Modified logarithmic Sobolev inequalities for canonical ensembles

Abstract : In this paper, we prove modified logarithmic Sobolev inequalities for canonical ensembles with superquadratic single-site potential. These inequalities were introduced by Bobkov and Ledoux, and are closely related to concentration of measure and transport-entropy inequalities. Our method is an adaptation of the iterated two-scale approach that was developed by Menz and Otto to prove the usual logarithmic Sobolev inequality in this context. As a consequence, we obtain convergence in Wasserstein distance $W_p$ for Kawasaki dynamics on the Ginzburg-Landau model.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01874814
Contributeur : Max Fathi <>
Soumis le : vendredi 14 septembre 2018 - 18:00:57
Dernière modification le : vendredi 4 janvier 2019 - 17:32:34

Lien texte intégral

Identifiants

  • HAL Id : hal-01874814, version 1
  • ARXIV : 1306.1484

Collections

Citation

Max Fathi. Modified logarithmic Sobolev inequalities for canonical ensembles. ESAIM: Probability and Statistics, EDP Sciences, 2015. 〈hal-01874814〉

Partager

Métriques

Consultations de la notice

31