.2. For every N € N*, we define AL(N) such as the set of elements {L;};<n € (RT)Y so
that: the numbers {1, {L;};< N} are linearly independent over Q and all the ratios Ly/L; are algebraic
irrational numbers.

Theorem 1.3. Let 4 be a star graph. Let D(A) be the set of functions f € H*(¥,C) such that:

e f(0) =0 for every external vertex © € V. (Dirichlet boundary conditions);

e f is continuous in the verter v and ) -, é?Tf(v) =0 (Neumann-Kirchhoff boundary conditions).

Let the control field B be such that, for every iy € 3,

Bip(x) = (x — L1)*(x), T € ey,
By(xz) =0, x €Y\ ey.

There ezists C C (RT)N countable such that, for every {L;};<n € AL(N)\C, the (BSE) is globally
ezxactly controllable in

Hyte, Ve € (0,1/2).

When the global exact controllability fails, in the spirit of the results provided in [BC06], we introduce
a weaker notion of controllability: the energetic controllability. Let (or)ren+ be an orthonormal system
of S composed by eigenfunctions of A and (uy)ren+ be the relative eigenvalues.

Definition 1.4. The (BSE) is said to be energetically controllable in (ug)ren+ if, for every m,n € N*,
there exist T' > 0 and u € L%((0,7T),R) so that

F%@m = Pn-

The energetic controllability guarantees that the energy of the quantum system id;) = At in L?(¢, C)
can be controlled in specific energy levels via the external field u(¢)B. An application of the abstract
result, which is stated in Theorem 4.1, is the following theorem.

Theorem 1.5. Let & be a star graph with edges of equal length L. Let D(A) be defined such as in
Theorem 1.3. Let the control field B be such that, for every i) € F,

By(x) = (z — L)*y¥(x), T € eq,
By(x) =0, x €Y\ e

The (BSE) is energetically controllable in (%)%N*.



Theorem 1.5 is valid although the spectrum of A presents multiple eigenvalues and the global exact
controllability from Theorem 3.1 is not satisfied (also [Ducl8a,Theorem 2.3] is not guaranteed). In
addition, the energetic controllability is ensured with respect to all the energy levels of the quantum

system i0;1) = A1, since the eigenvalues of A non-repeated with their multiplicity are (%) kEN*

The energetic controllability is useful when it is not possible to fully characterize the spectrum of A
because of the complexity of the graph ¢. By studying the structure of ¢, it is possible to explicit some
eigenvalues (uy)xen+ and verify if the system is energetically controllable in (py)ken+- In Section 4.1, we
discuss some examples where the result is satisfied, e.g graphs containing self-closing edges.

— e

Figure 3: Example of compact graph containing more self-closing edges.

1.2 Scheme of the work

In Section 2, we present the main assumptions adopted in the work and the well-posedness of the (BSFE)
in H with suitable s > 0 (Proposition 2.1).

In Section 3, we prove the global exact controllability of the (BSE) in such spaces. The result is ensured
for generic graphs in Theorem 3.1, while specific star graphs are considered in Theorem 3.2 and Corollary
3.4. Applications of these results are developed in Section 3.2 containing the proof of Theorem 1.3.

In Section 4, we enounce the energetic controllability of the (BSE) in Theorem 4.1. We develop different
applications of the outcome in Section 4.1 where the proof of Theorem 1.5 is also provided.

In Appendix A, we prove the global approximate controllability of the (BSFE) in H with suitable s > 0.
In Appendix B, we present some spectral results adopted in the work, while we study the solvability of
the so-called moments problems in Appendix C.

2 Preliminaries

Let ¢ be a compact graph composed by N € N* edges {e;} < of lengths {L;};<n and M € N* vertices
{vj }jSM- We call V, and V; the external and the internal vertices of ¢, i.e.

(2) Ver={ve{vljam | Neefejlianvee),  Vii={v}jcm \ Ve

We study graphs equipped with a metric, which parametrizes each edge e; with a coordinate going from
0 to its length L;. A graph is compact when it is composed by a finite number of vertices and edges of
finite length. We consider functions f := (f!,..., fV) : ¢ — C with domain a compact metric graph ¢
so that f7 :e; — C for every j < N. We denote

A =124,C) =[] L*(¢;,C)

J<N

The Hilbert space 7 is equipped with the norm | - ||z and the scalar product

()2 = Z(Wﬁ )L2(e;,C) = Z ¢’ (z)dz, Vi, p € H.

J<N J<N

In the bilinear Schréodinger equation (BSE), we consider the Laplacian A being self-adjoint and we
denote ¢ as quantum graph. From now on, when we introduce a quantum graph ¢, we implicitly define
on ¢ a self-adjoint Laplacian A. Formally, D(A) is characterized via the following boundary conditions.

Boundary conditions. Let ¢4 be a quantum compact graph.

(NK) A vertex v € V; is equipped with Neumann-Kirchhoff boundary conditions when every f € D(A)
of

is continuous in v and ) 5, 52 (v) = 0 (the derivatives have ingoing directions in v).

(D) A vertex v € V, is equipped with Dirichlet boundary conditions when f(v) = 0 for every f € D(A).



(N) A vertex v € V, is equipped with Neumann boundary conditions when 9, f(v) = 0 for every

f € D(A).
Notations. Let ¢ be a quantum compact graph.

e The graph ¥ is said to be equipped with (D) (or (N)) when every v € V, is equipped with (D) (or
(N)) and every v € V; with (NK).

e The graph ¥ is said to be equipped with (D/N) when every v € V, is equipped with (D) or (N),
while every v € V; with (VK).

In our framework, the Laplacian A admits purely discrete spectrum (see [Kuc04, Theorem 18]). We
define (A;)ren+ the ordered sequence of eigenvalues of A and a Hilbert basis of 7

(3) P := (k) ren
composed by corresponding eigenfunctions. From [Ducl8a, RemarkA.4], there exist Cq,Cs > 0 so that
(4) Cik? < M\ < Cok?, VE>2.
For s > 0, we define the spaces H* = H*(¥4,C) := vazl H*(e;j,C) and
h® = {(%‘)jew* cC| > itz < 00}
j=1

1
> 17%24]%)? for every (z;)jen- € h®. Let [r] be the entire
j=1 J 3l

equipped with the norm H(ij)jeN* ) =
part of r € R. For s > 0, we denote

Hjyr = {1/1 € H® | 92" is continuous in v, n < [(s +1)/2];

>0 () =0, YneN, < [5/2], we Vi),
eEN(v)

1

Hyy = H(4,C) i= D(A?), Il s= 1 oy = (D2 6 ¢ dmaal?)

keN*

We introduce the main assumptions adopted in the manuscript by considering (p)rens € (Ak)ren+ an
ordered sequence of some eigenvalues of A and

© = (pr)kens € (Pr)ren-
the corresponding eigenfunctions. Let n > 0, a > 0, I := {(j,k) € (N*)? : j # k} and

L2

H = spanf{py | k € N*}
Assumptions I (¢,n). The bounded symmetric operator B satisfies the following conditions.
1. There exists C' > 0 such that
¢ .
‘<(pk,BSD1>L2|Zk27+n, VkEN .
2. For every (j, k), (I,m) € I such that (5,k) # (I,m) and p; — pir, — gy + o, = 0, it holds
(@i Bej)rz — (er, Bor)rz — (@1, Bor)r2 + (m; Bom) 12 # 0.

Assumptions I (). The couple (A, B) satisfies Assumptions I(®,n) with ® defined in (3).



Assumptions IT (¢, 7n,a). Let Ran( 7)) CHZN A and one of the following points be satisfied.

BlH@,m
1. When ¢ is equipped with (D/N) and a + n € (0,3/2), there exists d € [max{a + n,1},3/2) such
that
Ran(B|yz+a0 ) © H* 0 HG N A .
2. When ¢ is equipped with (M) and a +n € (0,7/2), there exist d € [max{a + 7,2},7/2) and
dy € (d,7/2) such that
CH*NH}NHZNA.

dm?f)

4 N
Ran(B'ij},cm%Z) C Hy}) NI, Ran(B|H;+

3. When ¥ is equipped with (D) and a +n € (0,5/2), there exists d € [max{a +7n,1},5/2) such that
2+4d 1+d 2 ~
Ran(B| yz+ap, 7) € H HMNHGENH N A
If a +n > 2, then there exists dy € (d,5/2) such that

Ran(B|ya, o 77) € H 0 .

Assumptions IT (n,a). The couple (A, B) satisfies Assumptions II(®, 7, a) with ® defined in (3).

2.1 Well-posedness of the bilinear Schrodinger equation

Now, we cite [Ducl8a, Proposition 3.1] where the well-posedness of the bilinear Schrédinger equation
(BSE) is ensured in H, with suitable s > 3.

Proposition 2.1. [Ducl8a, Proposition 3.1] Let 4 be a compact quantum graph and (A, B) satisfy
Assumptions 1I(n,d) with n >0 and d > 0. For any T >0 and u € L*((0,T),R), the flow of the (BSE)
is unitary in S and, for any initial data Y° € H?;d with d from Assumptions II(n,d), there exists a
unique mild solution of (BSE) in H;er, i.e. a function ¢ € C°([0,T], Héer) such that

(5) Y(t,x) = e Ay0(x) — i/o e~ A=)y (5) Bap(s, ) ds, vt € [0,T].

Remark 2.2. Let ¢ := (pr)ren C (0r)ken be an orthonormal system of 7 made by eigenfunctions
of A and

H = span{py | k € N*} g

If (A, B) satisfies Assumptions II(@,n, (Z) with n > 0 and d > 0, then, for every ¥° € H(?rd U S with d
from Assumptions II(@,n, d~) and u € L*((0,T),R), there exists a unique mild solution of (BSE) in
H2M U2

The statement follows equivalently to Proposition 2.1 as the propagator I'} preserves the space Héz nA
when B: HZ N A — HZ N A .

3 Global exact controllability

Theorem 3.1. Let & be a compact quantum graph and (Ap)ren+ be the ordered sequence of eigenvalues
of A. Let G € L*(R,R) be an entire function such that there exist J,I > 0 such that

1G(z)| < JeMl*l, vec.
The eigenvalues (A )ken+ are simple, the numbers {E£V Ak tren are simple zeros of G and there exist
d >0 and C > 0 such that

C

. Vk € N*.
k1+d

G (£ \i)| =

If the couple (A, B) satisfies Assumptions I(n) and Assumptions II(n,d) for n > 0, then the (BSE) is
globally exactly controllable in H for s =2+ d and d from Assumptions II(n,d).



Proof. 1) Local exact controllability. For e, T > 0, let

Olr ={veHy| [¥lle =1, [0 —n(Dllsy <€}, (7)) =e Ty,

We prove the existence of T',e > 0 so that, for every ¢ € Of 1, there exists u € L?((0,T),R) such that
¥ =I'%¢p1. The result corresponds to the surjectivity, for 7' > 0 sufficiently large, of the map

T'¢1 :ue L2((0,T),R) —s ¢ € Oy C H.
OFT. ) :
We decompose '/ ¢1 = > cye O (T)(¢r(T), '/ ¢1) 12 and we consider the map o such that

() = ((6r(T), T b1) 12) e+ L2((0,T),R) — Q := {x := (wi)ren- € h*(C) | [|x]le= = 1}.

The local exact controllability is equivalent to the local surjectivity of a. To this end, we use the
Generalized Inverse Function Theorem ([Lue69, Theorem 1; p. 240]) and we study the surjectivity of
~¥(v) := (dy(0)) - v the Fréchet derivative of a. The map + is the sequence of elements

T
i (v) 1= —i / o(r)e'M A Az (g, Bor)a, Yk ENT
0

so that v : L2((0,7),R) — T5Q = {x := (zk)ken~ € h*(C) | iz € R} with a(0) = & = (6k1)ken+. The
surjectivity of v corresponds to the solvability of the moments problem, for (zx)ren € T5Q,

T
(6) xk(qu,B(bk}Z% = —i/ u(T)ei(”\’“_’\l)TdT, Vk € N*.
0

In other words, we need to ensure that, for every (vg)ren € {(zk)ren € R°(C) | ixzy € R} C h®, there
exists u € L?((0,T),R) with 7' > 0 such that the relations (6) are satisfied for every k € N*. To

this purpose, we notice that (xk<¢k’B¢1>Z"’1)keN* € h*=27m = p4=n C h? thanks to the point 1. of
Assumptions I(n). As B is symmetric, we have

(¢1,Bo1)r2 €R, iz1(p1, Bo1) s € R.

From Proposition C.7, the solvability of (6) is guaranteed thanks to the identity (1) and since

(@100, Bo1)12) pene € {(ci)ren € hU(C) | 1 € R},

The local exact controllability is proved and the result is also valid for the reversed dynamics (see
[Ducl8c, Section 1.3]). Thus, for every ) € O 1, there exists u € L*((0,T),R) such that ¢, = T4,

2) Global exact controllability. Let T,e > 0 be so that 1) is valid. Thanks to Theorem A.2, for
any 1,92 € HZ such that |[¢1]/z2 = |[¢e]/z2 = p, there exist T1,T» > 0, uy € L*((0,71),R) and
ug € L?((0,Ty),R) such that

ITEp ' —dille) <& ITEp "o — dille) <6, = p T, p T € OF 1.

From the point 1), there exist uz,us € L?((0,T),R) such that LR T = TH T2 s = per. In conclu-
sion, there exists 7 > 0 and @ € L2((0, f), R) such that F%% = 1)s. O

3.1 Global exact controllability of bilinear quantum systems on star graphs

In the current section, we ensure the global exact controllability when ¥ is a suitable star graph. From
now on, when we denote ¢ as a star graph, we also consider it as a quantum graph.

Theorem 3.2. Let &4 be a star graph equipped with (D/N') made by edges long {L;}j<n € AL(N). If
the couple (A, B) satisfies Assumptions I(n) and Assumptions II(n,e) for n,e > 0, then the (BSE) is
globally exactly controllable in Hf for s =2+ d and d from Assumptions II(n, ).



Proof. 1) Star graph equipped with (D). The conditions (D) on V. imply that, for each k € N*|

o = (a} sin(\/Apz), ..., a sin(y/Apz))

for suitable {a}};<ny C C such that (¢x)ken is orthormal in 7. The conditions (N'K) in the internal
vertex v € V; ensure that

ap sin(v/AgL1) = ... = a) sin(v Ay Ly), N . )
" {ZKN al, cos(v/AeLy) =0, = ; t(vV A Ly) =0

We use the provided identities in order to construct an entire function satisfying the hypotheses of
Theorem 3.1. To this purpose, we define the maps

= H sin(xL;) Z cot(xLy) H sin(zL) Z sin I(JCELJ)

I<N I<N I<N I<N

As |cos(zL;)| < e™!#l and [sin(zL;)| < e™!?l for every | < N and z € C, we notice that G is an entire
function such that Y
|G(2)] < NelFlZi=i ke vz ecC.

In addition, G(\) = 0 for every k € N* thanks to (7) and G € L*°(R,R), while

G'(x) = —G(z) + H(z), H(zx):= %( H cos(zLy)) Z cot(xLy).

I<N I<N

The identities (7) imply that H(v/Ag) = 0 and then

(®) G (Vaw) = —G(Va),  VkeN-.

Now, for L* := minj<ny L; and « € R, we have

sin(zL L sin®(zLy)
HZ<N| ( l)|Zl<N lHk;«él k) L*ZH|SID aLy)|

Hng sin®(zLy) I<N k£l

(9) G(z)] =

We refer to [DZ06, Corollary A.10; (2)], which contains a misprint as it is valid for every
A> gmax{l/Lj : j< N}

Thanks to the relations (8) and (9), the mentioned corollary ensures that, for every ¢ > 0, there exists
C41 > 0 such that

|G’(i\/)\k)\ZL*ZH\sm VARLj) |_ﬁ Yk e N* )\k>%max{1/Lj : J< N}L
=1 j#l

Remark 3.3. For every k € N* and j < N, we have |¢i(LJ)| # 0, otherwise the (NK) conditions would
ensure that ¢k (L) = ¢7(Ly,) = 0 with [,m < N so that ¢\, ¢ # 0 and there would be satisfied

al sin(Lyy/Ay) = af* sin(Ly, /M) = 0
with ak,af # 0, which is absurd as {L;};<n € AL(N).
Remark 3.3 implies |G'(£+/Ai)| # 0 for every k € N* and, from the relation (4), there exist € > 0 and
C5 > 0 such that
Co *

|G/ (£ Ak Ic1+’ Vk e N*.
We notice that the spectrum of A is simple. Indeed, if there would exist two orthonormal eigenfuctions
f and g of A corresponding to the same eigenvalue A, then h(z) = f(v)g(z) — g(v) f(z) would be another



eigenfunction of A. Now, h is an eigenfunction corresponding to A and h(v) = 0 that is impossible thanks
to Remark 3.3. )
In conclusion, the claim is achieved as Theorem 3.1 is valid with respect to the function G when d = e.

2) Generic star graph. Let I; C {1,..., N} be the set of indices of those edges containing an external
vertex equipped with (N) and I := {1,.., N} \ I;. The proof follows from the techniques adopted in 1)
by considering Proposition B.2 (instead of [DZ06, Corollary A.10; (2)]) and the entire map

G(z) = H sin(xLy) H cos(xLy) ( Z cot(xL;) + Z tan(a:Ll)). O

lels lely lel> lely

Corollary 3.4. Let & be a star graph equipped with (D/N'). Let 4 satisfy the following conditions with
N € 2N* such that N < N.

e For every j < ]\7/2, the two external vertices of 4 belonging to eaj_1 and ea; are both equipped with

(D) or (N).
e The couples of edges {egj,l,egj}j<1\~,/2 are long {Lj}j<ﬁ/2, while the edges {e;}5_ ;< measure

{Li}gjen- In addition, {L;},_x U{Li}5 ey € ALY+ N —N).

If (A, B) satisfies Assumptions I(n) and Assumptions II(n,e) for n,e > 0, then the (BSE) is globally
ezactly controllable in HE for s =2+ d and d from Assumptions II(n,€).

€1 €2

851:/’\4-

Boundaries: 0 Neumann-Kirchhoff @ 0 m X Dirichlet/Neumann.

Figure 4: Example of graph described in Corollary 3.4 with N =4 and N = 6.

Proof. Let I C {1,..., 1\7/2} be the set of j such that ez;_1 and eg; contain two external vertices of ¢
equipped with (V) and I := {1,..,N/2} \ I;. Let Is C {N + 1,...,N} be the set of j such that e;
contains an external vertex of ¢4 equipped with (NV) and Iy := {N +1,...., N} \ I3. Let

(AR kene =

()‘llc)keN* = (M

4L§ )j,keN* ’

FISEST

k272
( L? ) JkEN
jels
We notice that (AL)ken+ U (A2)ren+ C (A )ken- are the only eigenvalues of A corresponding to eigen-
functions vanishing in the internal vertex v. For every eigenfuction f € (¢x)ren+ of A corresponding to
an eigenvalue
(2k — 1)%72

=
2
4Lj

G(Allc)kEN’W kGN*, jellv
the eigenfunction f is uniquely defined (up to multiplication for a € C such that |«| = 1) by the identities

[N ) = = (z) = \/ECOS(\A-T); ff=0, vie{l,..N}\{2j —1,2j}.

Equivalently, it is valid with (A?)gen- and then the eigenvalues (A})ren+ U (A2)gen+ are simple. In
conclusion, the discrete spectrum of A is simple since, if there would exist a multiple eigenvalue

A e e \ ((Abkenr U (Wen ),

then there would exist two orthonormal eigenfuctions f and g corresponding to the same eigenvalue .
Now, h(z) = f(v)g(z) —g(v) f(z) would be another eigenfunction corresponding to A such that h(v) =0,
which is impossible as it would imply that

AE ()\zlc)keN* U ()\i)keN*-



Thus, the eigenvalues (A;)ren+ are simple. The remaining part of proof follows the one of Theorem 3.2
thanks to Proposition B.2 by considering the entire function

G(z):= [] sinzL) [] cos(xLl)(ZZcot(xLl)+22tan(le)+Zcot(xLl)+Ztan(xLl)>.

lelUly lelUlg lels lel, lely lels
O

3.2 Applications and proof of Theorem 1.3

In the following theorem, we apply Theorem 3.2 for a specific problem.

Theorem 3.5. Let 4 be a star graph equipped with (N'). For every v € 3, let B be such that
B!, .. M) = ((52° — 242 Ly + 452 L} — 4023 L% + 1522 LT — L8)',0,...,0).

There exists C C (RT)N countable so that, for every {L;};j<n € AL(N)\ C, the problem (BSE) is
globally exactly controllable in
Ht, Ve € (0,1/2).

Proof. The conditions (A) in V; imply the existence, for every k € N*, of {al};<nx C C such that
dr = (ar cos(x\/Ap), ..., aly cos(z\/Ar)).

The coefficients {al };<y C C are so that (¢x)ken+ forms a Hilbert basis of # and then

L L;  sin(2Liv/Ay)
10 1= / ak |? cos®(z A)dx = al |? —l+7‘
(10) 3, et Tk (G = A

For every k € N*, the (MK) boundary conditions in V; ensure

aj cos(v/ML1) = ... = ap) cos(v/ ML), Z aj, sin(v/ArLi) =0,

I<N

> tan(v/ kL) =0, > laPsin(2Liv/Ax) = 0.

I<N I<N

(11)

The last identities and (10) imply 1 = leil lat|?L;/2. Thanks to (11), we have a}, = a} cos(VAnL1) g

kcos(«/)\kLl)
2
| #1 and k € N*. Thus, |a;|*(L1 + leiz Ll% Vi\‘,’iﬁj))) = 2 for every k € N* and

N N
-1
(12) lar)? =2 H COSZ(\/)\kLm)(ZLJ‘ H COSZ(\//\kLm)) .
m=2 =1 m#j
Verifying Assumptions I(3 + ¢) with ¢ > 0. For every k € N*, thanks to the relation (11)
N
H cos(v/ AxLy) Z tan(v/ApL;) =0, = Zsin(\/AkLl) H cos(v/ A L) = 0.
I<N I<N =1 m#£l

Thanks to the relation (4) and Corollary B.3, for every e > 0, there exist Cy,Cy > 0 such that,

2 2 &
13 ap| > > > , Vk € N*,
( ) | k| \/le\il Ll COSiQ( /rkLl) \/Z;il Llcl_Q)\jlj_e k-l—i—e
In addition, (¢}, B¢§C>L2(el,(€) =0 for 2 <1 < N and, for every k € N*,
120atal LS 120atal LS -5
(14) (¢1, Bor)r2 = — e Vi ELA  to(vAk ).

(VA + VA (VA = V)

10



From the relations (13) and (14), thanks to the relation (4), for every e > 0, there exists C3 > 0, such
that for £ € N* sufficiently large,

(15) (01, Bow) 2| > 1o

Now, as done in [Ducl8a, Example 1.2], it is possible to compute ax(-) and Bg(-) with k& € N* analytic
functions in R, so that

ar(L1)? = (ap)?,  a1(L1)ag(L1)Bk(L1) = (¢1, Bor)

and each a;(-)ax(-)By(+) is non-constant and analytic. Each a;(-)ax(-)B(-) has discrete zeros Vi CRT
and V' = U,y Vi is countable. For every {L;}1<n € AL(N) so that Ly ¢ V,

(16) [{(¢1, Béy) 2| # 0, Vk € N*.

Thus, the point 1. of Assumptions I(3 + €) is ensured thanks to the relations (15) and (16) since, for
every € > 0, there exists Cy > 0 such that

C *
|(¢1, Bow)r2| > kTie’ Vk € N*.

Let (k,5),(m,n) € I, (k,j) # (m,n) for I := {(j, k) € (N*)? : j # k}. We prove the validity of the
point 2. of Assumptions I(3 + €). As above, we compute F(-) with k¥ € N* analytic in R*, such that
(¢r, Bor)r2 = Fi(L1). Each Fj g 1m () := F;(-) — Fx(-) — Fi(-) + Fin(-) is non-constant and analytic in
R*, the set of its positive zeros Vj j 1.m is discrete and

V= U Vikim
(4,k),(L,m)el + (5,k)#(l,m)

is countable. For {L;};<y € AL(N) so that L; ¢ V UV, the point 2. of Assumptions I(3 + €) with
e > 0 is satisfied.
Verifying Assumptions II(3 + €1, €e2) with €1,e2 > 0 so that €1 + €2 € (07 %) Let

P(z) = (52°% — 242° Ly + 452" L} — 402° L} + 152° L] — LY).
For m > 0, we notice B : H™ — H™ and 0,(Bv)(v) = 0 for every v € V, since 9, P(0) = 0. Now,
05 (BY)(v) = (BY)(v) = 0 with v € V; as 8,P(Ly) = P(Ly) = 0 and then B : H2 — HZ. Moreover,
02P(Ly) = 93P(Ly) = 0, which imply B : Hy}e — Hy}c for every m € (O, %) For d € [3 + €1 + €9, %)
and dy € (d7 %)7 there follow

d d
Ran(B|,4 ) € Hy, Ran(B|yz+a) C Ran(Blyarangisangs ) S o S N HE,.

The point 2. of Assumptions II(3 + €1, €2) with €1, e, > 0 so that €1 + ez € (0, 1) is valid.

Conclusion. The couple (A, B) satisfies Assumptions I(3 + €) and Assumptions II(3 + €1, e2) with
€1,€2 > 0 so that €1 + €9 € (0, %) Theorem 3.2 guarantees the global exact controllability of the (BSE)
in Hy with s =2+ d and d € [3+ € + €2, 7). O

Proof of Theorem 1.3. Theorem 1.3 is proved as [Ducl8a, Example 1.2] that is stated for N = 4. The
only difference between the two results is that Theorem 1.3 is ensured from the validity of Theorem 3.2
instead of [Ducl8a, Theorem 2.4], which is only valid for N < 4. O

4 Energetic controllability
Let us recall the notation (¢k)rens C (¢r)ren+ indicating an orthonormal system of 5% made by some

eigenfunctions of A. Let (ux)ren+ be the ordered sequence of corresponding eigenvalues. We refer to
Definition 1.4 for the formal definition of energetic controllability.

11



Theorem 4.1. Let 4 be a compact quantum graph and one of the following points be verified.
1. There exists an entire function G such that G € L (R, R) and there exist J,I > 0 so that
G(2)] < Jell, Vz e C.

The numbers {£.\/fix tren= are simple zeros of G and there exist d >0 and C > 0 so that

¢ "
|G (/1) = PREwL Vk e N™.

2. For every € > 0, there exist C > 0 and d >0 so that |kr1 — pr| > k% for each k € N*.

If (A, B) satisfies Assumptions I(@,n) and Assumptions II(@,n,d) for n > 0, then the (BSE) is globally

ezactly controllable in HY N € for s = 2+ d with d from Assumptions II(@,n,d) and energetically
controllable in (pi)ken- -

Proof. From Remark 2.2, the (BSE) is well-posed in Hj N J with s = 2+ d and d from Assumptions
II((p,moZ). The statement of Theorem 3.1 holds in % when the point 1. is valid, while the validity
of [Ducl8a, Theorem 2.3] in A is guaranteed by 2. . The global exact controllability is provided in
HE N A and the energetic controllability follows as ¢ € HZ N A for every k € N*. O

Let ¢ be a generic compact quantum graph. By watching the structure of the graph and the boundary
conditions of D(A), it is possible to construct some eigenfuctions (¢x)xen+ of A corresponding to some
eigenvalues (p)ren+- For instance, we consider ¢ containing a self-closing edge e; of length 1.

e - —— e
— < > T~

Figure 5: Example of compact graph containing a self-closing edge.

We define ¢ := (¢r)ren+ such that ¢ = (\/isin(lerx),O,...,O) and the corresponding eigenvalues
(i) ken+ = (4272 ken € (Ak)ren+, which satisfy the gap condition

. . _ 2
kleng* |pg+1 — px| = 1270 > 0.

If Assumptions I(@,n) and Assumptions II(@,n,0) are satisfied for > 0, then Theorem 4.1 implies the
energetic controllability in (ux)gen+. As we do in the proof of Theorem 4.4, this approach is also valid
when ¢ contains more self-closing edges (e.g. Figure 3).

Remark. The idea described above can be adopted when & contains suitable sub-graphs denoted “uniform
chains”. A uniform chain is a sequence of edges of equal length L connecting M € N* vertices {v;}<m
such that, if M > 3, then va,...,upr—1 € V;. Moreover, one of the following assumptions is valid.

e The vertices v1,vp € Ve are equipped with (D).
o The vertices v1 = vpr belong to V;.

e The number of vertices M € {2,3} and v1,vp € Ve are equipped with (N ).

Boundaries: © Neumann-Kirchhoff @Neumann B Dirichlet.

Figure 6: The figure underlines the uniform chains in a generic compact graph.
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Let 4 contain N € N* uniform chains {g?;}j<ﬁ7 composed by edges of lengths {L;}, 5 € AL(N). Let
I C{1,.. ]\7} and Iy C{1,..., N} \ I be respectively the sets of indices j such that the external vertices
of 9; are equipped with (N') and (D), while I3 := {1,...,N} \ (I; U Lz). We consider the eigenvalues
(k) ken+ obtained by reordering

((Qk 1)%n 2) g <k27r2) g ((Qk: - 1)27r2)
4L§ k,jEN* L? k,jEN* L? kjeN

JEI JjEl jEIg

As in the proof of [Ducl8a, Lemma A.2], the Roth’s Theorem [Ducl8a, Proposition A.1] ensures that, if
{L;};<x5 € AL(N), then for every € > 0, there exists C >0 so that

Ce .
|1 — pir| > T Vk € N¥,

with € > 0 and C¢ > 0 depending on €. In conclusion, if Assumptions I(@,n) and Assumptions II(@,n,€)
are satisfied for n > 0, then Theorem 4.1 implies the energetic controllability in (f)ken~

4.1 Applications and proof of Theorem 1.5
Proof of Theorem 1.5. Let us assume N = 3. The (D) conditions to the external vertices V. imply
b = (ab sin(y/jire), a2 sin(yjira), o} sin(/fixe))
with suitable (a},a?,a}) € C3. From the (NK) in v € V;, there follow di<s al, cos(\/prL) = 0 and

apsin(y/urL) = ¢ € R for every m < 3. When ¢ # 0, we have the eigenvalues (%

sponding to the eigenfunctions (gx)ren+ so that

gk = (\/37Lsin (LkQ_Ll)Wm), 3% sin (7(2k2;1)wx), 3% sin (7(2k2—[/1)7rx>>7 Vk € N*.

of multiplicity two that we associate to the couple of

)keN* corre-

When ¢ = 0, we obtain the eigenvalues (%) LEN

sequences of eigenfunctions (f)ren- and (fZ)ken~ such that, for every k € N*,
fh= ( i sin (kmx) i sin (ij) i sin (kix))
B V3L L") V3L L") V3L L)
1 kmw 1 km
2 (0 )L win (ET e
fi = (0, Lsm<Lx), Lsm<Lx>).

Moreover, ( f})ren-U(f?)ken-U(gk)ken- is an Hilbert basis of 7 and the eigenvalues of A (not considering
U ((2k—1)27r2)
keN* 4L2 keN*

Verifying Assumptions I(¢,1). We reorder (f})ren+ U (gk)ken+ in @ = (¢k)ken-- The point 1. of
Assumptions I(@, 1) is verified as there exists C,Cy > 0 such that

Gy Co
, Vk € N*.
G — )2 = B

After, there exist Cs,Cy > 0 so that By x := (g, Bog)r2 = C3+ Cyk~2 for every k € N* and py, = 4L’2 .
Now, if p; — i — pu + ptm = TZ( 2 — k% — 1?2 + m?) =0, then

their multiplicity) are (k;%z)

|{p1, Bor) 2| >

Bjj—Bir—Bii+Bum =012k 2-1"24+m?) £0,

which implies the point 2. of Assumptions I(¢, 1).
Verifying Assumptions II((p, 1,0) and conclusion. The operator B stabilizes the spaces H™ with

m >0 and span{yy : k € N* } N HZ, ensuring the point 1. of Assumptions II(¢, 1,0). Since
2

inf | =~
m — Wil = —=
G kEN* k= 1 412’
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the point 2. of Theorem 4.1 holds and the global exact controllability is proved in HJ N . As Yk €

H3 N H for every k € N*, the energetic controllability follows in (%) N

When N > 3, the spectrum contains simple eigenvalues relative to some eigenfunctions (g )gen+ and
multiple eigenvalues each one corresponding to N — 1 eigenfunctions { fi.; hi<n—1 with k € N*. For each
k € N*, we construct {fg,;i<n—1 such that only the functions {fi.;}i<n—2 vanish in e;. We reorder
(fr:n—1)ken U (gr)ken~ in @ = (¢r)ren~ and the proof is achieved as for N = 3. O

Theorem 4.2. Let 4 be a star graph equipped with (D/N) and containing two edges e; and eq long
1. Let ey and ey connect the internal vertex of 4, equipped with (N'K), with two external vertices both
equipped with (D).

- €1 \. €2 -

'//~‘§~§§§§‘~E

Boundaries: O Neumann-Kirchhoff M Dirichlet X @ O Dirichlet/Neumann.

Figure 7: Example of star graph described by Theorem 4.2 with N = 5.

Let By = (22('(z) — v*(2)), 2% (W% (2) — ¢ (2)),0,...,0) for every ¢ € . There exists (¢r)pen C
(k) )ken- such that the (BSE) is globally exactly controllable in H3 N A and energetically controllable
in/(k2ﬂ2)k€N*.

Proof. Let i = (ux)ken+ and @ = (¢g)ren~ be such that uy = k*72, o} = —¢? = sin(krz) and ¢!, =0
for every k € N* and 3 <1 < N. The claim follows as Theorem 29 from the validity of the point 2. of
Theorem 4.1 with d = 0. O

Theorem 4.3. Let ¥ be a star graph equipped with (D) and composed by % couples of edges {ezj_1, e2; }jgg
long {L;};<x € AL(%) with N € 2N*.

€1 €2

Boundaries: O Neumann-Kirchhoff M Dirichlet.

Figure 8: Example of star graph described by Theorem 4.3 with N = 6.

Let B be such that By = ((B)!, ..., (BY)YN) for every 1 € S and

/
(Byp)% = —(By)¥—! = gg;zxz(wzz<§;x> —¢2l_1<gl‘>)’ vj < %

There ezists C C (RY)N countable so that, for every {L;}j<n € AL(N)\ C, there exists (¢r)ren+ C
(¢1)ken= such that (BSE) is globally exactly controllable in Hy NI with € € (0,1/2) and energetically

: k2rn?
controllable in (T§ )k,jeN*'
GEN/2

Proof. Let (pug)gen C (Ak)ken+ be obtained by reordering (@) for every j < N/2 and (pp)ren+ be

keEN*
an orthonormal system of % made by corresponding eigenfunctions. For k € N*| there exist m(k) € N*
and [(k) < N/2 so that ¢} =0 for n # 2l(k), 2l(k) — 1 and

m(k)*m? (k) Ik
Nkzi( ) pr (@) = —t W (@) =

) k

sin (\/ugx).
Ll2(k) Luw)
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Let [r] be the entire part of r € RT. For k € N* and C' = 4 min;<x L;, we have
N N/2 1 2
Liz o L, 0 Ln
3 (gl ()
=1 n=1 [(1+1)/2] [(1+1)/2] ((1+1)/2] L2(e;)

Ly(k) 4$2 m(l)mc m(kz)wx 1
sin sin | ———— dﬂf’ZC / 22 sin(m(1)7x) sin(m(k)rz)dz|.
A Ll(k) ( Ll(k) ) ( Ll(k) ) { 0 ( ( ) ) ( ( ) ) |

[(p1, Bor) 2| =

Assumptions I(@, 1) and Assumptions II(@, 1, €) with € € (0, %) hold as in Theorem 1.5 and Theorem 3.5.
We consider the techniques adopted in the proof of [Ducl8a, Lemma A.2] which are due to the Roth’s
Theorem [Ducl8a, Proposition A.1]. For every e > 0, there exists Ce > 0 so that

C. N
|Mk+1—/ik|ZE7 Vk € N*.

The claim follows since the hypotheses 2. of Theorem 4.1 is verified with d = ¢ € (0, %) O

Theorem 4.4. Let ¥4 be a compact quantum graph. Let the first N < N edges {ej}j<1\7 of the graph be
self-closing edges of lengths {Lj}j<ﬁ (e.g Figure 3). For v = (', ..9N), let B be such that

(By)' = sz(%x - Lj)zbj(%x), (By)™ =0, VI<N, N<m<N.

J<N

There exists C C (R*)ﬁ countable so that, if {L;}, 5 € AL(N)\ C, then there exists (pr)ren C

k)keN+ such that 15 globally exactly controllable in U with e € 0,1/2) and energetically
0] h that (BSE loball l llabl HEZ‘G FC with d Il

: kK
controllable in (%5-), . ...
( L? )k,jGN
i<W

Proof. Let (pp)ren- be such that, for each k € N*, there exist m(k) € N* and I(k) < N such that
2_2
k= %7 902(’“) () = /le(k) sin (/prz) and ¢ff = 0 for every n # I(k) and n < N. Now, (¢r)ken-

(k)
is an orthonormal system made by eigenfunctions of A and the claim yields as Theorem 4.3. O

Acknowledgments. The author is grateful to Olivier Glass and Nabile Boussaid for having carefully
reviewed this work. He also thanks Kais Ammari for suggesting him the problem and the colleagues
Andrea Piras, Riccardo Adami, Enrico Serra and Paolo Tilli for the fruitful conversations.

A Appendix: Global approximate controllability

Definition A.1. The (BSE) is said to be globally approximately controllable in H with s > 0 when,
for every ¢ € Hg, I' € U(s#) such that I'y € H and € > 0, there exist T > 0 and u € L*((0,T),R)
such that ||T'y) — Tl < e

Theorem A.2. Let (A, B) satisfy Assumptions I(n) and Assumptions II(n,d) forn > 0 and d > 0, then

the (BSE) is globally approzimately controllable in H for s =2+ d with d from Assumptions II(n, d).

Proof. In the point 1) of the proof, we suppose that (A, B) admits a non-degenerate chain of connect-
edness (see [BACC13, Definition 3]). We treat the general case in the point 2) of the proof.

J .
1) (a) Preliminaries. Let 7, be the orthogonal projector m,, : # — 6, := span{¢; : j <m}
for every m € N*. Up to reordering of (¢ )ren+, the couples (m, (A + uoB)mp,, T Bmy) for m € N*
admit non-degenerate chains of connectedness in .. Let || - [|pv(r) = | - [Bv(0,r)r) and || - || () :=

I L(Hs, 1) for s > 0. Let B H} — HZ} with s; >0and s € [0,s; +2).
Claim. Ve >0, 9N, € N*, Ty, € U(#) : wn,In, 7N, € SU(H,),
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Let N,N; € N* be such that Ny > N. We apply the orthonormalizing Gram-Schmidt process to
(7TN1F¢J )j<n and we define the sequence (¢g)]<N that we complete in (¢j)j<n,, an orthonormal basis
of ¢,. The operator r N, is the unltary map such that r NP = ¢] for every j < Nj. The provided
definition implies limy, -0 ||I‘N1 o; — FquH(s) = 0 for every j < N. Thus, for every ¢ > 0, there exists
N7 € N* large enough satisfying the claim.

1) (b) Finite dimensional controllability. Let T,; be the set of (j,k) € {1,...,N1}? such that
Bj = (¢;, Bor)r2 # 0 and |\; —\g| = | Ay, — \i| with m, l € N* implies {j, k} = {m, [} for B,,; = 0. For
every (4, k) € {1 S Ni1}2and 0 € [0 27), we define Eek the N7 X N7 matrix with elements (EJ wim =0,
(B )ik =€ and (B )iy = —e~" for (I, m) € {1,..., N} \{(j, k), (k. ) }. Let Eaq = {E},, : (j.k) €
Toa, 0 €10,27) } and Lze(Ead). Fixed v a piecewise constant control taking value in E,q and 7 > 0, we
introduce the control system on SU (7, )

i) = z(t(t), te(0,7),
(18) {.Z‘(O) = IdSU(%Nl)-

Claim. (18) is controllable, i.e. for R € SU(H,), there exist p € N*, My, ..., M, € E,q,
at,...,a, € RT such that R = e*™Mi o .. oMo,

For every (j, k) € {1,..., N1}, we define the Ny x N; matrices R, Cjx and D; as follow. For (I,m) €
{1, N1 }2\ {4, k), (k. j) }.we have (Rjk)im = 0 and (Rjx)jk = —(Rjk)k; = 1, while (Cjx)1m = 0
and (Cj)jx = (Cjk)k,; = i. Moreover, for (I,m) € {1,..,N1}*\ {(1,1),(5,5)}, (Dj).m = 0 and
(Dj)11 = —(Dj);,; =i. We consider the basis of su(&y,)

e:={Rjr}jk<n, U{Cjrtjr<n, U{Dj}tj<n,-

Thanks to [Sac00, Theorem 6.1], the controllability of (18) is equivalent to prove that Lie(E,q) 2
su(Hy, ) for su(#y,) the Lie algebra of SU(#n, ). The claim si valid as it is possible to obtain the
matrices R; k., Cj and D; for every j,k < N; by iterated Lie brackets of elements in Fqq.

1) (c) Finite dimensional estimates. From 2) and 7y, Iy, 7y, € SU(Hy, ), there exist p € N*,
My, ..., M, € Equq, o, ...,a € R s0 that

Olel o OépMp

(19) N DN, TN, = € .oe

Claim. For every [ < p and et from (19), there exist (T%)ien~ C RT and (ul))nen+ such that
ul, 2 (0,T!) — R for every n € N* and

'U.l o
(20) nh—{lgo HFTZ(bk —e lMl¢k||(s) =0, Vk < Ny,

(21) Sélp (||Un||Bv Ty)» ||unHL°° ((0, Tn)]R)vT ||un||L°° OTH)R)) < Q.

We consider the results developed in [Chal2, Section 3.1 & Section 3.2] by Chambrion and leading to
[Chal2, Proposition 6] (also adopted in [Ducl8b]). Each e®™: is a rotation in a two dimensional space
for every | € {1, ...,p} and the mentioned work allows to explicit {7 };en+ C RT and {u!, },en- satisfying

1
(21) such that !, : (0,7!) — R for every n € N* and lim,, ||7TN1F;T[¢]€ — Mgy |12 = 0 for every
k < Ny. As e™i ¢ SU(H#y,), we have

l
(22) Tim [T é, — e Mgyl =0, V< N

We consider the theory developed by Kato in [Kat53] and i(A+u(t)B —ic) is maximal dissipative in Hg}
for suitable ¢ > || B | o) lull = ((0,7),r)- Let p > c and H 2 = D(A* (ip — A)) = H} . We know

B: H;H'Z C Hj — Hj and the arguments of [Ducl8c, Remark 1.1] imply that B € L(f]%l+27H§;1).
For T > 0 and u € BV((0,T),R), we have ||u(t)B(ix— A)~|| (s;) < 1 and we denote

M= sup ih—A-u ' o gty S SUP ip— A)~H! < +00,
o Il € OB) M gz s+ < S ZGZN* Il (u(t)B( )7 ) M s
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= llin—A—u()B]| < +o0, Cr = || A(A +u(T)B — i)~ | (5, < <.

Bv ([0.7),L(Hy > HY))
We call U the propagator generated by (A-+uB—ic) such that Uk = e~ “!T'¥4 for every ¢ € . Thanks
to [Kat53, Section 3.10], for every ¢ € H' 2, [|(A+u(T)B — ip)Up| () < MeMN||[(A—in)y||(s,) and
D5l 51 +2) = IATTY [l o1y < e N AA +w(T)B — i) Ml () (A + w(T) B — i) Ug'dl s,
< CLMEMNET [ (A= i) A7 [ () [ 4¢l ) < CLMMNHT (14 LN 10l 2)-

For every T > 0, u € BV((0,T),R) and ¢ € Hj*? there exists C(K) > 0 depending on K =

(Hu||BV(T) HUHLOO((O ).R), Tl|ull Lo (0,7, R)) such that ||T%)] (s, +2) < C(K)[[¢]|(s,+2)- From classical in-
terpolation techniques, for every s € [0, s1 + 2], there exists C' > 0 such that

(23) s <C.

.

For every ¢ € Hi'+?, from the Cauchy-Schwarz inequality, || Av||2, < [|A%¢| L2 |9 22 and HA%wH‘iQ <
((Agw,Aw>Lz)2 < ||A%Y||22||A||3,. By iterating the procedure, there exist n € N* and C; > 0 such
that ||z/;\|"+1 < Ch||¥)| 2 ||w||?51+2). In conclusion, from (22) and (23), the last relation leads to (20).

1) (d) Infinite dimensional estimates.

Claim. There exists K > 0 such that for every e > 0, there exist 7' > 0 and u € L?((0,T),R) SU.Ch
that || D%, —Tolls) < € for every k < N and sup ([[ull vy, lull (0.7 Tllull L 0.7).8)) <

Let p = 2 (the following result is valid for any p € N*). Thanks to (20), for every € > 0 and N; € N*,
there exists n € N* large enough such that, for every k < NV,

HF nF nd)k _ eOtQMz Othld)k” 5) < |||F

Ny
ul o u2 [e% «
(o IT7 o = Mgl o) + D (a0 — €22 0) (dr, e M) 12 )
=1

N

<5 I o IT53 60 — e 6l + e gz (D 1(Th500 — 22 00) 2,)” < e
=1

=

2
In the previous inequality, we considered that e**M1 ¢, € #y, and that || T3 || (s) s uniformly bounded.
Thanks to the identities (17) and (19), the triangular inequality achieves the claim.

Claim. When B : Hj} — Hg} for s; > 0, the global approximate controllability is verified in Hg
with s € [81,81 + 2)

For every ¢ € Hj and Te U(H) so that Ty e H§,, the quantity || — fz/)”(s) is uniformly bounded
inT >0 and u € L?((0,T),R) when

(24) sup (||UHBV(T)7 ||UHL°°((O,T),R)7T”UHLO@((O,T),]R)) <K

~ 1/2
thanks to (23). Then, for any € > 0, there exists N € N* so that (Zk>N |k (e, Ttp — L) 2 ’2) <e

for every T' > 0 and u € L?((0,T),R) satisfying (24). Now,

—~ —~ 1/2 ~
0%~ Pl < (30 R0 T — Tohral?) e < Noollze 32 0% 2 T2l + ¢

k<N k<N
The point 4) is also valid for the reversed dynamics (see [Ducl8c, Section 1.3]) and there exist T' > 0
and u € L?((0,T),R) satisfying (24) so that [|(T%) " ¢, — T 1|5y < €l[¥)]| ;2 N~°7 for every k < N,
which implies [|[[%¢) — T o) < 2e.

1) (e) Conclusion. Let d be defined in Assumptions I1(1, d). If d < 2, then B : H2 — H2 and the global
approximate controllability is verified in Hg" since d+2 < 4. If d € [2,5/2), then B : H% — H®% with
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di € (d,5/2) from Assumptions II(n,d). Now, HY* = H% N HZ, thanks to [Ducl8a, Proposition 3.2,
and B : H — H2 implies B : HY — H%. The global approximate controllability is verified in Hg"?
since d+2 < dy+2.If d € [5/2,7/2), then B : Hyye — Hi% for di € (d,7/2) and HY = Hi}NH2 from
[Ducl8a, Proposition 3.2]. Now, B : H2 — HZ that implies B : Hi‘;l — Hél. The global approximate
controllability is verified in H;“ since d +2 < dy + 2.

2) Generalization. Let (A, B) do not admit a non-degenerate chain of connectedness. We decompose
A+u()B = (A+uoB) +u1(-)B, w €R,  uy € L2((0,T),R),

We notice that, if (A, B) satisfies Assumptions I(n) and Assumptions II(5,d) for n > 0 and d > 0,
then [Ducl8a, Lemma C.2 & Remark C.4] are valid. We consider ug belonging to the neighborhoods
provided by [Ducl8a, Lemma C.2 & Remark C.4] and we denote (¢,°)ren a Hilbert basis of J# made
by eigenfunctions of A + ugB. The steps of the point 1) can be repeated by considering the sequence
(0" )ken instead of (¢r)ren and the spaces D(|A + uoB|?) in substitution of HZ with s; > 0. The
claim is equivalently proved since |||4 + uB| 7 - | =1l ll(sy) with s1 € [s,s+2), s =2+ d and d from

Assumptions II(n, d) thanks to [Ducl8a, Remark C.4]. O

B Appendix: Spectral properties

For z € R, we denote E(x) the closest integer number to z, ||z || = min,ez |z — 2| and F(z) = 2 — E(x).
We notice |F(z)| = ||z || and —3 < F(2) < 1. Let {L;};<ny € (RT)Y and i < N, we also define
1 1 1 oy L;
n(z) = E(:U - 5), r(z) = F(m - §), d@) = [lz =3I, @) = n(?x)

In this appendix, we pursue [Ducl8a, Appendix A], which is based on the techniques from [DZ06, Appendiz A].
Lemma B.1. Let {Ly}r<y CRY, I} C{1,..,N}, [, :={1,..,N}\ I, and

a() = [T Isin(C)La)l Y TT leos(()Ly)| + [T Teos(()L)I Y T Isin(()Ly)l.

i€ls iel jel iel iely jel,
i i

Let {Ej}jgN C RT be such that Ej = 2L; when j € I and Ej = L; when j € Io. There exists C > 0
such that, for every x € R, there holds

, 1N\ L, L
> : : ~1 - J 3 1 J .
a(x) > Cmin (min Ll' I (') + 5) 721 muim U (@) 72 11)
J7FT JFT

Proof. From [DZ06, relation (A.3)], for every = € R, there follows
(25) 2d(z) < |cos(mz)| < wd(x).

As 2d((ﬁ#(x)+%)%) < | cos ((ﬁ#(x)+%)%7r)| and m'(z) + 3 = Liz —r(Liz) forz € Rand 4,5 < N,

sin (7?%Z r(%x) D‘ .

Now, [sin(z|[r(-)])] < 7[||r()| | < =|r(-)] = md(-) < F|cos(m(-))| thanks to [DZ06, relation (A.3)] and
L;

(25). For every z € R, it holds
- (Lz ) < Lj
sin 7T—Li i < ﬂ'—Li

From (26) and (27), there exists C; > 0 such that, for every i,j7 < N,

I\ L;

(26) 2d( ('(x) + 5 ) 1) <l cos(Lyo)]| +

(27)

Li 7TLj
Zig)| < S(Liw)).
r(ﬂx)‘ - 2Li|COb( )|

» N\ L, wL;
~ 1 - J < . J . +
(28) Qd((m () + 2) —Li) < |cos(Ljx)| + oL, | cos(Lix)], Vo e RT,
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= H d((ﬁm’(w) + %) %) < H |cos(Ljz)| + | cos(L;z)|.
jjeyé]il l jﬁélil

From [DZ06, relation (A.3)], as done in (26) and (27), there exists Cy > 0 such that

_ I\ L; L;
(29) 2| (@) + ) 7 1| <Isin(Lyo) + 572 cos(Lia)l, Vo€ R
~’L L N'L
= C2Hd(( *)*)HH\( ) ]|||<H|smLx\H|cosLx)|+|cos(Lx)|.
I L.
Jjel Jjelz Jjelz Jjeh
i i i i
Now, d(z) = [|3(2z —1)|| > 4|22 — 1| = %||2z|| for every z € R and d((m(z) + %)%) >
LI (@) + §) 3 )1, which imply
Loy INL ‘
(30) G TT I+ 5) P21 < al)+ [ eos(Zi))]
JEN
i

Equivalently, from the proof of [DZ06, Proposition A.1], for every z € R,

(31)
i L, . wlj, . i L; mL: .
2| m <x)IT] [I < |sin(L;x) QLZ |sin(L;x)], Qd(m (x) Lj) <|cos(Ljx) QLZ |sin(L;z)],
1. . L ,
(32) = G I I OF I <a() +[sin(Li())]
J<N
FE)
The claim follows as [DZ06, Proposition A.1]. Indeed, if (Ax)ren~ C RT is so that a(Ag) LN 0, then

there exist some ig < N such that |sin(A;L;, )] 2% 0 or | cos(AxLi, )| £, 0. By considering (30)

and (32) with ¢ = ig, we have
i k
2(\) 1= min (mmH Il (7 ) + ) 2l ,mmH i () 7 |||) 2250,

As [DZ06, Proposition A.1], the lemma is proved since z(\;) converges to 0 at least as fast as a()\g)
thanks to the identities (28), (29) and (31). O

Proposition B.2. Let {Lj}jSN CR, I; C {1, ,N} and I := {1, ,N} \ L. If {Lj}jSN S .A,C(N),
then, for every e > 0, there exists Ce > 0 such that, for every x > max{m/2L; : j < N}, we have

C.

H |sin(zL;)| Z H |cos(zLy)| + H | cos(zLj) Z H | sin(xLy)| x1+e

jels jel kel jel jelz kels
k#j k#j

Proof. The claim is due to Lemma B.1 and to the Schmidt’s Theorem [DZ06, Theorem A.8], which
implies that, for every € > 0 and ¢ < N, there exist Cy (i), Ca(i), C5(7) > 0 such that, for every x € R,

I 0 (3 + ) 5 2 OOy OO B0

(33) (2mi(z) + 1)1+ = (%x—i—l)lﬁ = plte

J<N
J#i

and [];.y H\mz(a:)% | > Cs(i)a1~¢ for every > Zmax{1/L; : j < N}. The statement follows

JF#i
with C, := min (miniSN Cs (1), min;<n C’g(i)). O
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Corollary B.3. Let {Li}r<n € AL(N) with N € N. Let {wy, }nen be the unbounded sequence of positive
solutions of the equation

(34) Z sin(xLy) H cos(xLy,) =0, r eR.
I<N m#l

For every € > 0, there exists C. > 0 so that | cos(wpLi)| > 1+e for every L < N and n € N.

k—o0

Proof. If there exists {wy, }ren, subsequence of {w), }nen, such that | cos(L;wy, )| — 0 for some j < N,

k—o0

then there exists ¢ < N such that ¢ # j and |cos(L;wy, )] —— 0 thanks to (34). From (28), we have

[ d((ﬁﬂ(wnk) + %) ) 2%, 0 and (as in the proof of Proposition B.1) there exists Cy > 0 so that

, 1N\ L, 1 , 2L,
il T+ )22) - T (e + )%
O cos(Lion)| = T a( ('(wn) + 5) 72) = [T 5 (') + 5) T2 = 1) 11
J#i J#i
The last identity and the techniques leading to the equation (33) achieve the claim. O

C Appendix: Moments problems

Let Z* = Z\ {0} and A = (A\;)rez C RT be an ordered sequence of pairwise distinct numbers such that
there exist M € N*\ {1} and ¢ > 0 such that

(35) vz k+M;£O} Akt — Ax| > OM.

From (35), there does not exist M consecutive k,k + 1 € Z* such that |A\gr1 — Ag| < . This leads
to a partition of Z* in subsets that we call E,, with m € Z*. This partition also defines an equivalence
relation in Z* such that k ~ n if and only if there exists m € Z* such that k,n € E,,. Now, {E,, }mez-
are the corresponding equivalence classes and i(m) := |E,,| < M —1. For every x := (x))kez~, we define
x™ = (x1)iep,, for m € Z*.

Let h = (hj)j<i(m) € C* (m) with m € Z*. For every m € Z*, we denote Fm( )+ CHm) 5 CHM) the
matrix with elements, for every j, k < i(m),

Ly (hy —ha)~ Y, i<k,
~ 1<k
Fojr(h) =41, j=k=1,
0, 7>k

For each k € Z*, there exists m(k) € Z* such that k € E,, ;). Let F'(A) be the linear operator on
¢%(Z*,C) such that F(A) : D(F(A)) — (3(Z*,C) and

(F(A)R), = (Fngg (A" )x™®) - ¥x = (ai)kez- € D(F(A)),

H(A) := D(F(A)) = {x = (zg)rez- € C*(Z*,C) : F(A)x € (*(Z*,C)}.

Remark C.1. We call F,,,(A™)~! the inverse matriz of F,,(A™) for m € Z*. Now, F(A) : H(A) —
Ran(F(A)) is invertible and F(A)™! is so that

(F(A) ') = (P (A™R) 7 1xm k) Vx € Ran(F(A)), ke Z*.

Let F(A)* be the infinite matrix so that (F(A)*x), = (Fm(k)(Am(k))*xm(k))k for any x = (zg)kez
and k € Z*, where Fm(k)(Am(k))* is the transposed matrix of F, ) (A™®)). For T > 0, let e and E be
sequences of functions in L?((0,7),C) so that

e := (€M) cge, E = (&())rezr = F(A)*e.
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Remark C.2. When H(A) is dense in (*>(Z*,C), we consider F(A)* as the unique adjoint operator
of F(A) in (2(Z*,C) with domain H(A)* := D(F(A)*). As in Remark C.1, we define (F(A)*)~! the
inverse operator of F(A)* : H(A)* — Ran(F(A)*) and (F(A)*)~t = (F(A)~1)*.

Theorem C.3 (Theorem 3.29; [DZ06]). Let (A;)rez+ be an ordered sequence of pairwise distinct real

2

numbers satisfying (35). If T > 2xw /4§, then (§)kez~ forms a Riesz Basis in the space X := span{&y| k € Z*}L .

Lemma C.4. Let v := (vg)gez+ be an ordered sequence of pairwise distinct real numbers satisfying (35).
Let G be an entire function such that G € L>(R,R) and there exist J,I > 0 such that |G(z)| < Jell?|
for every z € C. If (vg)kez- are simple zeros of G such that there exist d > 0, C' > 0 such that

(36) G/ ()] > N Vk € Z*, vy, # 0,

then there exists C' > 0 so that T'r (Fm(vm)*Fm(vm)> < Cmin{|l| € Em}Q(l‘HZ) for every m € Z*.

Proof. The proof is composed as follows.

1. First, we construct (vj)rez- a biorthogonal sequence to (e™*());cz- in L2((0,T),C) with T > 0
sufficiently large and we estimate the LZ—norm of vy, for every k € Z*.

2. Second, we characterize (&)rez- = F(A)*(e?*())rez-, a Riesz basis of a suitable subspace of
L?((0,T),C), and its biorthogonal sequence.

3. Third, we use the obtained estimates in order to provide an upper bound for |(F(v)x);| with k € N*
and x € ¢2(Z*,C). The result leads to the statement.

Construction of a biorthogonal sequence. Let T > max(27/d,2I). For every k € Z*, we define
Gi(z) == G(2)(z — vx)~ 1. Thanks to the Paley-Wiener’s Theorem [DZ06, Theorem 3.19], for every k €
Z*, there exists wy, € L*(R,R) with support in [—1, I] such that

I /2 T 7
Gr(z) = / e wy(s)ds = / e wi(s)ds = / e =Ty (t — T/2)dt.
-1 —T/2 0

FOI‘j, k € Z* and ¢, := G/(l/k)7 we call vk(t) = 6iuk%’wk(t—T/2) and <Uk, eiyj(')>L2((07T)7C) = 5k,ij(Vk) =
0k,;G' (Vi) = Ok jck. The sequence (v )kez+ is biorthogonal to (ei”k(')/ck)kez* and (vg/ck)kez~ is biorthog-

onal to (e?*))cz-. Thanks to the Plancherel’s identity, |[vk||z2(0,r),c) = |Gl L2(rr)- We show that,
from the Phragmén-Lindelof Theorem (e.g. [You80, p. 82; Theorem 11]), there exists C; > 0 such that

(37) lvellz20,7),0) = |Gkl 2rr) < C1,  VEk € Z7.

First, G is entire, while there exist I and J such that |G(z)| < Je!l*| for every z € C. Second,
there exists M > 0 so that |G(z)| < M for every z € R. From [You80,p. 82; Theorem 11], we have
|G (z + iy)| < Me!lY! for z,y € R. For every k € Z*, there exists ¢; > 0, not depending on k, so that

— G(x)G(x _

||Gk||2L2(R) = / G (2)Gr(z) dx = / L(z)dx < / G(2)G(z)(x — vp) "2 dx + M?cy.
R r (T — 1) |z—v|<1

The Cauchy Integral Theorem leads to (37) as there exists cz > 0, not depending on k, so that

J YD) gy < [7|Gvp + )G vy, + €)[d) < M? [T e2T5m(0) 4o < Mc,.

z—vg|<1 (z—vg)?

Construction of a Riesz basis. Let v := (vg)rez- and e := (e™*())cz- C L?((0,T),C). Thanks

to Proposition C.3, the sequence of functions E = (& )rez- = ((F(v)*€)x)rez- forms a Riesz basis in
2

X = span{&, : k€ Z*}L . We call v := (U )rez~ the corresponding biorthogonal sequence which is
also a Riesz basis of X. From Remark C.2, the map F(v) is invertible from H(v)* to Ran(F(v)*) and
(F(v)*)"! = (F(v)™N*. As v/c = (v/ck)rez~ is biorthogonal to (e?*())icz+, we have (vg/ck)rez =
F(v)v. Indeed, 6 ; = (vi/ck, ((F(A)*)_1E)j>L2((O7T)’(C) = ((F(A)_lv/c)k,§j>L2((07T)7C) for every j,k €

r—

Z*, which implies (F(A)~'v/c)y = ). The uniqueness of the biorthogonal family to = implies the
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uniqueness of the biorthogonal family to e. From [BL10, Appendiz B; Proposition 19.(2)], there exist
C5,C3 > 0 such that

T
(38) Collx|[7> < / lu(s)[Pds < Cs x|, Vu(t) = Y &y, x € (Z°,C).
0

keZx*

Conclusion. When u(t) = >, ;. & with x € (2(Z*,C), the biorthogonality yields to zp =
(O, u)p2((0,1),c) for every k € Z*. We call m(k) € Z* the number such that k € E, ;). Thanks to
(36), (37), and (38), there exist Cy,Cs > 0 such that, for every k € Z*, we have

[(F(V)x)il = [{(F(v) ({01, u) 2((0,1),0) )iez)kl = [(0r /ey w) 20,1y, < lvkllzz om0 llull 2 o,m),0)lex]

1 .
< CF1Gill 2z X2 |G (i) < Calk "o xl 2 < Cs , min 1%l
m(k)

Thus, there exists Cg > 0 so that |(Fp.;x(v™))| < Comineg,, |l|1+d~ for every j, k < i(m), which leads
to the statement. O

Proposition C.5. Let (A\g)gez+ be an ordered sequence of pairwise distinct real numbers such that
(vi)kez = (sgn()\k)\/|/\k|)k€Z* satisfies (35). Let exist Cy,Cy > 0 such that

(39) Culk| < |vel < Calkl, VEk € Z*, vy, #0.

Let G be an entire function so that (vy)rez~ are its simple zeros, G € L= (R,R) and there exist J I1>0
such that |G(2)| < Jell?| for every z € C. If there exist d > 0 and C > 0 such that |G'(v;)| > de for
every k € Z* such that vy # 0, then i

H(A) € h4(z*,C).

Proof. We show how the upper bound of T'r (Fm(vm)*Fm(vm)) for every m € Z* provided by Lemma

C4 leads to an upper bound of T'r (Fm(Am)*Fm (Am)>. We conclude by discussing how the estimate
achieves the claim.

1) Preliminaries. As inf ;cz-
ket M£0

Vit m — V| > IMmingezy (|vgl, 1) with § > 0 and M € N*\ {1},

v #0

Anf Akat = Ax| = inf | Vil = (vl || [Vaa] + vl | > fuin (Ju, 1)5M
k+M#£0 K+ M#£0 VR #0

since (Ap)keze = (s9n(We)v}),cper Now, A = (M)kez- and v := (vp)rez~ satisfy (35) with respect
to ¢ := min,ez {|vk|,1}6 and M. This implies that the theory exposed in this appendix and the
U0

definitions of the equivalence classes E,, in Z* are valid for both the sequences A and v. We notice
N — Akl > min{|y|, |vk|} v — vi| for I,k € Z*. Let m € Z* and I C E,, so that I # (). Now,
11| < [Epn| <M —1and

T e =20 = minf ! T Joe = w5l = Camin Jia] T e = ]

jkel 1120 G kel V10 jkel

for C; = minjez-(|vy|™~2,1). Thus, there exists Cy > 0 so that, for every m and j, k € E,,, we have
v #0

|Fj e (A™)] < Co|Fpj (V™) | min{|yy|~! : 1 € By, v # 0}. Thanks to (39) and Lemma C.4, there
exists C3 > 0 such that

Tr(Fm(Am)*Fm(Am)) < O3 min || Tr(Fm(vm)*Fm( )) < Camin|l] 2d
v #0

2) Conclusion. Let p(M) be the spectral radius of a matrix M and let || M || = /p(M*M) be its
euclidean norm. As (Fp,(A™)*F,,(A™)) is positive-definite,

Il E (A7) 1P = p(Fra(A™)" Fo(A™)) < Tr(F(A™) F(A™)) < Comin i, m e 2
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In conclusion, h‘i(Z*,(C) C H(A) as, for every x = (2 )kez~ € h(i(Z*, 0),

m 2 . 1
I < 3 I FaA™) 17 S < G5 37 minliPd Sl < Colxl2; < +o0. O

mez* l€EE, mez* lEEm

Remark C.6. If Proposition C.5 is satisfied with A = (A\g)rez+ and d >0, then H(A) D hd(Z*,C),
which is dense in £2(Z*,C). Thanks to Remark C.2, we consider F(A)* as the unique adjoint operator of
F(A). As Tr(Fp(A™)*Frp(A™)) = Tr(EFn (A™)Fp (A™)*) for every m € Z*, the techniques developed
in the proof of Proposition C.5 lead to H(A)* D h%(Z*,C).

Proposition C.7. Let (wy)gen- C RTU{0} be an ordered sequence of pairwise distinct numbers so that
there exist 6,Cy,Co > 0 and M € N*\ {1} such that

kieng* Wk — wWi| > M, C1k? < |wy| < Cok?, Vk € N*\ {1}.

Let G be an entire function so that {d./wg}ren+ are its simple zeros, G € L>®(R,R) and there exist
J, I >0 such that |G(z)| < Je'V*l for every z € C. If there exist d >0 and C > 0 such that

— ¢ -
|G/(:|: wk)| > k1+dv v.] eN s

then, for T > 21/ and for every (x)ren~ € hJ(N*7C) with 1 € R, there exists u € L?((0,T),R) such
that

T
(40) T = / u(r)et@r =T gy Vk € N*.
0

Proof. Let v := (vk)rez+ be such that v, = —,/wy, for k > 0 and vy = \/w_ for k < 0. Let
A= ()\k’)kEZ* : A = —Wk, Vk > 0; A = W_k, Vk < 0,
© := (Or)pez-\{-1} : O = —wi + w1, Vk>O0; Op =w_p —wy, Vk<-—1.
We consider M’ € N*\ {1} and §’ > 0 so that v and A satisfy (35) with respect to M’ and ¢’, while

(41) inf |9k+M’ — 9k| Z (;IMI.
{rez\(-1} s krmrez\(-1}}

Let {Ep tmez- be the equivalence classes in Z* defined by v and A (as in the proof of Proposition C.5).
Let —1 € E_1. Now, {Ep}mez-\{—13 U{E_1\ {—1}} are the equivalence classes in Z* \ {—1} defined

by (41). Proposition C.5 and Remark C.6 imply H(A)* D h%(Z*,C). Let F(®) be the operator defined

in (2(Z*\ {-1},C). For m # —1, F,,(®™) = F,,,(A™) and F,,(®™)* = F,,(A™)*. As in Remark C.6,
H(®) 2 h(Z"\ {~1},C), H(©)" 2 h'(2"\ {~1},0).

For T > 0, we define in L? := L?((0,T),C) the sequences of functions

e:= (ewk('))kez*\{q}, E = (&())rez\{-1} = F(O)e.

2

When T' > 27/§, Theorem C.3 ensures that ({x)rez-\{—1} is a Riesz Basis in X := spanycz\ (-1} (&)
Thanks to [BL10, Appendixz B; Proposition 19.(2)], the map M : g € X — ((§&, 9)2(0,7))kez-\{-1} €
02(2* \ {—1},C) is invertible and

(ks 9)201) = (F(O)™(€,9)2(0,7) )k Vk e Z°\ {-1}.

Let X := M~'oF(©)* (h4(Z*\{~1},C)). The map (F(®)*) oM : g € X — ((e,9)12(0.1))kez-\(-1} €

h‘Z(Z* \{—1},C) is invertible. For every (zj)xez+\{-1} € h&(Z* \ {=1},C), there exists u € L?((0,T),C)
such that

T .
(42) xR = /0 u(r)e Ok dr, Vk e Z*\ {-1}.
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Given (x)ren € hd(N*, C), we introduce (Tx)rez=\{-1} € hd(Z*\{—l}, C) such that &, =z, for k > 0,
while 7 = T_j, for k < —1. Thanks to (42) and to the definition of @, there exists u € L?((0,7),C)

such that
T ‘ T .
/ u(s)eWrmw)sds = gy = / a(s)el@Wr—ws s, ke N"\ {1}.
0 0

If z; € R, then u is real and (40) is solvable with u € L?((0,7),R). O
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