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Abstract

In this paper we provide an alternative framework to tackle the
first-best Principal-Agent problem under CARA utilities. This frame-
work leads to both a proof of existence and uniqueness of the solution
to the Risk-Sharing problem under very general assumptions on the
underlying contract space. Our analysis relies on an optimal decompo-
sition of the expected utility of the Principal in terms of the reservation
utility of the Agent and works both in a discrete time and continuous
time setting. As a by-product this approach provides a novel way
of characterizing the optimal contract in the CARA setting, which is
as an alternative to the widely used Lagrangian method, and some
analysis of the optimum.
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1 Introduction

Many economic situations in the areas of optimal contracting or incentive
policy design can be gathered under the so-called Principal-Agent formula-
tion where an Agent is asked to perform an action on behalf of a Principal
in exchange for a wage. This formulation has known a renewed interest
since the seminal paper [Holmstrom and Milgrom 1987 by Holmstrém and
Milgrom in 1987 which brought to light a new method to solve a partic-
ular type of Principal-Agent problem in continuous time. Since then, this
approach has been expanded. For instance, some notable contributions in-
clude the works by Schattler and Sung in |Schattler and Sung 1993| and
[Schéttler and Sung 1997], the works of Sung in [Sung 1995], and more re-
cently the contribution [Sannikov 2008] of Sannikov. As we just mentioned
the focal point of these works is one particular type of Principal-Agent prob-
lem, the Moral Hazard case, and the amount of interest for this problem is
on par with its realism. Indeed, it involves optimal contracting in a situation
where the Principal cannot control and monitor the Agent’s actions. This
matches reasonably with real-world applications. An investor who delegates
his portfolio management to a banker cannot expect to control the banker’s
actions. A group of shareholders is not able to monitor every doing of the
CEO of its company. It is thus said that the Moral Hazard problem models
optimal contracting under partial information.

To measure the impact of this asymmetry of information, it is enlighten-
ing to compare the optimal contract with the optimal Risk-Sharing rule.
This rule comes about in a full information situation, when the Principal
dictates the Agent’s actions and guarantees a reservation utility to him.
Specific literature on this problem, which is called the first-best Principal-
Agent problem, includes important works such as |[Cvitanic and Zhang 2012,
[Cvitanic, Wan and Zhang 2005] and [Muller 1998]. However, it is overall
more scarce than the literature on the Moral Hazard problem. There are at
least two reasons behind this. The first important reason is that the first-
best problem is also a so-called Risk-Sharing problem. Risk-Sharing problems
are documented in several fields of economics and insurance (but in another
context than the one Principal and one Agent problem) and more general
literature exists using for example risk-measure approaches. We refer the
reader to Section 1 of [Embrect, Haiyan and Wang 2018| for a review of the
existing literature on the Risk-Sharing question. Another reason for a scarce




literature is that the first-best Principal-Agent problem is less realistic than
other variations on the Principal-Agent problem such as Moral Hazard, since
it does not fit strictly speaking in an incentive policy design framework. This
lack of realism means that the problem is less subject to extensions than the
Moral Hazard problem or other variations on the Principal-Agent problem.

When analyzing Principal-Agent problems of any form two main questions
arise. Does a solution to the set problem actually exist? And if so, can
we obtain some form of characterization for it? The existence question is
fundamental as without any such guarantees trying to characterize a solu-
tion is pointless. For this reason, obtaining existence results has aroused a
considerable amount of interest across the past few decades and for differ-
ent types of Principal-Agent problems. In 1987, Page considered the Moral
Hazard problem in [Page 1987] and was able to prove existence. To do so,
he used a set of assumptions including a compact set for the agent’s actions,
bounded wages, and a compact set for monetary outcomes. The same year
and in their seminal paper [Holmstrom and Milgrom 1987], HAtlmstrom and
Milgrom proved existence in a single period Moral Hazard problem with a
discrete (and thus bounded) wealth process, a compact set of feasible ac-
tions, and CARA utilities. They then build a continuous time model that
approaches the discrete one. Shortly after, SchAdttler and Sung extended
the continuous time model of [Holmstrom and Milgrom 1987| and established
in [Schattler and Sung 1993| a set of necessary and sufficient conditions for
existence of solutions in a continuous time setting. One such condition is
that the agent’s actions belong to a compact set but they also suppose
that the wage be bounded below before proving that their hypothesis can
be slightly lifted in order to include a few more general wages such as lin-
ear ones. A more recent work is that of Jewitt, Kadan and Swinkels in
|[Jewitt, Kadan and Swinkels 2008| where one key assumption is that the
wealth process is supposed bounded. Many works thus consider quite re-
strictive hypothesis to obtain existence. However, a few papers aim to pro-
vide more general existence conditions. These include the work of Kadan,
Reny and Swinkels in |[Kadan, Reny and Swinkels 2017] for the Moral Haz-
ard and Adverse Selection setting using only a bounded wage assumption.
The Adverse Selection case in continuous-time is also tackled by Carlier in
[Carlier 2001] using calculus of variations and h-convexity. This work is fur-
ther extended by Carlier and Zhang in using calculus of varia-

tions once again along with an important assumption to obtain the required




compactness. As a consequence to this assumption, the authors consider
mainly Lipschitz utilities in their examples.

This literature analysis leads us to several important conclusions. A first con-
clusion is that the first-best problem is a benchmark problem for Principal-
Agent analysis yet specific literature on it is scarce. Furthering the literature
on this problem and on its possible extensions will help gain better under-
standing of Principal-Agent problems as a whole. Another conclusion is that
a key setting for Principal-Agent problems involves CARA utility and a dis-
crete or gaussian wealth process. In the latter case, the model becomes the
so-called LEN model. This model is for example discussed in [Muller 1998] by
Muller who characterizes the solutions to the problem in a continuous time
first-best setting. Finally, establishing solution existence is both key and
non-trivial for Principal-Agent problems before going ahead with any form
of characterization. Indeed due to the stochastic nature of the problems, the
underlying contract spaces are in most cases non-compact. Additional as-
sumptions on models are then needed to obtain compactness, particularly in
discrete time settings where results from the field of optimal stochastic con-
trol cannot be used, to be able to apply standard existence theorems from the
field of optimization. The literature therefore includes few existence results
for Principal-Agent problems in general settings.

In this paper we aim to bring to light a result that is at the crossroads of these
three conclusions. Indeed, we consider a Principal who owns a firm (or a port-
folio) whose wealth is subject to uncertainty and an Agent to whom a wage is
offered in exchange for a participation to the firm (and we also refer the reader
to |Cvitanic and Zhang 2012| and |Cvitanic, Wan and Zhang 2005| for more
details). Their respective utilities Up and Uy are CARA utilities defined as:

Up(z) = —exp(—ypx) and Uy(z) = —exp(—yax),

where vp and 4 are two fixed risk aversion coefficients. In a single period
setting, in order to reduce his exposure to uncertainty, the Principal hires the
Agent at time ¢ = 0 in a take-it-or-leave-it contract in which (if accepted)
the Agent is asked to produce an effort a > 0 at time t = 0 in return for the
payment of a wage W at time ¢t = 1. The wealth of the Agent then becomes
X at time t = 1 with

X'=x9y+a+ B,



where xg is the initial wealth at time ¢ = 0 and B is a square-integrable ran-
dom variable modeling the stochastic exposure of the Principal. Note that
in this simple model, we assume that the Principal fully observes both the
outcome X (at time ¢ = 1) and the action a of the Agent, meaning that the
Principal actually dictates this action to the Agent. LI To model the cost of
effort for the Agent, we introduce a function x defined on R, and chosen to
be strictly convex, continuous and non-decreasing. A simple example of such
a function is the quadratic cost function which, for a fixed constant K > 0,
is defined for any x in R, as x(x) = K@.

An important remark is that the contract (which from now on will be mod-
eled by the pair (wage, action)= (W, a)) is a take-it-or-leave-it contract that
will be accepted by the Agent if a Participation Constraint (PC) condition
(or reservation utility constraint) given below is satisfied :

E[U4 (W = r(a))] = Ua(yo). (L1)

where yo > 0 represents the level of requirement for the Agent to accept the
contract.

In this setting, we analyze the first-best problem which simply writes as :

sup E[Up(X*—W)], (1.2)
(W,a) subject to (D:D)

and which can also be written in a continuous time setting. One classical
way of proving existence of a solution to such a problem is to use a varia-
tional approach where we find a topology of the underlying contract space
that ensures upper semi-continuity, concavity and coercivity of the Princi-
pal’s expected utility, whilst rendering the contract space convex and closed.
The sticking point here is often coercivity and more particularly coercivity
in W. This may be ensured in some cases when B is bounded. However it is
difficult to do so under more general assumptions.

LA typical example of such a situation is when the Agent is the Principal himself,
meaning that as a manager of the firm, the Principal decides his level of work and the
salary he pays himself for it. Note that as the Principal decides of the action of the agent,
this action must be a positive effort in the firm as ¢ < 0 would mean that the Agent
would sabotage the firm, which of course does not make any sense. Another example is a
monopoly type situation.



In this paper we provide an alternative proof of existence and uniqueness of
solutions to Problem (L2]) with next to no further assumptions. To do so, we
exploit the properties of the exponential function in the utilities to first de-
compose the Principal’s expected utility in terms of that of the Agent. Using
this decomposition and the so-called Reverse HAtlder inequality, we are able
to upper bound the Principal’s expected utility by some constant depending
only on the model’s parameters. We then derive an optimal decomposition,
relying on the Reverse HAtlder equality condition, which provides us with a
unique admissible contract attaining the upper bound. As a by-product this
allows us to shed a new light on the Borch rule for Risk-Sharing. We thus
have an existence and uniqueness proof for the Risk-Sharing problem under
CARA utilities along with a characterization of the optimum. We believe
that the strength of this method lies in the generality of the settings that it
allows us to consider. Indeed we are able to deal with both the discrete and
continuous time case, actions that belong to R™ or even to any compact sub-
set of R*, a general effort cost function x, and more importantly any form on
random variable / random process that has exponential moments (this last
assumption is a purely technical as we are optimizing exponential expected
utilities). Furthermore, the proof does not rely on any a priori intuition on
the form of the optimal contract. We thus provide an existence and unique-
ness result for the first-best Principal Agent problem under CARA utilities
in more general settings that those generally considered in the literature. As
a by-product to this approach we also obtain through our decomposition of
the Principal’s expected utility a revisit of the well-known Borch rule for
Risk-Sharing. Finally, we provide some further analysis on the effect of dif-
ferent parameters on the Principal’s take-home utility. Indeed, we analyze
the effect of enforcing a sub-optimal action as well as study the question of
a Principal who has to choose between two different Agents.

We proceed as follows. First in Section 2] we tackle the single-period prob-
lem as described in the introduction. Then in Section Bl we proceed with
some contract comparison in the single-period setting. Finally in Section @l
we discuss on some extensions, including the continuous time problem, be-
fore collecting some of the lengthier proofs of our results in Section Bl and
concluding in Section [G



2 The single-period Risk-Sharing problem

In the following we discuss Problem ([L2)) as presented in the introduction.
To do so we exploit a key result called the Reverse Holder inequality. As its
name suggests it is closely linked to the more well-known Hélder inequality.
We state the result below.

Proposition 2.1 (Reverse Holder inequality). Let p € (1,400]. Let F' and
G be two random variables such that G # 0, P-a.s.. Then :

(i) The Reverse Holder inequality holds, that is,

1P 1 7-p+1
E[|F x G > E [\Fp] x E [|G\w]
(i1) In addition, the inequality is an equality, that is,
11P -1 71—p+1
E[F x G| =E [|F|;} x E [|G|rl}

if and only if there exists some constant (that is non-random) o > 0
such that |F| = o|G| 7.

In order to proceed with our analysis of Problem (L2, we define the set of
admissible contracts for the Risk-Sharing problem C%¥™ as follows :

Cvm = {(W,a) € L*(Q) x Ry satisfying (I},

where L?(f2) is the set of square-integrable random variables. Also, for a
given a in R, we define the set of related admissible wages :

W(a) = {W € L*(Q), suchthat (W,a) in C*"}.

With these notations in mind, we rewrite Problem (L2) as :

sup E[Up(X®—W)], (2.1)
(W,a)eCadm
or alternatively :
sup sup E [Up(X*—W)]. (2.2)

WeW(a) aeRt



Our aim is to prove existence of a solution to this problem. To do so, we
use the inequality of Proposition 2.1l and the multiplicative nature of the
Principal’s utility in order to obtain an attainable upper bound. As a first
step, we apply the Reverse Holder inequality and a decomposition of the
Principal’s expected utility.

Theorem 2.1. Let a in RT. We have :
(i) For any W in W(a),

E[Up(X*—W)]

+
va qlATIE vp

<E||Up (X" — n(a))mm] M XE[UL(W = k()] 4. (2.3)

(i1) For W in W(a). The following conditions are equivalent :

(i)

E[Up(X* = W)]
=B [JUp (X~ w(@)FF] T x B (07 — sa))]
(2.4)

(ii"") (a, W) satisfies the Borch rule, that is, there exists a in R such
that :

U;D(XG_W)—Q —a.s
0 W = r(a) P—a.s. (2.5)

(i) The wage W is of the form :

W=—I2_xoe.8 withBeR,
TP+ YA

such that (W, a) € Ca4™,

Proof. See Section (.11
[

Remark 2.1. (i) The Borch rule for Risk-Sharing, derived by Karl Borch
in [Borch 1963 and [Borch 197]), appears here in (Z3) as a condition



for equality between the Principal’s expected utility and its decomposi-
tion. This sheds a new light onto the rule in the CARA utility case.
Indeed, it only allows for contracts that enable an isolation of the ef-
fect of the Agent’s expected utillity in the Principal’s expected utility.
We will see further on that the Borch rule is a necessary optimality
condition for the Risk-Sharing problem just like it is when using the
Lagrangian method.

(1) When analyzing the first-best problem it seems intuitive that the Princi-
pal and the Agent’s utilities should be of opposite effect : the Principal
should want to maximize his utility whilst minimizing that of the Agent.
This is encompassed in (2.3) : due to the negative power —1 the upper

VA
bound increases as the Agent’s utility decreases.

Now that we have a decomposition of the Principal’s expected utility and a
condition for it to hold exactly (Borch rule), we turn to further exploiting
this decomposition and the appearance of the Agent’s expected utility in
order to obtain a bound that is free of W and a. We do this in two stages in
the following two Propositions.

Proposition 2.2. Let a in R.. For any W in W(a),
va ya+typ vp
E[|Up (X* = (@) [ue ] 7% < E[Us (W = s(a))] "

YATYP

< Up(—y0) x inf E [[Up (X = w(@)| "7 ] 7

Proof. Apply the participation constraint (LI]) to the right hand term and
optimize in a in the left hand term. O

It thus remains to perform the optimization in a. To do so, we introduce the
following two notations :
k(p) := sup (px — k(z)), for any p > 0,
reR
and
K*(p) := argsup,cg, (pr — Kk(z)), for any p > 0.
k is the Legendre transform of k, and x* is its related argument. These are

well defined due to the convexity of k. We use these two notations in the
following Proposition to perform the optimization in a and obtain our upper

bound.



Proposition 2.3. For any a in R it holds that :

JAtyp YATYP

E |UP(XG—/€(CL))|7;TA‘HD] A ZEDUP(XG*—I{(Q*))‘W] -

ya+typ
~ —P7A A
=exp (—yp(zo + R(1))) E |ex
p (el + HDE fexp (2025
where a* := k*(1). We thus have for any (W, a) in C4™ ;
va YA+YP 9
E[|Up (X* = (@) 7| ™ < E[Us(W = s(a)]
rAt+vp
~ —YP7YA A
< Up(xg—vyo+ K(1)E |exp | —————B
R )
Proof. See Section 5.2 O

The combination of Theorem 2.1 Proposition and Proposition allows
us to exploit a decomposition of the Principal’s expected utility, the Par-
ticipation Constraint and an optimization in @ in order to upper bound the
Principal’s value function. The upper bound that we obtain is free of W
and a and is key for our existence proof. Indeed, we are now able to show
that this upper bound is attained for an admissible contract, which is in fact
unique. This gives us our main result, which is simultaneously an existence,
uniqueness, and characterization result for solutions to the first-best problem
and is the object of the following key Theorem.

Theorem 2.2 (Existence, Uniqueness and Characterization). (i) Consider
(W, a) in any contract in C°™  then it holds that :

YATIP
E[Un (X"~ )] < Uplza — o+ KUJE [oxp (224 5) |
Yp + 74

(ii) Now let (W*, a*) be such that :

and



B 1= yorr (K (1)) =—22— (39 + £*(1))—— In (E [exp (ﬂB)D |

Y4+ VP YA TP+ 74

Then (W*,a*) is the only contact verifying (20) and saturating the
participation constraint.

(iii) Furthermore :

YA+YP

E [Up (X* = W*)] = Up(o = yo + #(1))E {exp (ﬁffﬂ X

Thus (W*, a*) is the unique contract attaining the upper bound. It
follows that for any (W, a) in C9™

E[Up (X*—W)] <E[Up (X* =W")],

and (W*,a*) is the optimal contract for the first-best Principal-Agent
problem.

Proof. See Section 0

Remark 2.2. Throughout this Section, we suppose that we wish to find an
optimal action a amongst the whole of Ry. We may in fact also consider
optimizations on compact subsets of R.. For S such a subset, the optimal
action 1is then :

a* = argsup,eg a — k(a)
We may apply our key Theorem to a more specific Gaussian setting as follows.

Example 2.1. Consider a Gaussian setting where B ~ N (0,1), and k(x) := Kx;
for some K in R,. Then there exists a unique optimal contact for the Risk-
Sharing problem. We set :

1
* = * 1 -
W* — 7P Xa* 4 5*7
YA+ P
where the optimal 5* has the following expression :

P

e Yalvel? B
YA+ P

= W + yo + k(k*(1))

(xo +K"(1)) .

11



The contract (W*,a*) is the optimal Risk-Sharing contract in this setting.
The Principal’s optimal expected utility is worth :

a* * ~ TPYA
E [Up(X* — W")] = Up(zo — yo) exp (%P ( R(L) + 2(7a +7p))) :
Our main Theorem therefore includes the well-known results for the single
period Gaussian setting discussed for example in [Cvitanic and Zhang 2017].
We note that it even allows us to go further than [Cvitanic and Zhang 2017]
and fully specify the intercept 5* in the wage rather than leaving it dependent
on the Lagrange multiplier.

Remark 2.3. Theorem[2.3 extends existence of solutions beyond the bounded
wealth process setting. It does so without any assumption on the form of
the optimal contract and using an analytic inequality rather than calculus
of wvariations for which we lack coercivity. It also provides an important
proof of uniqueness. The result therefore completes pre-standing results on
existence and uniqueness by allowing for a general setting (general wealth
process, general cost of effort function etc.) in the CARA utility case.

This reasoning discussed in this Section generalizes to continuous time set-
tings and this will be a focus of Section @l In the meantime we go over some
further analysis of the Risk-Sharing problem that can be gleaned using the
Reverse-Holder inequality.

3 A comparison of contracts through the Re-
verse Holder inequality

In this Section we use the Reverse Holder inequality given in Proposition
2.1 to compare different contracts in the Risk-Sharing setting. Indeed, the
multiplicative nature of the decomposition of the Principal’s expected util-
ity prompts us to compare ratios of utilities under different conditions. This
analysis brings to light effects of some choices the Principal may wish to make.

We first study the effect of enforcing another action than the optimal one.
The Principal may indeed wish to over or under work the Agent in some
conditions and the following Proposition quantifies the effect of such a choice
on the Principal’s own utility. Note that the direction of inequality (B

12



may seem counter-intuitive at first but this is due to the negative sign of the
expected utilities.

Proposition 3.1 (Effect of enforcing a sub-optimal a). Let a be any positive
action and W be any contract in W(a). Let (W™, a*) be the optimal contract
described in Theorem[2.3. We define the Agent’s action ratio R(a) as :

E[Up (X = R@) ] axp(yp(a - k() \ T
R(a) == - [|UP (X — K(a*mﬁ] - (exp(_vp(a* ~ K(a*))) ;

and the Participation Constraint ratio C(W, a) as :

E[Us (W —r(a)] _ E[Us(W —r(a))]

A9 = g o —w@)] ~ Ualw)
Then it holds that :
E[Up (X = W) e e
ey 2 ) o 6
and
E[Up (X° — W) < Ra) 4" xE[Up (X —W9]. (3.2

These inequalities are strict as soon as (W,a) # (W*,a*). Furthermore,
when (W, a) bounds the Participation Constraint, C(W,a) =1 and we directly
obtain[32 Finally R(a) > 1.

Proof. The proof of (31]) is a direct consequence to applying Reverse Holder
to E[Up (X — W)] and E [Up (X* — W*)] . Indeed, we obtain :

+
N YATYP

E[Up (X = W)] <E [|Up (X* = (@))% | 7 XE[Us (W = 5(a)] 4 ,

and through optimality for (WW*, a*) :
ratyp vp

B [Up (X% = W*)] =E [[Up (X* = (@) [757] 7" <E[U, (W = s(a)] 54

Taking the ratio of the two, noting that E[Up(X* — W*)] < 0 which changes
the sign of the inequality, we obtain ([B.I]). To obtain (B.2]), note that through
the Participation Constraint :

E[Us(W — k(a))] Z E[Ua (W* = r(a®))],

13



and thus (as U, is negative) C'(W,a) < 1, implying that C(W, a)_z_i > 1.
Finally, we obtain R(a) > 1 directly through Proposition 2.3 O

It is apparent through (B.]) that the ratio of the Principal’s utilities splits
into a product of two ratios. One of them (C(W,a)) transfers the effect
of the Agent’s participation constraint onto the utility of the Principal :
indeed, C'(W, a) is maximized as soon as (W, a) binds (and thus minimizes)
the Agent’s utility. The second ratio R(a) further restricts the possible values
for the Agent’s value function and this no matter the chosen wage. Indeed,
we see in (B.2) that a choice of action a may restrict quite consequently
the possible attainable utilities for the Principal, no matter whether the
associated wage binds the Participation Constraint or not. We illustrate this
result in the following example.

Example 3.1. Consider a Principal whose company’s activity temporarily
decreases and who therefore has to underwork by half the Agent. Then the
loss in expected utility incurred by the Principal, no matter the wage he pays,
s quantified by :

% B exp(_VP(a—; - “(%)))
R(a) = exp(—p(a* — k(a*))

Of course, we see that the impact of a choice of action depends in turn on
the cost of action function k. For example for a function x« that is convex
yet close to linear, choosing a non-optimal action will not have as much as
an effect on the Principal as when & is convex and quadratic. Naturally, we
may further analyze the effect of k and wish to quantify the effect of two
different cost functions. We do so in the following and the analysis is similar
to above.

Proposition 3.2 (Effect of the action cost function k). Let (W*, a*) be the
optimum obtained in Theorem[Z2 for the Risk-Sharing problem and a given
cost function k. Let (W, a) be some contract in C™ for some cost function
k and binding the Participation Constraint. Then :

By (xe-w) | B[O @] T
E[Up (X — W] E [|UP (X _H(a*>>|ﬁ}T

14



In particular of W s of the form JTPWX“jLﬁ then the above inequality holds
in equality. Thus, if (W,a) is the optimum for some particular Kk, one can
quantify the effect of &k on the obtained optimum relative to that obtained for

k. Indeed, it holds that :

E |[Up (X* = &(a)|7a57 |

E[Up (X*—W)] = ” x E [Up (X —=W*)].
E [Up (X = k(a)) a7 |
(3.4)
Proof. Using similar reasoning to that in the proof of Proposition B.Il we
have that :

EUp (X - W) E[Up (X —h@)[F] <E[UA<W—%<a>>]>‘3i’
EUp (X = WH)] — Ua(o)

B [[Up (X~ s(a )]
(3.5)

and in particular if (W, a) binds the Participation Constraint then

(E[UA ((Jlj/(y_o)/%(a))])_yj .

and using the Reverse-Holder equality condition, we have equality for wages

of the form ’Y,L;/TP’YPX ® 4 B saturating the Participation Constraint.

O

This Proposition underlines the effect of a change in action cost function
on the Risk-Sharing optimum, encompassing it in the action cost ratio. A
corollary to this Proposition extends this result to the situation where a
Principal has a choice between two Agents with respective cost functions s
and &, and respective risk aversion coefficients y4 and 4, and wishes to
choose one and provide him with the related optimal Risk-Sharing contract.

Corollary 3.1 (A comparison of two Agents). Consider a Principal who
has a choice between two agents characterized by (ya, k,yo) and (Va, K, Jo)-
Suppose that vayo = Yao. Let (W,a) and (W,&) be the associated optimal
contracts (recalling that a = k*(1) and a = £*(1)). Then :

15



E[Up (X* — W)| = : MXE[UP<Xd—W)].

Therefore if

the Principal should choose the Agent characterized by (v, k) and vice-versa.

The choice of Agent therefore depends on a balance between the Agent’s
risk aversion and his action cost function. Note that this result may be
generalized beyond the case where y4y9 = 749o, one simply has to include
the effect of yy and ¢y in the comparison criteria.

Example 3.2. Consider B ~ N(0,1), k(z) := %2 and k(x) := 2% Then

a=1and a = % The Principal’s expected utility obtained with the first

Agent would be :

YA YA+YP

E[[Up(X* — (a))| 757557 = exp (—wo Fa—ra) +

'VA'YI% )
YA+ P

—exp( ~ (x —I—l YAYP ))
= —Yp|To+ 75— ———— .
2 yatp

Stmilarly, his expected utility from the second Agent would be:

P PUNNE. . = 1 Aarp
E[|Up(X® — k(a))|7a*+p YA = exp <_ <flf + - — = .
0P (X7 — (@) 757) v (041 - A2

Therefore in order to maximize his utility, the Principal should employ the

first Agent if
1 v - AP

4 vya+p Ya+ P’
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and he should employ the second Agent if not. Note that for more general
cost functions and a Gaussian B, the Principal should employ the first Agent
of
5 A2
a—rla) — AP S G k(a) — AP
YA+ P YA+ P

Remark 3.1. In the same vein as the Propositions above, one may also
exploit the consequences to Reverse-HAdlder decomposition of the Principal’s
utility to compare the optimal Risk-Sharing contract to the optimal Moral
Hazard contract, under CARA utilities.

4 Extensions to the Reverse-HAftilder frame-
work

In the following Section, we illustrate the versatility of our framework and
our results. Indeed so far we have worked with a single period model with
a general production process and a general action cost function. We obtain
existence, uniqueness and characterization of the Risk-Sharing solution, and
some analysis on the model. In the following, we discuss on some extensions
to this setting. One first important setting is the continuous time setting.

4.1 Existence, uniqueness and characterization of the
Risk-Sharing optimum in a continuous time setting

We specify the model of interest which is simply a continuous time version
of the one studied previously. More precisely we consider one Principal and
one Agent. The Principal provides a single cash flow (wage) W at maturity
(denoted T') to the Agent and requires in exchange an action a = (a)cjo,n]
(that is completely monitored by the Principal) continuously in time accord-
ing to the random fluctuations of the wealth of the firm. A contract will once
again be a pair (wage,action)= (W, a).

We start with the probabilistic structure that is required to define the ran-
dom fluctuations of the wealth of the Principal. Let (2, F,P) be a probability
space on which a stochastic process B := (By)icpo,] is defined with its nat-
ural and completed filtration F := (F)cjo,r7. The only requirement on this
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stochastic process is that

sup E[exp (¢B;)] < +o0, Vg € R™.
te[0,T

This allows for the use of CARA utilities, and is verified for example for
Brownian motion. We denote by E[-] the expectation with respect to the
probability measure P.

The Agent will be asked to perform an action a continuously in time, ac-
cording to the performances of the firm. Hence we introduce the set P of
[F-predictable stochastic processes a = (a¢)icjo,r) and the set of actions is
given as :

T
H, := {a = (at)icpor) €P, st. E {GXP (Q/ |at‘2dt)
0

As we will work with exponential preferences for the Agent and the Principal,
we require so-called "exponential moments" on the actions and wages. As
mentioned previously, this is a technical assumption. Given a in Hy, the
wealth of the principal at any intermediate time ¢ between 0 and the maturity
T is given by :

< +00, Vq>0}.

t
X/ = x +/ asds + By, tel0,T], P—a.s., (4.1)
0

where 75 € R is a fixed real number. For any action a in H,, we set FX" :=
(ftXa)te[oﬂ the natural filtration generated by X®. In particular, we are
interested in the set of JF3 -measurable random variables which provides
the natural set for the wage W paid by the Principal to the Agent. More
precisely, we se

W := {F;" — measurable random variables W, E[exp(¢ W)] < +o0, Vg € R*}.

The fact that we ask for so-called finite exponential moments of any (pos-
itive, respectively negative) order for the action (respectively for the wage)
is purely technical. As we will see, the optimal contract will satisfy these
technical assumptions.

2R* .= R\ {0}

18



The cost of effort for the Agent is once again modeled by a convex, con-
tinuous and non-decreasing function s defined on R,. As explained in the
introduction for the single period problem, the Agent will accept a contract
(W, a) in C if and only if the following participation constraint (PC) is satis-
fied :

o (w- [ T/@(at)dt)} > Ua(yo), (12)

where : 1 is a given real number, x : R™ — R models the cost of effort for the
agent and is as discussed above, and Ua(z) := —exp(—ya)(z) with v4 > 0
the risk aversion parameter for the Agent. From now on we assume that
parameters (y,7v4) are fixed. With these notations at hand, we can state
the Principal’s problem which writes down in term of a classical first-best
problem as follows:

swp B [Up (X5 — )] (43)
(W,a)eCadm
where Up(x) := — exp(—ypx) with yp > 0 fixed and where

Cim .= {(W,a) € C x H,, [@E2) is in force}

is the set of admissible contracts satisfying the participation constraint (4.2]).
We note that this continuous time problem may be dealt with using tools
from the field of optimal stochastic control. Indeed, one may exploit Equation
(I2) to obtain a parametrization of all the wages satisfying the Participa-
tion Constraint for a given action process (at)te[oﬂ. This allows us to rewrite
Problem (3] as a standard optimal control problem and one way of then
proving existence involves using verification results as long as the required
hypotheses are verified.

In the following we provide the continuous time counterpart to Theorem 2.2]
It provides existence, uniqueness and characterization under quite general
hypotheses (notably for a general process (B)co,r1). We believe that this
theorem brings to light the structure of the underlying problem and thus
complements possible existence and uniqueness results exploiting optimal
control.

Theorem 4.1 (Existence, uniqueness and characterization). Consider the
contract (W*, a*) defined by setting :



for any t in [0,T] and
* P * *
W= —X7 + (%,
Y +ya 4
where the constant 5* is worth :
T
TP 1 —YPYA
= yo+Tk(k" (1) ———— (2o + Tk*(1))—— In (E [ex <7/ dB)}).
0 . (="(1)) 7A+7P(0 () YA P P+ 74 Jo t
Then (W*,a*) both satisfies and saturates the participation constraint. Fur-
thermore for any (W, a) in C*m
E[Up (X7 — W) <E[Up (X7 —W7)],

with equality only for (W*, a*). (W*, a*) is therefore the unique optimal con-
tract in the continuous-time Risk-Sharing problem. Finally, the Principal’s
optimal utility is :

g\ g
E [Up (X& —W*)] = Up(o — yo — v TR(1))E {exp (ﬂ/ dBt)]
TP t74 Jo
Proof. The proof closely mirrors that of Theorem with the calculations
done in continuous time. U

It is important to note that, as a consequence to this Theorem, the analysis
conducted in Section B nicely generalizes to this setting and allows once again
for the comparison of contracts. In this continuous time setting one may even
easily analyze the effect of choosing a non-constant action a.

Remark 4.1. In the widely studied case where B is in fact a standard Brow-
nian motion, Theorem [{.1] applies and gives existence and uniqueness. The
optimal 5* has the expression :

o _ Tyahel . TP
= ———— 4 yo+ Th(rk (1) - ———
S T ) - s

and the Principal’s expected utility s :
* ~ TPA
E\|\Up (X5 —W?*)| =Up(xg —yo) e T —r(1) + ——— .
|: P( T )} P( 0 yO) Xp <7P < H( ) 2(7A+7P)))

We therefore complement the characterization work of Muller in [Muller 1998/

by providing an existence and uniqueness proof, as well as providing an al-
ternative characterization method.

(xo + Tk (1)),
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Remark 4.2. The Principal-Agent problem has also been analyzed in the
setting where a Principal employs several different Agents. Note that for
CARA Agents this framework also works.

We now turn to the case of a risk neutral Principal which can be analyzed
as a limit of the case of a CARA Principal, and we do so in the following.

4.2 The case of a risk-neutral Principal

The analysis provided throughout this paper concerns a Principal and an
Agent who are both risk averse with the risk aversion modeled through the
CARA utility functions. In fact, the key to this paper is the exponential
properties of the CARA utilities. However, an important case in the liter-
ature is that of a risk neutral Principal who wishes to employ a risk averse
Agent. More precisely, if we for example set ourselves in the discrete-time
setting, the Risk-Sharing problem (Z.I]) becomes :

sup E[X*—-W], (4.4)
(W,a)eCadm

where we use the same notations as previously (in particular the Partici-
pation Constraint is in force for the Agent with utility function Ux(x) =
—exp(—yaz)). Since our Reverse HAtilder approach relies on the structure
of functions Up and Uy, we cannot carry it directly in the risk neutral case.
However, as it is well-known, the risk neutral framework can be seen as a
limit case with formally vp = 0 by rescaling the mapping Up to become
Up(z) = —eXp(_Ji;x)_l and by letting vp go to 0. Hence, we can use our

approach with Up and Uy to obtain existence of an optimum and its charac-
terization in the risk-neutral case.

Consider a contract (W, a) that satisfies the (PC). Then by Lemma [B.1] (in
Section [£.7]),

E[X*-W]=E { lim Up(X® — W)]

vp—0

— lim E [UP(X“ - W)}

Yp—0

= lim 75" (E[Up(X* = W)+ 1)

vp—0
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< lim 73! (E[Up(X* = W*)] +1),

T yp—0

according to (ii) of Theorem 221 Using the explicit computation of the upper
bound’s value, we have that

E[X*-W]=E { lim Up(X® — W)}

vp—0
YATYP
. — ~ —YPYA A
< lim Y Up(xg — yo + 7(1 E[ex (7B>} +1
_VP_>07p ( P(To — Yo (1)) p P+ va
=x9 — Yo + K(1).

So we have given the upper bound xy — yo + k(1) to the value problem of
the Risk Neutral Principal. An explicit computation gives that this upper
bound can be attained by choosing the contract (Wjy, afy) with

apy = K" (1) and Wiy = yo + k(K7(1)),

which is formally the optimal contract found in in Theorem with vp = 0.
The optimal parameters have economic meaning : the Principal is neutral to
risk and is thus willing to give a fixed wage to his Agent regardless of the per-
formance of the output process. We note that in this case, the Risk-Sharing
structure of the problem disappears and the Principal carries all of the risk.

We thus have an existence proof for the risk-neutral case, along with a
possible characterization of the optimum. Of course we may perform the
computation of the risk-neutral optimum more directly without exploiting
the risk-averse optimum provided through the method used in this paper.
However, the fact that the risk-neutral case may be seen as a limit of the
risk-averse case allows for example for the extension of the results of Section
to neutral settings. We give such an extension in the following.

Proposition 4.1. Let (W* a*) be the risk-averse optimum for Up(:L') =
—exp(—9pz) given in Theorem[2Z2 and let (W, a) be in C*™. Then :

" "/AJ;"/P
B -w] | [1Up (X = k(a)) |2 %57 Up(y0)
E |Up (X" —W*)| 70 : 24 MEE T Up(yo)
E UUP (X — w(a*))|™ P}




Proof. See Section O

This Proposition is an asymptotic form of Proposition B.1] for comparison
between a risk-neutral and risk-averse Principal : we obtain a decomposition
dependent on an action ratio and a participation constraint ratio. Note how-
ever that the risk-neutral utility is not signed and this inequality is thus more
difficult to exploit. Finally, note that this analysis also holds in continuous
time.

5 Proofs

In this Section we collect the proofs of the technical results we made use of
to proceed with our analysis.

5.1 Proof of Theorem 2.1

Proof. We fix a in R, and prove each item of the Theorem.

(i) For the first result, we express the (expected) utility of the Principal
in terms of the one of the Agent. We have :

E[Up (X" —W)]
— E[Up (X* — k(a)) x exp (5 (W — #(a)))
—E [Up (X° = #(a)) x |Ua (W — K(a))r%’i] . (5.1)

We wish to extract the Agent’s utility from this expression and obtain
at least an inequality. To do so, we need some kind of Hélder inequal-
ity. However the classical Holder inequality cannot be applied for two
reasons : first the exponent —“’—f: of the utility of the Agent is negative;
and then the negativity of the mapping Up calls for the use of a Holder
inequality in the reverse direction. These two features are taken into
account in the so-called Reverse Holder inequality which can be seen
as a counterpart to the classical Hélder inequality and given in Propo-
sition Il In particular, we wish to use Item (i). More precisely, let

Fi=Up (X"~ k(a)), G:=|Us(W—r(a)| ™. (5.2)

Note naturally that these two random variables depend on the contract
(W, a) under interest.
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We wish to apply Reverse-Hélder to F' and G with some exponent
1
p that we calibrate so that |G| 71 = |Uy (W — k(a))|; which immedi-

ately gives p =1+ ::—i = % > 1. We thus immediately obtain:

E||F|?| =E [|Up (X = n(a)) |75,

E [|G\ﬁ] — _E[Us (W — s(a)dt)].
Applying (i) of Proposition 21l to F' and G with this particular choice
of p in Relation (5.1)) gives our result :

E[Up (X7 = W)]
= —E[[FG]]

<E |[Up (X = s(@)| 557 | 5 XE[Us(W = k(a)] 5 (5.3)

We first prove that (ii') is equivalent to (ii''). This involves finding an
equality condition for (B3]). Through (ii) of Proposition 2] Inequality
(E3) is an equality if and only the contract (a, W) is such that there
exists a positive constant « such that the random variables F' and G

defined in (5.2)) enjoys :
[F| = alG| 777
By definition of ', G and p = 7{/% this condition reads as :

Up (X* — r(a))|
—(p+y4)

[Ua (W — k(a)dt)]

=«
Thus using the exponential form of our utilities we obtain the condition

Up (X3 — W)
U (W — (a))

:a7

24



which is equivalent to

Up (Xp —W) _p

A (W — fOT /ﬁ(at)dt) A

Setting « to Yy—ia we obtain our result.

We now prove that (ii"') is equivalent to (ii""). When (ii'") holds, (W, a)
satisfies (£2)) and we have the following series of implications where «
is a positive constant :

Up(X*=W)
Uy (W = k(a))
= (vp +74)W —vpX* —y4r(a) = In <az—A)
P
W= xey A n(a)—l—ln(av—A),
Yp+ 74 Yp + YA Yp
=W =—"—X"+3,
P+ V4

where § = —22—r(a) + In (afy’—ﬁ).

Conversely, let us suppose that (ii'"'") holds. Then (W, a) where W =
—E— X+ 3 satisfies (£2)) and we have that :

YP+vA
Up (X* — W)
Uy (W = r(a)

j = o ((vp +74)B + var(a)) € RY.

5.2 Proof of Proposition [2.3
Let a € R,. We have

E (U (X7 — n(a)) 7257
= B [exp (—p (X* — x(@)) 57

=FE [exp (—vp (0 + (a — k(a)) + B))wavp}
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~ exp (_& + %)) E [exp (ug)]

YA+ P TP+ 74

where

¢ B(c) = —% (c— K(c)) .

Note that the mapping ® is convex on R, and letting a* := k*(1),

(1
o(c) > () = 2R g
YA+ P

So,
E ||[Up (X* = k(@) 757
> exp <—ﬂ(:¢0 + k(1))) E lexp (ﬂB” ,

P+ 74

and we thus deduce our result.

5.3 Proof of the optimal contract : Theorem
We consider the contract (WW*,a*) defined by setting :

and

W= 2 x 4 g
Yp + YA
. . VP . 1 —YPYA
=Yg+ r(k (1)) — o+ K (1)) ——mIn(E |exp| ———B .
8" i= ol (D)= =2 (s 4 (1) = ( [ p<ww )D

We first study the participation constraint to verify the admissibility of such
a contract. We have that :

E[Us(W* - k(a*))] = E [UA <7PT7AX“* 4B+ m(m(m)}

—F [UA (wvzfu (zo + K*(1) + B) + 5" — “(“*(1))”
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el (S22 o (5220) )] -

Thus W* belongs to W(a*). According to Item (ii) of Theorem 2] the
contract satisfies the Borch Rule. Furthermore, it is of the form (W*, x*(1))
where W* saturates the Participation Constraint. It follows that the equality
conditions to reach the upper bound of the Principal’s Expected Utility are
verifies and we have that for any a in R, and any W in W*(a),

E[Up (X =W)]

* ~ TPYA
<E|Up(X* —W*)| =Up(xg — ex T(—rk(l)+ ——— .
S S S
We deduce that (W*,a*) is the optimal contract for the first-best Principal-
Agent problem.

5.4 A technical lemma

Lemma 5.1. Let (W,a) be an admissible contract in C. The sequence of

random variables

((7p(X“ — VV))(KWK1 is uniformly integrable. And so :

E[X®— W] =E { lim OUp(X — W)] — lim E [UP(X“ —wyl.
Yp—0 yp—0
Proof. The second part of the statement is a consequence of the uniform
integrability (UI) and of the fact that the identity mapping is the limit (as

vp goes to 0) of Up. So we focus on the Ul property and apply de la Vallée-
Poussin criterion. We have :

sup B [|0p(X" = W)P]

0<yp<1
=75 sup E [[exp(—yp(X* = W)) — 1]
0<yp<1
= sup E[\X\2|exp(—7pX)\2},
0<yp<1

where X is a random point between 0 and X* — W (using mean value theo-
rem). By Cauchy-Schwarz’s inequality we have,

sup B [[Up(X" = W)P]

0<yp<1
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<E[|IX[']" sup E[exp(—4ypX)]"".

0<yp<1

As |X| < |X® — W], P-ass., we have that E [|[X]*] < +oo. Regarding the

second term,
sup E [exp(—47pX)]
0<yp<1

< sup (]P’ [X > 0] +E [exp(—47PX)1X<0D

0<yp<1
< 1+4E [exp(—4RX)15 0]
<14 E[exp(4R|X* — W|)] < +o0.

5.5 Proof of Proposition [4.1]

Let (W*, a*) be the risk-averse optimum for Up(z) = — exp(—4pz) given in
Theorem 22 and let (W, a) be in C*™. Then as the expected utility function
is negative, and using the Reverse-Holder inequality we obtain :

EXT W] limy07 (BIUAX® W)+ 1) _ iy, 077" (BIUR(X? — W)
E[0p(Xo - W*)} E [UP (Xa — W*)} T E [Up (Xa — W*)]

lim.,, o 7p' (E [|UP (X — %(a))|”;TA”P] . E[Us(W - K(a))]_ﬁ>
>

yAt+iP

YA

E “UP (X — k(a*)) W] X E[UL (W — k(a)]

lim, 075" (E [Up (X0 = (@)[F555] 7 X E[Ux (W = (a) )
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6 Conclusion

This paper uses the Reverse Holder inequality to derive a new approach to the
Risk-Sharing Principal-Agent problem. Through a specific decomposition of
the Principal’s expected utility (that relies of the multiplicative property of
exponential utility functions) we are able to extract the participation con-
straint in its expectation form. We are then able to to prove existence and
uniqueness of the optimal Risk-Sharing plan, whilst also characterizing the
plan whilst and making the Borch rule appear. We note that this analysis
allows for general hypothesis on the underlying model and works very sim-
ilarly in both discrete and continuous time settings. It also extends to the
risk-neutral case. As a by-product of this work, we are able to analyze the
effect of enforcing a sub-optimal action and also provide some insight into
the parameters affecting a Principal’s choice between two Agents. Another
natural extension to this analysis may be that of choosing a sub-optimal
wage. Such a choice may make sense for many reasons such as wanting to
enforce limited liability, and is the topic of ongoing research by the authors.
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