Estimation of fundamental diagrams in large-scale traffic networks with scarce sensor measurements

Olga Lucía Quintero Montoya 1 Carlos Canudas de Wit 2
2 NECS - Networked Controlled Systems
Inria Grenoble - Rhône-Alpes, GIPSA-DA - Département Automatique
Abstract : The macroscopic fundamental diagram (MFD) relates space-mean flow density and the speed of an entire network. We present a method for the estimation of a "normalized" MFD with the goal to compute specific Fundamental Diagram in places where loop sensors data is no available. The methodology allows using some data from different points in the city and possibly combining several kinds of information. To this aim, we tackle at least three major concerns: the data dispersion, the sparsity of the data, and the role of the link (with data) within the network. To preserve the information we decided to treat it as two-dimensional signals (images), so we based our estimation algorithm on image analysis, preserving data veracity until the last steps (instead of first matching curves that induce a first approximation). Then we use image classification and filtering tools for merging of main features and scaling. Finally, just the Floating Car Data (FCD) is used to map back the general form to the specific road where sensors are missing. We obtained a representation of the street by means of its likelihood with other links within the same network.
Type de document :
Communication dans un congrès
ITSC 2018 - 21st IEEE International Conference on Intelligent Transportation Systems, Nov 2018, Maui, United States. pp.1-21, 〈https://www.ieee-itsc2018.org/〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01874562
Contributeur : Quintero Montoya O. Lucia <>
Soumis le : vendredi 14 septembre 2018 - 14:09:48
Dernière modification le : vendredi 7 décembre 2018 - 17:54:27

Fichier

FD identification for large sc...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01874562, version 1

Collections

Citation

Olga Lucía Quintero Montoya, Carlos Canudas de Wit. Estimation of fundamental diagrams in large-scale traffic networks with scarce sensor measurements. ITSC 2018 - 21st IEEE International Conference on Intelligent Transportation Systems, Nov 2018, Maui, United States. pp.1-21, 〈https://www.ieee-itsc2018.org/〉. 〈hal-01874562〉

Partager

Métriques

Consultations de la notice

116

Téléchargements de fichiers

53