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Abstract

This paper deals with the construction of reduced order models (ROMs) for the

simulation of the interaction between a fluid and a rigid body with imposed

rotation velocity. The approach is a follows. First, we derive a monolithic

description of the fluid-structure interaction by extending the Navier-Stokes

equations from the fluid domain to the solid domain (rotor) similarly to the

fictitious-domain approach. Second, we build a ROM by a proper orthogonal

decomposition (POD) of the resulting multi-phase flow. This method consists

in (i) constructing an optimal albeit empirical spatial basis for a very small sub-

space of the solution space, and (ii) projecting the governing equations on this

reduced basis. Third, we cope with the reconstruction of the high-dimensional

velocity field needed to evaluate the imposed velocity constraint by a POD of

the rigid body membership function. This provides a substantial computation

time saving compared to existing approaches. Fourth, we use a novel approach

to interpolate between available POD bases to build the proposed POD-ROM

for a range of parameters values. The complete procedure is applied to a sim-

ple configuration and proves efficient in the reconstruction of the velocity in

both the fluid domain and the solid domain, while substantially reducing the
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computational cost.
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Introduction

This work focuses on the construction of reduced order models (ROMs) to

speed-up the resolution in computational fluid dynamic (CFD) problems asso-

ciated with flows induced by rigid bodies with imposed rotation velocity. Such

physical problems are involved in several applications of industrial interest (pre-5

dictive simulation, active control, parametric shape optimization) in which axial

fans or agitators play a major role (e.g turbomachinery, industrial furnaces and

process engineering).

Flows induced by rotating bodies are a special case of fluid-structure in-10

teraction (FSI), for which numerous computational methods are available (see

e.g. [1] for FSI in general and [2, 3] for CFD methods dedicated to turbomachin-

ery). Despite some limitations in the extensive use of CFD simulations when

compared to experimental data [4, 5], this is the nowadays standard approach

to the industrial design and performance analysis. Most of these methods can15

be divided in two categories [6]: multi-domains and multi-phase approaches. In

multi-domains approaches, the computational domain is divided into material

subdomains, over each of them a local model is treated [7, 8]. The global solution

is then constructed by properly aggregating the local solutions. In multi-phase

approaches, a single equation with spatially dependent material properties is20

solved over the global computational domain. This includes e.g. the ficitious

domains method [9, 10, 11, 12] (also called immersed volume method in [13, 14]),

the immersed boundary method [15, 16], and the ghost fluid method [15]. Both

approaches yield computationally expensive simulation codes despite efforts in

the CFD community to reduce the complexity of the problem with simplifying25

assumptions, e.g. small disturbance assumption or boundary-layer assumption

[17]. In particular, very fine meshing of the computational domain is usually



needed to achieve high-fidelity simulation [18] leading to High-Dimensional Mod-

els (HDM). Thus, reliable reduced order models (ROMs) are needed for design,

parametric analysis and control.30

The ROMs proposed in this paper are based on the well established Proper

Orthogonal Decomposition (POD, also known as Karhunen-Loeve decompo-

sition, SVD or PCA), introduced as a tool for the identification of coherent

structures in dynamical systems in [19] based on previous works grounded in35

statistical analysis [20, 21, 22, 23]. This method turns out to be efficient in the

extraction of Proper Orthogonal Modes (POMs) associated with the evolution

of complex large-scale dynamical systems (e.g. structural and fluid mechanics

and electromagnetics) from experimental measurements or high-fidelity simu-

lations. These POMs form a spatial basis onto which the governing equations40

are projected to build the so called POD-ROMs. Several previous works have

been devoted to the construction of POD-ROMs for turbomachinery. In most of

the approaches, the linearized Euler equations or linearized Navier-Stokes equa-

tions are considered, and the POD is performed in the frequency domain. This

approach is justified by the usual geometric periodicity of the rotors in turbo-45

machinery in general and axial fans or agitators in particular. It has been first

proposed in [24, 25], and subsequently considered in [26, 17, 27]. More recently,

the use of a weighted POD have been proposed in [28] to construct from ex-

perimental data a ROM for the axial-circumferential velocity profile associated

with the steady axisymmetric parallel flow of an inviscid and incompressible50

fluid in a Francis turbine. Also, an Arnoldi procedure associated with a match-

ing of transfer functions between original and reduced order model is proposed

as a compromise to POD in [29]. These approaches suffer from two drawbacks.

First, they yield accurate POD-ROMs only if the small disturbance assumption

is verified so that the frequency domain analysis is justified. Second, they are55

not generally applicable and usually need dedicated CFD solvers.

In this work, we consider the non-linearized Navier-Stokes equations for flows



in an incompressible newtonian fluid, and the POD is performed directly in the

time domain over the d-dimensional velocity profile (d = 2 or 3). Note that we60

do not consider the stress load applied by the fluid to the body, the dynamics

of which is imposed. In order to circumvent the incompatibility of the POD

(which yields spatial modes) with moving domains (the rotating bodies), we use

a multi-phase approach. More precisely, the Navier-Stokes equations are ex-

tended to the solid domain in which the ensemble rotation velocity is enforced65

by a constraint relaxed through the definition of an appropriate distributed La-

grange multiplier. Note that the combination of the multi-phases approach and

POD has been previously considered e.g. in [30, 31] for fluid–structure inter-

action, in [32] for shape optimization and in [33] for feedback stabilization in

FSI. The evaluation of the rigidity constraint in the body usually requires the70

reconstruction of the full order solution at runtime, so that the simulation of

the resulting POD-ROMs still depends on the number of degrees of freedom. In

order to cope with this full order reconstruction, we propose a novel approach

that benefits from the periodicity in the geometry of the rotors by applying

the POD also to the characteristic function of the solid domain. The resulting75

POD-ROMs are independent of the number of degrees of freedom of the HDM,

while preserving the accuracy of the standard approach. Additionally, any CFD

software can be used to produce the snapshots from which the proper orthogo-

nal basis is built (non-intrusive method).

80

It is known that ROMs built from POD are valid in the vicinity of the pa-

rameter used to produce the set of snapshots, i.e. they lack robustness with

respect to changes in the parameters (see e.g. [27] for a parametric analysis in

the context of turbomachinery and [34] for a mathematical a priori estimates

of parametric sensibility in the context of CFD). That is, the simulation of the85

HDM must be performed for each new parameter to build the associated POMs,

hence the order reduction performance is lost. To circumvent the parametric

robustness problem, some modified POD methods were proposed, such as global

POD method, local POD method, and adaptive POD method (see e.g. [35] and



references therein). In this work, we use a state of the art adaptive method90

to allow fast construction of the proposed POD-ROMs for a given parameter

value by interpolating a set of precomputed POMs. The first adaptive method

have been proposed in [36, 37] and consists in interpolating the POMs over the

tangent space to the Grassmann manifold at a reference point. This method

requires to properly select the reference point to achieve a good accuracy. Thus,95

we propose the use of the method introduced in [38] that consists in extending

the Inverse Distance Weighting (IDW) interpolation method from vector spaces

to Grassmann manifolds which automatically adapts to the available sample of

POMs.

100

This paper is organized as follows. The goals and the approach are detailed

in the problem statement in section 1. The multi-phase governing equations for

the coupled fluid-structure system used to construct the POD-ROMs are recalled

in section 2. The two proposed POD-based low order dynamical systems are

given in section 3. The parametric interpolation method is given in section 4.105

Finally, numerical results for a simple configuration are presented in section 5

before conclusions.

1. Problem statement

In this section, we define the domains and the notations used throughout

the paper. Then, we state the data that are supposed to be available for the110

construction of the POD-ROMs. Finally, we detail the issues addressed in this

work.

1.1. Domains definitions and notations

We consider the computational domain Ω ⊂ Rd (with d the spatial dimen-

sion) and the temporal domain T = [0, T ] ⊂ R+. The computational domain

contains (i) a rotating body S that occupies the physical domain ΩS(t) at time

t ∈ T and (ii) an incompressible newtonian fluid F, that is Ω = ΩS(t) ∪ ΩF(t)



Figure 1: Schematic view of the computational domain Ω = ΩS(t) ∪ ΩF(t).

(see figure 1). The computational boundary domain is denoted by Γ = ∂Ω, the

body boundary is ΓS(t) = ∂ΩS(t) and the fluid boundary is ΓF(t) = Γ ∪ ΓS(t).

The characteristic function of the solid domain is

χS(x, t) =

 1 if x ∈ ΩS(t),

0 otherwise.
(1)

In the case of turbomachinery, the rigid body (fan, agitator) is assumed to rotate

around a given axis eω passing through the center of rotation xω, at the angular

velocity dθ
dt , where θ is the angle with respect to a given reference position. The

associated rotation velocity is

uω(x, t) = ω × (x− xω) (2)

with ω = dθ
dt eω the rotation vector. The characteristic function is obtained at

every time as the rotation of the initial configuration:

χS(x, t) = R
(
θ(t)

)
χS(x, 0), (3)

with R(θ) the rotation through angle θ around the axis eω.

1.2. Database construction115

First, the construction of POD-ROMs involves the computation of the dis-

crete approximation of the material velocity uh : Ω× T× Rp → Rd for a given

parameter p ∈ Rp on a reference (fixed) grid. Any CFD method can be used to



simulate the HDM associated with the FSI problem described in the previous

subsection. In case of moving meshes or remeshing solvers, the snapshots are120

interpolated to a reference mesh. Second, we assume that sets of snapshots(
U(pn)

)
1≤n≤np

have been generated for a family of np parameters, where U

denotes a set of nT snapshots of the velocity stored as Uij = uh(xi, tj) with

xi ∈ Ω and tj ∈ T for i ∈ {1, · · · , nx} and j ∈ {1, · · · , nT }.

1.3. Objectives and approach125

The first objective of this work is to construct a POD-ROM that is able to

reproduce the solution uh(p) for a given parameter p over the time period T

and beyond. The second objective is to construct the POD-ROM associated

with a new parameter p? /∈ (pn)1≤n≤np from sets of snapshots
(
U(pn)

)
1≤n≤np

,

avoiding the resolution of the HDM for the parameter p?130

The approach is as follows. First, we construct a low dimensional projec-

tion basis by POD of the snapshots associated with a given parameter (POMs).

Second, reduced order models are constructed by projecting the problem equa-

tions onto a small subset of these POMs. Third, we interpolate between the135

POMs associated with the sets of snapshots
(
U(pn)

)
1≤n≤np

via a robust sub-

spaces interpolation method to construct the POD-ROM associated with a new

parameter p? /∈ (pn)1≤n≤np .

2. Interaction between a fluid and a rigid body with imposed rotation

velocity140

In this section we adapt the fictitious-domain method introduced in [9, 10]

and developed in [11] to the case of a flow induced by a rigid body with imposed

rotation velocity. First, we detail the strong form of the governing equations.

Second, we give the associated weak form. Third, we give the standard iterative

method to solve the resulting saddle point problem. This yields the HDM which145

is the starting point in the derivation of the POD-ROMs in the next section 3.



2.1. Governing equations

The fluid domain ΩF is governed by the incompressible Navier-Stokes equa-

tions. To derive the governing equations for the solid domain and the fluid-

structure interaction, we adapt the fictitious domain approach [10, 11] in which

a monolithic formulation is derived by modeling the solid domain as a fluid with

additional constraints to enforce rigidity. The difference here is that we enforce

directly the rotation velocity to describe the motion of the rotor. The rotation

constraint is given by

u(x, t)− uω(x, t) = 0, ∀x ∈ ΩS(t) and ∀t ∈ T, (4)

where u ∈ (H1(Ω,T))d is the eulerian velocity with H1 the standard Sobolev

space. A direct consequence of (4) is that no deformation of the solid domain

occurs:

D (uS) = ∇ · uS = 0, ∀x ∈ ΩS(t), ∀t ∈ T. (5)

Thus, the incompressible Navier-Stokes equations can be extended to the solid

domain provided an appropriate force term λ ∈
(
L2(Ω,T)

)d
which is added,

ensuring that the additional constraint (4) is verified. The strong form of the

governing equations are then: find u ∈
(
H1(Ω,T)

)d
such that ∀x ∈ Ω and

∀t ∈ T: 
ρ

(
∂u

∂t
+∇u · u

)
= ∇ · σ + f − λ,

∇ · u = 0,

χS(u− uω) = 0,

(6)

where σ = 2 η D (u) − p I is the stress tensor with D (u) = 1
2 (∇u+ᵀ∇u)

the deformation rate tensor and I the d-dimensional identity tensor, ρ and η

are respectively the fluid density and the dynamical viscosity, and f are the

volume forces acting on the material domain. Note that the pressure p can be

interpreted as the Lagrange multiplier associated with the incompressibility con-

straint in (6). The problem (6) is completed with the following set of boundary



and initial conditions:
uF = uD ∀x ∈ ΓD, ∀t ∈ T,

σF · n = 0 ∀x ∈ ΓN, ∀t ∈ T,

u(x, 0) = u0(x) ∀x ∈ ΩF(0), t = 0,

(7)

with constant Dirichlet boundary condition on the boundary ΓD ⊆ Γ and stan-

dard outflow boundary condition (zero normal stress) on the remaining bound-

ary ΓN = Γ \ ΓD. The initial velocity u0 is assumed to be compatible with the150

constraint (4).

Remark 1 (fluid-structure interaction). The interaction stress between the fluid

and the rigid body on the interface ΓS is naturally included in the proposed

formulation. This can be shown by deriving (6) as in the fictitious domain

method by an eulerian description of the standard local equilibrium equations155

for the rigid body and replacing the rigidity constraint D (u) = 0 by the imposed

rotation in ΩS so that the boundary traction on ΓS in each domain cancels.

Remark 2 (Material properties). Here, the density of the rigid body equals that

of the fluid. This is justified by the fact that the velocity of the rigid body is

imposed and is not impacted by the dynamics of the fluid nor by the action of160

the volume forces f . Also, the viscosity of the rigid body equals that of the fluid.

This is justified by the fact that this parameter has no physical meaning and

must be considered as a scaling coefficient (see [14]).

2.2. Weak formulation

Here, we specify the functional setting used to derive a standard weak formu-165

lation of (6) in view of the subsequent construction of the low order dynamical

system. The trial and test spaces for the velocity are respectively

W =
{
u ∈

(
H1(Ω,T)

)d
; u = uD ∀x ∈ ΓD

}
, and (8)

W0 =
{
u ∈

(
H1(Ω,T)

)d
; u = 0 ∀x ∈ ΓD

}
. (9)

The trial and test spaces for the pressure are respectively

P0 =

{
p ∈ L2

(
Ω,T

)
;

∫
Ω

p(x, t) dx = 0

}
, and L2

(
Ω,T

)
. (10)



Assuming the solid domain never intersects the computational boundary, the

trial and test spaces associated with the Lagrange multiplier can be both chosen

as W0. The resulting week form of (6) is given by: find u ∈W, p ∈ P0, λ ∈W0170

such that

ρ

(
∂u

∂t
+∇u · u

∣∣∣∣v) = (f − χS λ|v) + (p| ∇ · v)− 2 η (D (u)|D (v)) (11)

(∇ · u| q) = 0, (12)

(χS (u− uω)|µ) = 0, (13)

for all v ∈ W0, q ∈ L2
(
Ω,T

)
and µ ∈ W0, with (•| •) the inner product on

L2(Ω).

2.3. Iterative method

The weak form of the velocity constraint (13) can be relaxed iteratively using175

an augmented Lagrangian formulation coupled with an Uzawa algorithm (see

[39] for details on this algorithm and [30, 14] for its application in FSI). The

resulting iterative procedure to carry out within each time step is described in

algorithm 1. It is the starting point in the derivation of the POD-ROMs of the

next section 3.180

3. Proposed reduced order models

In this section, we introduce the proposed low-order dynamical systems asso-

ciated with the governing equations (11–13). First, the momentum equation is

projected on the POD basis associated with the velocity. This yields a reduced

order model which involves the reconstruction of the complete velocity field at185

each inner Uzawa iteration to evaluate the increment in the Lagrange multi-

plier. Thus, we propose a second reduced order model by (i) decomposing also

the characteristic function in a POD basis and (ii) constructing an explicit eval-

uation of the basis coefficients from the known rigid body angle. In this work,

we use the classical snapshot POD method introduced in [40] and recalled in190

§ Appendix A.



Data: Initial values u0, p0 (e.g. from the previous time-step).

Result: u` p`, λ` solution of (11–13).

1 Initialize `← 0, λ` ← 0, e` ←∞ and δe` ←∞;

2 while e` > εtol and δe` > εtol do

3 Update `← `+ 1 ;

4 Solve for u`, p`:

5 ρ
(
δtu

` +∇u` · u`
∣∣v)− (f − χS λ`−1

∣∣v)− (p`∣∣∇ · v)+

2 η
(
D
(
u`
)∣∣D (v)

)
= 0,

6
(
∇ · u`

∣∣ q) = 0;

7 Update λ`:

8 λ` ← λ`−1 + r χS
(
u` − uω

)
;

9 Check for convergence:

10 e` ← ‖χS (u`−uω)‖L2(Ω)

‖χS uω‖L2(Ω)
and δe` ← e`−1 − e` ;

11 end

Algorithm 1: Uzawa algorithm associated with the weak form of the gov-

erning equations (11–13).

3.1. Galerkin projection of the momentum equation

We suppose that discrete solutions (uh(x, tn))1≤n≤nT of the governing equa-

tions (11–13) have been obtained. Each snapshot uh(x, tn) is decomposed into

a mean part uh(x) and a fluctuating part ũh(x, t), and the fluctuating part is

decomposed over a POD basis Φu = (φu
i )1≤i≤nT truncated to nu modes:

ûh(x, tn) = uh(x) +

nu∑
i=1

φu
i (x) ai(tn), (14)

where the set a = (ai)1≤i≤nu collects the temporal coefficients of the fluctuating

part of the velocity in the POD basis Φu, elements of which are called velocity

POD modes.195

Remark 3 (Continuity equation). The mean field uh and the elements of Φu

are built from linear combinations of the snapshots for uh (see A.9), so that (i)

the velocity POD modes are divergence free ∇ ·φu
i = 0, 1 ≤ i ≤ nu and (ii) the



approximation ûh automatically satisfies the continuity equation ∇ · ûh = 0.

Remark 4 (Dirichlet boundary conditions). The Dirichlet boundary conditions200

are assumed constant over time so that they are all included in the mean field

u(x), x ∈ ΓD and the velocity POD modes vanish on the boundary ΓD.

Now performing a standard Galerkin projection of the governing equation

(that is, using the ersatz (14) instead of u and the POMs (φu
i (x))1≤i≤nu in

replacement of the test functions v in (11–13)) yields the following low-order205

dynamical system, referred as ROM1:

A · da

dt
+ B · a+ C : a⊗ a+ E` + F = 0. (15)

with the Uzawa update of the Lagrange multiplier

λ`+1 = λ` + r χS

(
u+

nu∑
i=1

φu
i ai − uω

)
, (16)

where the components of vectors E ∈ Rnu , F ∈ Rnu , matrices A ∈ Rnu×nu ,

B ∈ Rnu×nu and third-order tensor C ∈ Rnu×nu×nu are given below.

Aij = ρ
(
φu
j

∣∣φu
i

)
(= ρ δij),

Bij = ρ
(
∇φu

j · u+∇u · φu
j

∣∣φu
i

)
+ 2η

(
D
(
φu
j

)∣∣D (φu
i )
)
,

Cijk = ρ
(
∇φu

j · φu
k

∣∣φu
i

)
,

E`i =
(
χS λ

`
∣∣φu

i

)
,

Fi = ρ (∇u · u|φu
i ) + 2η

(
D
(
φu
j

)∣∣D (φu
i )
)
− (f |φu

i ) .

(17)

Remark 5 (Cost reduction). The model ROM1 reduces the cost associated with

the computation of the momentum equation (15), but the complete resolution

still depends on the number of degrees of freedom of the solution due to (i)

the reconstruction of the velocity field in the Uzawa iteration (16) and (ii) the210

projection of the Lagrange multiplier to evaluate the vector E` in each inner

iteration.

3.2. Reduction of the characteristic function

To cope with the reconstruction of the full order velocity field and the pro-

jection of the Lagrange multiplier on the velocity POD basis, we propose to also



decompose the fluctuating part of the characteristic function χS = χS + χ̃S over

a POD basis Φχ = (φχi )1≤i≤nT truncated to nχ modes:

χS(x, t) ' χS +

nχ∑
i=1

φχi (x) ci
(
θ(t)

)
. (18)

The choice of χS is specified in the following subsection 3.3 (remark 6). Notice

the coefficients (ci)1≤i≤nχ are parametrized by the rotation angle θ and the ro-

tation velocity dθ
dt is imposed so that no evolution equation is needed. Projecting

the Uzawa iteration (16) over the velocity POD basis Φu and approximating

the characteristic function as in (18) yields the following reduced expression:

λ̂`+1 = λ̂` + r
(
G · a+ H · c+ L : c⊗ a+ M

)
, (19)

with the coefficients given below.

λ̂`i =
(
χS λ

`
∣∣φu

i

)
,

Gij =
(
χS φ

u
j

∣∣φu
i

)
,

Hik = (φχk (u− uω)|φu
i ) ,

Lijk =
(
φχk φ

u
j

∣∣φu
i

)
,

Mi = (χS (u− uω)|φu
i ) .

(20)

Due to the iterative procedure for updating the Lagrange multiplier λ, the

reduced Lagrange multiplier λ̂` = (λ̂`i)1≤i≤nu can be directly used in place of E`
215

in the reduced momentum equation (15):

A · da

dt
+ B · a+ C : a⊗ a+ λ̂` + F = 0. (21)

The reduced momentum equation (21) along with the reduced Uzawa iter-

ation (19) constitute the proposed low order dynamical system, referred as

ROM2.

3.3. Parametrization of the characteristic function220

Here, we construct explicit evaluations of the coefficients c(θ) for caracteristic

function. In practical applications, the rotating bodies (fans, agitators) exhibit

some rotational symmetries that can be exploited. Denote θS the angular period



defined as the minimum angle such that χS = R(θS)χS with R(θ) the rotation

through angle θ around the axis eω, so that the ci : [0, θS]→ R, 1 ≤ i ≤ nχ are225

periodic functions ci(0) = ci(θS). In this work, we propose to use the periodic

piecewise polynomial interpolators (periodic splines) as follows.

Remark 6 (Mean characteristic function). In this work, the reference field

χS : Ω→ [0, 1] in (18) is defined as the mean of the characteristic function over

a rotation by the angle θS:

χS(x) =
1

θS

∫ θS

0

R(θ)χS(x, 0) dθ. (22)

The reference coefficients ci(θn), 1 ≤ i ≤ nχ are defined as the projection of

the fluctuating part of the characteristic function over its POMs Φχ for a set of

selected angles (θn)1≤n≤N−1 taken in the angular period θn ∈ [0, θS]:

ci(θn) =
(
R
(
θn
)
χS(x, 0)− χS(x)

∣∣φχi (x)
)
, 1 ≤ i ≤ nχ. (23)

The set Di of Ni + 1 data points used to build the interpolator for the i-th

coefficient is

Di ,
{(
θ0, ci(θ0)

)
, · · · ,

(
θNi , ci(θNi)

)}
, (24)

with 0 = θ0 < · · · < θn < · · · < θNi = θS. The associated interpolant Si ' ci

on the domain Θ = [θ0, θNi ] is such that Si(θ) = Pi,n(θ), ∀θ ∈ (θn, θn+1) where

the Pi,n(θ), 0 ≤ n ≤ Ni− 1 are third order polynomials that fulfill the following

constraints:

(C1) Pi,n(θn) = Pi,n−1(θn) = ci(θn), 1 ≤ n ≤ Ni − 1, (C0 interpolator);

(C2) P ′i,n(θn) = P ′i−1(θn), 1 ≤ n ≤ Ni − 1, (C1 interpolator);

(C3) P ′′i,n(θn) = P ′′i−1(θn), 1 ≤ n ≤ Ni − 1, (C2 interpolator);

(C4) P
(k)
i,0 (θ0) = P

(k)
i,Ni

(θNi), 0 ≤ k ≤ 2 (periodic).

The Ni + 1 interpolation points for the i-th coefficient can be selected by a

greedy approach, as detailed in § Appendix B. Finally, we define the multi-

valued function S(θ) =
(
S1(θ), · · · , Snχ(θ)

)
so that the reduced Uzawa iteration

(19) reads:

λ̂`+1 = λ̂` + r
(
G · a+ H · S(θ) + L : S(θ)⊗ a+ M

)
, (25)



with the vectors, matrices and third order tensor defined in (20).

4. Interpolation of the reduced order models

The POD approach yields reduced order models that lack robustness with230

respect to changes in the parametric configuration. Among the numerous ap-

proaches considered to circumvent the costly simulation of the HDM needed

to derive the POD basis for a new parameter, the most appealing are based

on interpolation (see e.g. [35] and references therein). In this work, we focus

on a robust interpolation method proposed in [38], namely, the Grassmannian235

Inverse Distance Weighting (IDW-G) which take account for the geometry of

the Grassmann manifold. First, we motivate and recall the Grassmannian inter-

polation method proposed in [36, 37]. Second, we recall the IDW-G algorithm.

Third, we sketch the use of this method to interpolate the POD-ROMs proposed

in the previous section 3.240

4.1. Interpolation over the Grassmann Manifold

Denote by Φ = (Φi)1≤i≤np the set of POD bases obtained from the simula-

tion of the HDM for the set of parameters P = (pi)1≤i≤np , and p? /∈ P the new

parameter for which we want to construct one of the POD-ROMs presented in

section 3. It has been shown that the construction of the POD-ROMs involves

the projection of the governing equation over the POD basis. On the other

hand, it is well known that the projection on the subspace Vi = span (Φi) does

not depend on the chosen basis used to describe it:

πΦ(U) = πΦ·M(U), ∀M ∈ O(m), (26)

where πΦ(•) = Φ ·ᵀΦ · • is a projection operator and O(m) is the set of square

orthogonal matrices of size m. Thus, we seek for a method to interpolate the set

(Vi)1≤i≤np of m-dimensional subspaces of Rn, hence to realize an interpolation

in the space Gm(Rn) = {M ∈ Rn×m; ᵀM ·M = I} known as the Grassmann

manifold (see e.g. [41]). The subspaces (Vi)1≤i≤np are associate with the equiv-

alence classes of all their bases, and form a set of points on Gm(Rn). The



approach proposed in [37] to interpolate over Gm(Rn),is as follows. First, the

sample (subspaces generated by the) POD bases are sent to the tangent space

of Gm(Rn) at a given reference point span (Φr) through the geodesic logarithm,

which matrix representation is [41, 37]

logΦr (Φi) = U · arctan(Σ) ·ᵀV · ( ΦTi · Φi)
1
2 , ∀i ∈ {1, · · · , np},

with U ·Σ ·ᵀV = SVD
( (

Φi · ( ΦTr · Φi)−1 − Φr
)
· ( ΦTr · Φr)

1
2

)
.

(27)

Second, the images are interpolated by any standard method suitable for vector

space. Third, the resulting interpolation is sent back on the manifold through

the geodesic exponential map which matrix representation is [41, 37]

expΦr (Γ) =
(

Φr · ( ΦTr · Φr)
1
2 ·V · cos(Σ) + U · sin(Σ)

)
·ᵀV · ( ΦTr · Φr)

1
2 ,

with U ·Σ ·ᵀV = SVD
(
Γ · ( ΦTr · Φr)

1
2

)
.

(28)

Remark 7 (Well posed interpolation). It is assumed that all the sample points

are in the injectivity radius of the exponential map with det( ΦTr · Φi) 6= 0,

∀i ∈ {1, · · · , np}.

Remark 8 (Dependence on the reference point). The method from [37] recalled245

above depends on the choice of the reference point. This could impact the ro-

bustness of the interpolation. To circumvent this drawback, we propose to use

the IDW-G interpolation method from [38] which we recall below.

4.2. Inverse Distance Weighting

In this paper, we consider the Inverse Distance Weighting interpolation over

the Grassmann manifold (IDW-G) proposed in [38]. The IDW-G method solves

the following minimization problem:

(Pp)


For p ∈ R, find ΦI ∈ Gm(Rn) s.t. :

ΦI(p) = arg min
Φ∈Gm(Rn)

(
1
2

np∑
i=1

wi(p) dG(Φ,Φi)

)
,

(29)



where dG denotes the geodesic distance and the weights (wi(λ))1≤i≤np ver-250

ify
∑np
i=1 wi(λ) = 1. The method relies on the following constructive theorem

from [38].

Theorem 1 (IDW-G sequence). If the Φ1, · · · ,Φnp are all contained in the ball

B(Φ∗, r) where Φ∗ ∈ Gm(Rn) and r < π
4
√

2
, then for all p ∈ R, the problem (Pp)

admits a unique solution ΦI in B(Φ∗, r). Moreover, for all initial Φ̂ ∈ B(Φ∗, r),

the sequence
(
ΦI
`

)
`∈N defined by:

ΦI
0 = Φ̂; ΦI

`+1 = expΦI
`

(
1

2np

np∑
i=1

wi(p) logΦI
`
(Φi)

)
(30)

converges to ΦI.

In practice, convergence is assumed when the norm of the gradient of the

functional associated with the problem Pp is below a predefined threshold (see [38]).255

This sequence yields the algorithm 2.

4.3. Interpolation of the low-order dynamical systems

The set of non-dimensional parameters involved in the full-order model are

classically the Reynolds number and some shape parameters for the rotating

body. Additionally, the POD-ROMs presented in section 3 involve the following260

bases:

ROM1: POD basis for the velocity Φu only,

ROM2: POD bases for the velocity Φu and the characteristic function Φχ.

In this work, we focus on the interpolation over a set of Reynolds number (related

with the rigid body rotation velocity). This situation arises in most industrial265

cases for which only the fans or agitators rotation velocity is controlled. In those

cases, there is no need to interpolate the POD bases for the characteristic func-

tion which can be determined once for all along with the spline approximation

(Si)1≤i≤nχ defined in subsection 3.3.

270



Data: Sets of parameters (pn)1≤n≤np with associated POD bases

(Φn)1≤n≤np , exponent α, residual tolerance εtol and target

parameter p?.

Result: Interpolated basis ΦI ' Φ?.

1 r = argmin
i∈[1,np]

|p? − pi| // Select initial value ;

2 ` = 0 ;

3 ΦI
` = Φr ;

4 S =
∑np
i=1

1

‖ p? − pi ‖α
// Sum of inverse distance weights ;

5 for i ∈ [1, np] do

6 wi =
1

S ‖ p? − pi ‖α
// Normalized inverse distance weights ;

7 end

8 ε =∞ ;

9 while ε > εtol do

10 ` = `+ 1 ;

11 for i ∈ [1, np] do

12 Γi = logΦI
`−1

(Φi) // Send to the tangent plane at ΦI
`−1 ;

13 end

14 ΓI
` = 1

2np

∑np
i=1 wiΓi // Weighted average;

15 ΦI
` = expΦI

`−1
(ΓI

`) // Go back on the manifold;

16 ε =‖ ΓI
` ‖F // Check residual ;

17 end

18 ΦI = ΦI
` // Update solution ;

Algorithm 2: Interpolation of POD bases by the IDW-G method from [38],

where ‖ • ‖ denotes the euclidean norm and ‖ • ‖F denotes the Frobenius

norm. Closed-form expressions for the matrix expressions of the geodesic

logarithm and the geodesic exponential are given in (27) and (28), respec-

tively.



In order to interpolate the POD bases for the velocity as described in al-

gorithm 2, the velocity POD bases have to be orthonormal with respect to the

scalar product of Rn. However, the scalar product of L2 is used to construct

the snapshot correlation matrices from which the POD bases are derived so

that the POD bases are orthogonal in L2. Thus, the sample bases must be275

orthonormalized in Rn before the interpolation, and the interpolated basis must

be orthonormalized back in L2, e.g. with a Gram-Schmidt procedure.

Finally, the proposed POD-ROMs involve the mean fields for the velocity

and the characteristic function. Since we do not identify a special interpolation280

space, they are interpolated by a cubic spline applied to the matrices coefficients.

5. Numerical results

This section is devoted to the illustration of the performances of the proposed

methods through numerical results. We consider here a simple 2D geometry

(rotating ellipsoidal rigid body). However, any geometry χS can be considered285

provided an adapted mesh is given. First, we describe the simple configuration

used in the tests. Second, we show the advantage of the two reduced order

models proposed in section 3. Third, we show the results for the interpola-

tion method describe in previous section 4. All the numerical tests have been

performed using the Python/C++ finite element library DOLFIN [42] on a290

computer equipped with a processor1 Intel Xeon E5-2620 v4 and 64Go of RAM.

5.1. Description of the configuration

We consider a circular spatial domain Ω = ΩS ∪ ΩF (d = 2) filled with a

rotating ellipsoidal body ΩS immersed in an incompressible newtonian fluid ΩF

(see figure 2a). The domain radius is 1m, the ellipse principal radius is R = 0.5m

12 sockets, 8 cores for each socket, 2 threads for each core, cadenced at 2.10GHz with a

cache of 20MB.



with an aspect ratio of 0.2. In the sequel, the Reynolds number associated with

this configuration is defined as

Re =
ρUL

η
, (31)

with the density ρ = 1 (kg.m−3), the dynamic viscosity η = 0.01 (kg.m−1.s−1),

the reference velocity U = R dθ
dt (m.s−1) and L = 2R (m) the ellipse principal

diameter.295

(a) Schematic (b) Non-conforming mesh

Figure 2: Configuration used for the numerical test.

We use the fictitious domain method [9] as described in section 2 to de-

rive the finite element formulation of the fluid-structure interaction. The mesh

includes 52669 nodes and is not conforming2 with the rigid body boundaries

(see figure 2b). The boundary condition on ∂Ω = ΓN is outflow (σF · n = 0).

The momentum equation and the continuity equation are solved together by300

a monolithic formulation for which the finite element spaces are chosen as the

linear vector Lagrange elements enriched with the cubic vector bubble elements

for the velocity and piecewise linear elements for the pressure. This mixed finite

element space is known as the mini space (see [43] for details). The time-step

for temporal discretization is fixed to 1ms. The parameters for Uzawa iterations305

2A mesh conforming with the body would be moving over time so that the snapshots should

be interpolated back on a single fixed mesh before applying the POD (as stated in §1).



(see section 2.3) are r = 103 and εtol = 10−3. For this setting, an average of

` = 6 Uzawa iterations are needed to achieve convergence of the velocity in the

solid domain. The average computational time for each Uzawa iteration of the

high-dimensional model is 5, 2s.

5.2. Comparison between HDM and proposed POD-ROMs310

The configuration described in previous subsection is used for the simulation

of the HDM with a zero initial condition. In this subsection, the Reynolds

number (31) is fixed to Re = 1000. The POD is classically applied to ergodic

processes for which the statistical and temporal averages coincide. Thus, we

first present the results obtained for a steady periodic flow. Second, the results315

for the transient period are shown.

5.2.1. Steady Periodic flow

We first run the HDM simulation for a transient period of 7, 5s. Second,

nT = 150 regularly spaced snapshots are generated over a period of T = 0, 75s

to construct the POD basis for the velocity Φu (figure 3). Additionally, we320

construct the POD basis for the characteristic function of the rigid body Φχ as

described in sections 3.3 and 2 (see figure 4).

The eigen-values (λi)1≤i≤nT of the correlation matrices (A.8) associated with

the velocity and the characteristic function are shown in figure 5a. The figure 5b

shows the associated reconstruction error computed from the eigen values as

E(n) = 1−

nT∑
i=n+1

λi

nT∑
j=1

λj

. (32)

We select nu = 30 modes for the velocity and nχ = 35 modes for the charac-

teristic function in order to capture 99.9% of the snapshots information. The

parameters for the reduced Uzawa algorithm are r = 100 and εtol = 10−3. The325

constant time-step for the POD-ROMs is 5ms and we use a mid-point numerical



Figure 3: First modes for velocity (φu
i )1≤i≤6 in the steady case (from left to right and top

to bottom).

scheme to solve (15) and (21) as

A · δa
k

δt
+ B · ak+ 1

2 + C : ak+ 1
2 ⊗ ak+ 1

2 = RHS; ak+τ = ak + τ δak. (33)

The periodic spline interpolation in ROM2 of the angular coefficients for

the characteristic function described in subsection 3.3 is build over the angular

period θS = π rad from a data set of N? = 1000 angles in [0, θS] and a relative

tolerance on the periodic spline reconstruction of εθ = 10−3. The computational

times are detailed in table 1 in which the advantage of the ROM2 over the ROM1

is clear. The fluctuating velocity for the three models (HDM, ROM1 and ROM2)

is shown in figure 6. The reconstructions provided by both the ROM1 and the

ROM2 are very close to the HDM, despite some artifacts due to the truncation

of the POD bases. These results are reflected in the vorticity shown in figure 7,

where we see the tiny vortices at the ellipse tips are well reconstructed. Finally,



Figure 4: First modes for characteristic function (φχi )1≤i≤6 for both the steady and the

transient cases (from left to right and top to bottom).

(a) Eigen-values (b) Relative-information content

Figure 5: Eigen-values (left) of the temporal correlation matrix (A.8) and reconstruction error

(32) associated with the velocity field u (+) and the rigid body characteristic function χS (×).



the temporal coefficients associated with the first six POMs of the velocity are

shown in § Appendix C, figure C.12 for the three models. A detailed comparison

of the error on these coefficients, defined as

∆aROM
i (tn) =

|aHDM
i (t)− aROM

i (t)|√
1
T

∫ T
0

(
aHDM
i (t)

)2
dt
, (34)

is shown in figure 8. The coefficients for the HDM are obtained by projection of

the snapshots over the POD modes ai(t) = (uh(x, t)|φu
i (x)). The coefficients330

for the ROM1 and the ROM2 are obtained from the solution of (15) and (21),

respectively. We see that despite the rigid body’s characteristic function is

approximated in ROM2, both models yields similar results.

Figure 6: Magnitude of the fluctuating velocity u(x, t)−u(x). Left: HDM. Middle: ROM1.

Right: ROM2.

Figure 7: Magnitude of vorticity. Left: HDM. Middle: ROM1. Right: ROM2.



Uzawa iteration Total

HDM 5.2s 7h 34m 53s

ROM1 0.6s 19m 36s

ROM2 0.01s 21s

Table 1: Computational times for the HDM, ROM1 and ROM2. Notice the time step is 1ms

for the HDM and 5ms for the POD-ROMs and parameters for the Uzawa algorithm differ

leading to an average of 6 iterations for the HDM and 10 iterations for the POD-ROMs.

Figure 8: Error on the coefficients for the fluctuating part of the velocity in the steady state

case (see section 5.2.1).

5.2.2. Transient flow

Here, we apply the proposed method on the transient period. That is, we335

start the simulation from a zero initial condition and consider 200 snapshots

over a rotation of the body by an angle of θ = π (see figure 9). The Reynolds

number (31) is still Re = 1000 as in the previous subsection. The threshold

on the RIC is 99%, which yields 45 POMs for the velocity. Since the geometry

is the same as in the previous case, the POMs for the characteristic function340



are unchanged compared to the previous section, with same truncation order

nχ = 35. Again, the reconstructions of the velocity from the proposed ROM1

and ROM2 are very close to the HDM with some discrepancies due to (i) the

coarse grid and (ii) the truncation in the POMs. The temporal coefficients for

the first six POMs for the velocity are shown in § Appendix C, figure C.13 and345

a detailed comparison of the error on these coefficients is shown in figure 10. We

see the temporal evolution of the dominant modes is conform with the HDM for

both the ROM1 and the ROM2.

5.3. Comparison between the direct and interpolated ROM2

In this section, we show the results of the ROM2 obtained from the inter-

polation of POMs with respect to the Reynolds number (31) by the IDW-G

method (algorithm 2). First, we build the POMs and the ROM2 from a di-

rect simulation at p? = 1250. This will be used a reference (thus labeled ref)

to which the interpolated POMs and ROM2 are compared. Second, we build

the POMs associated with the parameters p ∈ [1000, 1150, 1350, 1500] and we

interpolate at p? by two methods: (i) a vector interpolation of the POMs co-

efficients by a piecewise linear interpolator (naive method labeled vec) and (ii)

by the method described in algorithm 2, section 4 (labeled idw) with exponent

parameter α = 2 and numerical tolerance εtol = 10−9. The Grassmann distance

between the reference and both interpolation are:

d(Φu
ref ,Φ

u
vec) = 2.06,

d(Φu
ref ,Φ

u
idw) = 1.56.

(35)

Recall the injectivity radius for the exponential map on the Grassmann manifold

is π
2 , so that the basis Φu

vec is unreliable. This is reflected in the reconstruction

error:

‖ Uref −Uvec ‖F= 235.44,

‖ Uref −Uidw ‖F= 82.01,
(36)

where [U]i,j =
∑nu

n=1 an(tj)φ
u
n(xi) and ‖ • ‖F denotes the Froebenius norm.350

Finally, we show in § Appendix C, figure C.14 the temporal coefficients for

the POMs associated with the velocity obtained by the ROM2 build from the



HDM ROM1 ROM2

θ = 0

θ = π/4

θ = π/2

θ = 3π/2

θ = π

Figure 9: Magnitude of vorticity (transient period, see section 5.2.2).



Figure 10: Error on the coefficients for the fluctuating part of the velocity in the transient

case (see section 5.2.2). The definition of the error is in equation 34).

reference and both interpolated bases. The error between the reference and the

interpolated ROM2 are shown in figure 11.

6. Conclusion355

We have proposed a POD-based reduced order model (ROM2) for flows in-

duced by rigid bodies in forced rotation that substantially reduces the computa-

tional cost compared to previous approaches, while maintaining a high precision

compared to the results obtained from the high dimensional model or from the

standard POD-ROM (ROM1). The method is non-intrusive, and thus widely360

applicable. Additionally, it proves compatible with state of the art adaptive

method to avoid the computational cost associated with the production of the

snapshots for each new parameter.

The high number of modes needed to achieve a prescribed reconstruction365

error could be reduced by considering a rotational frame and mapping each



Figure 11: Error on the coefficients for the fluctuating part of the velocity in the the inter-

polation case (see section 5.3). The definition of the error is in equation 34).

snapshot to a reference frame. This is the subject of a work in progress. Also,

a parametric exploration of the effects of the rigid body geometry on the flow

should be performed by interpolation also with respect to the body’s geometric

parameters.370
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Appendix A. Recalls on the POD

The Proper Orthogonal Decomposition (POD) has been introduced as a tools

for the identification of coherent structures in dynamical systems in [19] based

on previous works grounded in statistical analysis [20, 21, 22, 23]. Consider the

spatial domain Ω ⊂ Rd and the temporal domain T ⊂ R with x ∈ Ω and t ∈ T.

Then, the POD of a field u : Ω × T → Rd consists in finding a deterministic



function φ in a Hilbert space H which gives the optimum representation of u

by solving the maximization problem〈
(u|φ)

2
〉

(φ|φ)
= max

ψ∈H

〈
(u|ψ)

2
〉

(ψ|ψ)
(A.1)

where 〈•〉 denotes a statistical average operator and (•| •) denotes the inner

product of H. We restrict ourselves to the application of POD to square in-

tegrable functions H = L2. In this case, the maximization problem (A.1) is

equivalent to the following eigenvalue problem:∫
Ω

R(x,x′)φ(x′) dx′ = λφ(x) (A.2)

where R is the non-negative symmetric spatial correlation tensor defined by

R(x,x′) = 〈u(x, t)⊗ u(x′, t)〉 . (A.3)

Moreover, if R is continuous, the following operator

R : H → H

φ(•) 7→
∫

Ω
R(•,x′)φ(x′) dx′

(A.4)

is compact. Then, the Hilbert-Schmidt theorem ensures that there exists a set

of positive eigenvalues (λi)i≤1 decreasing toward zero:

λi+1 > λi, lim
i→∞

λi = 0 (A.5)

and a set of eigenmodes (φi)1≤i which forms an orthonormal basis for H so that

u can be decomposed as

u(x, t) =

∞∑
i=1

ai(t)φi(x) (A.6)

where the POD temporal coefficient are ai(t) = (u(x, t)|φi(x)). The eigenmodes

(φi)1≤i form the so called POD basis or Proper Orthogonal Modes (POMs).

For details on the POD see [44, 45, 46]. In practice, the POMs can be obtained510

from a finite set of snapshots
(
u(x, tn)

)
1≤n≤nT

by the well known snapshot POD

method introduced in [40] and recalled below.



1. Form the temporal correlation matrix C with elements:

[C]mn = (u(x, tm)|u(x, tn)) . (A.7)

2. Compute the eigen-decomposition of C such that

C · vi = λivi. (A.8)

3. Define the i-th POM as a linear combination of the snapshots with the

coefficients of the i-th eigen-vector elements:

φi(x) =

nT∑
j=1

[vi]j u(x, tj). (A.9)

Appendix B. Selection of the interpolation angles

In this appendix, we propose a greedy algorithm for the selection of the in-

terpolation angles involved in the evaluation of the angular coefficient associated

with the i-th POM of the characteristic function in section 3.3. We assume that

the values for the i-th reference coefficient (c?i (θ
?
n))0≤n≤N? defined in (23) are

known for a set of N? angles Θ? = {θ?0 , · · · , θ?N?} and that a procedure for the

construction of the periodic spline interpolant for the i-th coefficient Si is avail-

able (see e.g. [47, §3.5]). Additionally, we define the relative spline interpolation

error as

ei(θ) =
|c?i (θ)− Si(θ)|

cRMS
i

, (B.1)

where cRMS
i denotes the root-mean-square value:

cRMS
i =

√√√√ 1

N?

N?∑
n=0

(c?i (θ
?
n))

2
. (B.2)



The greedy selection is given in algorithm 3.

Data: Original set of angles Θ? =
(
θ?n)1≤n≤N? .

Result: Reduced data set Θ̂ =
(
θn
)

1≤n≤Ni
.

1 Initialize Θ̂←
(
θ?0 , θ

?
N?

)
and Ni ← 1;

2 while max
θ?∈Θ?

ei(θ
?) > εθ do

3 Find j s.t. ei(θ
?
j ) = max

θ?∈Θ?
ei(θ

?) ;

4 Insert θ?j in Θ̂ ;

5 Increment Ni ← Ni + 1 ;

6 end

Algorithm 3: Greedy algorithm to select the set of angles for the con-

struction of the periodic spline interpolant for the evaluation of the angular

coefficients associated with the characteristic function in (18).

Appendix C. Additional results515

Figure C.12: Temporal evolution of the coefficients for the fluctuating part of the velocity in

the steady case (see 5.2.1).



Figure C.13: Temporal evolution of the coefficients for the fluctuating part of the velocity

during the transient period (see 5.2.2).

Figure C.14: Temporal evolution of the coefficients for the fluctuating part of the velocity in

the interpolation case (see section 5.3).
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