A gradient flow approach to large deviations for diffusion processes

Abstract : In this work, we investigate links between the formulation of the flow of marginals of reversible diffusion processes as gradient flows in the space of probability measures and path wise large deviation principles for sequences of such processes. An equivalence between the LDP principle and Gamma-convergence for a sequence of functionals appearing in the gradient flow formulation is proved. As an application, we study large deviations from the hydrodynamic limit for two variants of the Ginzburg-Landau model endowed with Kawasaki dynamics.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01874821
Contributeur : Max Fathi <>
Soumis le : vendredi 14 septembre 2018 - 18:13:59
Dernière modification le : vendredi 4 janvier 2019 - 17:32:34

Lien texte intégral

Identifiants

  • HAL Id : hal-01874821, version 1
  • ARXIV : 1405.3910

Collections

Citation

Max Fathi. A gradient flow approach to large deviations for diffusion processes. Journal de Mathématiques Pures et Appliquées, Elsevier, 2016. 〈hal-01874821〉

Partager

Métriques

Consultations de la notice

24