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ON THE HYPERBOLICITY OF BASE SPACES FOR MAXIMALLY
VARIATIONAL FAMILIES OF SMOOTH PROJECTIVE VARIETIES

YA DENG, WITH AN APPENDIX BY DAN ABRAMOVICH

ABSTRACT. For smooth families with maximal variation, whose general fibers have semi-
ample canonical bundle, the generalized Viehweg hyperbolicity conjecture states that the
base spaces of such families are of log general type. This deep conjecture was recently proved
by Popa-Schnell using the theory of Hodge modules and a theorem by Campana-Paun. In
this paper we prove that those base spaces are pseudo Kobayashi hyperbolic, as predicted by
the Lang conjecture: any complex quasi-projective manifold is pseudo Kobayashi hyperbolic
if it is of log general type. As a consequence, we prove the Brody hyperbolicity of moduli
spaces of polarized manifolds with semi-ample canonical bundle. This answers a question by
Viehweg-Zuo in 2003. We also prove the Kobayashi hyperbolicity of base spaces of effectively
parametrized families of minimal projective manifolds of general type. This generalizes pre-
vious work by To-Yeung, in which they further assumed that these families are canonically
polarized.
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0. INTRODUCTION

0.1. Main theorems. A complex space X is said to be pseudo Kobayashi hyperbolic, if X
is hyperbolic modulo a proper Zariski closed subset A C X, that is, the Kobayashi pseudo
distance dx : X X X — [0, +oo[ of X satisfies that dx(p,q) > 0 for every pair of distinct
points p, g € X not both contained in A. In particular, any non-constant holomorphic map
Y : C — X has image y(C) ¢ A. When such A is an empty set, this definition reduces
to the usual definition of Kobayashi hyperbolicity, and the Kobayashi pseudo distance dx
is a distance. Proven by Parshin and Arakelov in the early 70’s, Shafarevich’s hyperbolicity
conjecture states that a non-isotrivial smooth family of curves of genus g > 2 over a non
hyperbolic curve has to be isotrivial, that is, all the fibers are isomorphic. One aim of this
paper is to prove a result which can be seen as some sort of analytic Shafarevich hyperbolicity
conjecture in higher dimensions.

Date: Wednesday 22" May, 2019.

2010 Mathematics Subject Classification. 32Q45, 14D07, 14E99.

Key words and phrases. pseudo Kobayashi hyperbolicity, Brody hyperbolicity, moduli spaces, Viehweg-Zuo
question, polarized variation of Hodge structures, Viehweg-Zuo Higgs bundles, Finsler metric, positivity of
direct images, Griffiths curvature formula of Hodge bundles.

1
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Theorem A. Let fy : U — V be a smooth projective morphism between complex quasi-
projective manifolds with connected fibers. Assume that the general fiber of fy has semi-ample
canonical bundle, and fi; is of maximal variation, that is, the general fiber can only be birational
to countably other fibers. Then the base space V is pseudo-Kobayashi hyperbolic.

As a consequence of Theorem A, we prove affirmatively a conjecture by Viehweg-Zuo
[VZ03, Question 0.2] on the Brody hyperbolicity of moduli spaces for polarized manifolds
with semi-ample canonical sheaf.

Theorem B (Brody hyperbolicity of moduli spaces). Consider the moduli functor &), of po-
larized manifolds with semi-ample canonical sheaf introduced by Viehweg [Vie95, §7.6], where
h is the Hilbert polynomial associated to the polarization €. Assume that for some quasi-
projective manifold V there exists a smooth family (fyy : U — V, ) € Z2,(V) for which the
induced moduli map ¢y : V. — Py is quasi-finite over its image, where Py, denotes to be the
quasi-projective' coarse moduli scheme for 2. Then the base space V is Brody hyperbolic, that
is, there are no non-constant entire holomorphic curvesy : C — V.

As abyproduct, we reduce the pseudo Kobayashi hyperbolicity of varieties to the existence
of certain negatively curved Higgs bundles (which we call Viehweg-Zuo Higgs bundles in
Definition 2.1). This provides a main building block for our recent work [Den19] on the
hyperbolicity of bases of log Calabi-Yau pairs.

Another aim of the paper is to prove affirmatively a folklore conjecture on the Kobayashi
hyperbolicity for moduli spaces of minimal projective manifolds of general type, which can
be thought of as an analytic refinement of Theorem B in case the fibers have big and nef
canonical bundle.

Theorem C. Let fiy : U — V be a smooth family of minimal projective manifolds of general
type over the quasi-projective manifold V. Assume that the family fy is effectively paramet-
rized, that is, the Kodaira-Spencer map

(0.1.1) py: Fvy — H Uy, Ty,)

is injective for each pointy € V, where 7, denotes the tangent bundle of the fiber U, := 7).
Then the base space V is Kobayashi hyperbolic.

0.2. Previous related results. Theorem A is closely related to the Viehweg hyperbolicity
conjecture: let fiy : U — V be a maximally variational smooth family of polarized mani-
folds with semi-ample canonical bundle over a quasi-projective manifold V, then the base
V must be of log-general type. In the series of works [VZ01, VZ02, VZ03], Viehweg-Zuo
construct in a first step a big subsheaf of symmetric log differential forms of the base (so-
called Viehweg-Zuo sheaves). Built on this result, Viehweg hyperbolicity conjecture was
shown by Kebekus-Kovacs [KK08a, KK08b, KK10] when V is a surface or threefold, by Pa-
takfalvi [Pat12] when V is compact or admits a non-uniruled compactification, and it was
completely solved by Campana-Paun [CP15b], in which they proved a vast generalization of
the famous generic semipositivity result of Miyaoka (see also [CP15a,CP16,Sch17a] for other
different proofs). More recently, using deep theory of Hodge modules, Popa-Schnell [PS17]
constructed Viehweg-Zuo sheaves on the base space V of the smooth family fy : U — V
of projective manifolds whose geometric generic fiber admits a good minimal model. Com-
bining this with the aforementioned theorem of Campana-Paun, they proved that such base
space V is of log general type. Therefore, Theorem A is predicted by a famous conjecture
of Lang (cf. [Lan91, Chapter VIII. Conjecture 1.4]), which stipulates that a complex quasi-
projective manifold is pseudo Kobayashi hyperbolic if and only if it is of log general type. To
our knowledge, Lang’s conjecture is by now known for the trivial case of curves, for general

'The quasi-projectivity of P, was proved by Viehweg in [Vie95].
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hypersurface X in the complex projective space CP" of high degrees [Bro17, Dem18, Siul5]
as well as their complements CP"\ X [BD19], for projective manifolds whose universal cover
carries a bounded strictly plurisubharmonic function [BD18], for quotients of bounded (sym-
metric) domains [Roul6, CRT19,CDG19], and for subvarieties on abelian varieties [Yam19].
Theorem A therefore provides some new evidences for Lang’s conjecture.

Theorem B was first proved by Viehweg-Zuo [VZ03, Theorem 0.1] for moduli spaces of
canonically polarized manifolds. Combining the approaches by Viehweg-Zuo [VZ03] with
those by Popa-Schnell [PS17], very recently, Popa-Taji-Wu [PTW18, Theorem 1.1] proved
Theorem B for moduli spaces of polarized manifolds with big and semi-ample canonical
bundles. As we will see below, our work owes a lot to the general strategies and techniques
in their work [VZ03,PTW18].

The Kobayashi hyperbolicity of moduli spaces M, of compact Riemann surfaces of genus
g = 2 has long been known to us by the work of Royden and Wolpert [Roy75, Wol86].
The first important breakthrough on higher dimensional generalizations was made by To-
Yeung [TY15], in which they proved Kobayashi hyperbolicity of the base V' considered in
Theorem C when the canonical bundle Ky, of each fiber U, := f; Y(y) of fy : U — V is further
assumed to be ample (see also [BPW17,Sch17b] for alternative proofs). Differently from the
approaches in [VZ03, PTW18], their strategy is to study the curvature of the generalized
Weil-Petersson metric for families of canonically polarized manifolds, along the approaches
initiated by Siu [Siu86] and later developed by Schumacher [Sch08, Sch10, Sch12]. For the
smooth family of Calabi-Yau manifolds (resp. orbifolds), Berndtsson-Paun-Wang [BPW17]
and Schumacher [Sch17b] (resp. To-Yeung [TY18]) proved the Kobayashi hyperbolicity of
the base once this family is assumed to be effectively parametrized.

0.3. Strategy of the proof. For the smooth family fiy : U — V of canonically polar-
ized manifolds with maximal variation, Viehweg-Zuo [VZ03] constructed certain negat-
ively twisted Higgs bundles (which we call Viehweg-Zuo Higgs bundles in Definition 2.1)
(&,0) = (@220 L1 @ B4, @220 1 ® 0,_q4), over some smooth projective compacti-

fication Y of a certain birational model V of V, where £ is some big and nef line bundle
onY, and ( @gzo E%4, @2:0 On-q,q) is a Higgs bundle induced by a polarized variation of
Hodge structure defined over a Zariski open set of V. In a recent remarkable paper [PTW 18],
Popa-Taji-Wu introduced several new inputs to develop Viehweg-Zuo’s strategy in [VZ03],
which enables them to construct those Higgs bundles on base spaces of smooth families
whose geometric generic fiber admits a good minimal model (see also Theorem 2.21 for a
weaker statement as well as a slightly different proof). As we will see in the main content,
the Viehweg-Zuo Higgs bundles (VZ Higgs bundles for short) are the crucial tools in proving
our main results.

When each fibers U, := f;'(y) of the smooth family fi; : U — V considered in Theorem A
have ample or big and nef canonical bundles, let us briefly recall the general strategies in
proving the algebraic degeneracy of V in [VZ03,PTW18]. A certain sub-Higgs bundle (.#, n)

of (£, 0) with log poles contained in the divisor D := Y \ V gives rise to a morphism
(0.3.1) Tk T -y (L7 @ ETRF)

for any entire curve y : C — V. If y : C — V is Zariski dense, by the Kodaira-Nakano
vanishing (when Ky, is ample) and Bogomolov-Sommese vanishing theorems (when Ky,
is big and nef), one can verify that 7, ;(C) # 0. Hence there is some m > 0 (depending
on y) so that 7, factors through y*(£~' ® N"™™), where N"™" is the kernel of the
Higgs field 0, : E*™™™ — E" ™ 1mtl @ Oy (log D). Applying Zuo’s theorem [Zuo00] on
the negativity of N"™™™, a certain positively curved metric for .Z can produce a singular
hermitian metric on J¢ with the Gaussian curvature bounded from above by a negative
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constant, which contradicts with the (Demailly’s) Ahlfors-Schwarz lemma [Dem97, Lemma
3.2]. However, this approach did not provide enough information for the Kobayashi pseudo
distance of the base V. Moreover, the use of vanishing theorem cannot show 7, ;(C) # 0
when fibers of fiy : U — V is not minimal manifolds of general type.

One of the main results in the present paper is to apply the VZ Higgs bundle to construct a
(possibly degenerate) Finsler metric F on some birational model V of the base V, whose holo-
morphic sectional curvature is bounded above by a negative constant (say negatively curved
Finsler metric in Definition 2.9.(ii)). A bimeromorphic criteria for pseudo Kobayashi hyper-
bolicity in Lemma 2.10 states that, the base is pseudo Kobayashi hyperbolic if F is positively
definite over a Zariski dense open set. Let us now briefly explain our idea of the construc-
tions. By factorizing through some sub-Higgs sheaf (%, n) C (&,0) with logarithmic poles
only along the boundary divisor D := Y \ V, one can define a morphism for any k = 1, . . ., n:

(0.3.2) 7 : Symf Fy(~log D) — £~ @ E"kk,

where .Z is some big line bundle over Y equipped with a positively curved singular hermitian
metric h . Then for each k, the hermitian metric h; on & = £ ' ® E"** induced by the
Hodge metric as well as h ¢ (see Proposition 2.2 for details) will give rise to a Finsler metric
Fy on Jy(—log D) by taking the k-th root of the pull-back 7; hy. However, the holomorphic
sectional curvature of Fr might not be negatively curved. Inspired by the aforementioned
work of Schumacher, To-Yeung and Berndtsson-Paun-Wang [Sch12, Sch17b, TY15, BPW17]
on the curvature computations of generalized Weil-Petersson metric for families of canon-
ically polarized manifolds, we define a convex sum of Finsler metrics

n
(0.3.3) F := (Z akF,f)l/z with ay,...,a, € RT
k=1

on Jy(—log D), to offset the unwanted positive terms in the curvature © & by negative con-
tributions from the © Fonn (the last order term was © i 18 always semi-negative by the Griffiths
curvature formula). We proved in Proposition 2.20 that for proper ay, . . ., a, > 0, the holo-
morphic sectional curvature of F is negative and bounded away from zero. To summarize,
we establish an algorithm for the construction of Finsler metrics via VZ Higgs bundles.

To prove Theorem A, we first note that the VZ Higgs bundles over some birational model
V of the base space V were constructed by Popa-Taji-Wu in their elaborate work [PTW18].
Let Y be some smooth projective compactification V with simple normal crossing boundary
D := Y \ V. By our construction of negatively curved Finsler metric F defined in (0.3.3) via
VZ Higgs bundles, to show that F is positively definite over some Zariski open set, it suffices
to prove that 7; : Fy(-log D) — £ '®E" ! defined in (0.3.2) is generically injective (which
we call generic local Torelli for VZ Higgs bundles in § 2.1). This was proved in Theorem F, by
using the degeneration of Hodge metric and the curvature properties of Hodge bundles. In
particular, we show that the generic injectivity of 7; is indeed an intrinsic feature of all VZ
Higgs bundles (not related to the Kodaira dimension of fibers of f!). By a standard inductive
argument in [VZ03,PTW18], one can easily show that Theorem A implies Theorem B.

Now we will explain the strategy to prove Theorem C. Note that the VZ Higgs bundles are
only constructed over some birational model V of V, which is not Kobayashi hyperbolic in
general. This motivates us first to establish a bimeromorphic criteria for Kobayashi hyperbol-
icity in Lemma 2.11. Based on this criteria, in order to apply the VZ Higgs bundles to prove
the Kobayashi hyperbolicity of the base V in Theorem C, it suffices to show that

(#) for any given point y on the base V, there exists a VZ Higgs bundle (&,0) constructed
over some birational model v : V — V, such that v : V --> V is defined at y.
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(%) The negatively curved Finsler metric F on V defined in (0.3.3) induced by the above VZ

Higgs bundle (&,0) is positively definite at the point v~!(y).
Roughly speaking, the idea is to produce an abundant supply of fine VZ Higgs bundles to
construct sufficiently many negatively curved Finsler metrics, which are obstructions to the
degeneracy of Kobayashi pseudo distance dy of V. This is much more demanding than the
Brody hyperbolicity and Viewheg hyperbolicity of V, which can be shown by the existence
of only one VZ Higgs bundle on an arbitrary birational model of V, as mentioned in [VZ02,
VZ03,PS17,PTW18].

Let us briefly explain how we achieve both (#) and (#).

As far as we see in [VZ03, PTW18], in their construction of VZ Higgs bundles, one has
to blow-up the base for several times (indeed twice). Recall that the basic setup in [VZ03,
PTW 18] is the following: after passing to some smooth birational model f;; : U=UxyV —
V of fy : U — V, one can find a smooth projective compactification f : X — Y of U" — V

blr

(0.3.4) U ~—U —=X
l bir i’ ‘/
V——r-rV—Y

so that there exists (at least) one hypersurface

(0.3.5) H e |€KX/Y - €f*$| for some >0

which is transverse to the general fibers of f. Here .Z is some big and nef line bundle over
Y,and U" := U Xy x--- Xy U (resp. U") is the r-fold fiber product of fi; : U — V (resp.
fo: U — V). The VZ Higgs bundle is indeed the logarithmic Higgs bundles associated to
the Hodge filtration of an auxiliary variation of polarized Hodge structures constructed by
taking the middle dimensional relative de Rham cohomlogy on the cyclic cover of X ramified
along H.

In order to find such H in (0.3.5), a crucial step in [VZ03,PTW18] is the use of weakly semi-
stable reduction by Abramovich-Karu [AK00] so that, after changing the birational model
U — V by performing certain (uncontrollable) base change U := U xy V — V, one can find
a “good” compactification X — Y of U" — V and a finite dominant morphism W — Y from a
smooth projective manifold W such that the base change X Xy W — W is birational to a mild
morphism Z — W, which is in particular flat with reduced fibers (even fonctorial under fiber
products). For our goal (#), we need a more refined control of the alteration for the base in the
weakly semistable reduction [AK00, Theorem 0.3], which remains unknown at the moment.
Fortunately, as was suggested to us and proved in Appendix A by Abramovich, using moduli
of Alexeev stable maps one can establish a Q-mild reduction for the family U — V in place
of the mild reduction in [VZ03], so that we can also find a “good” compactification X — Y of
U" — V without passing the birational models V — V as in (0.3.4). This is the main theme
of Appendix A.

Even if we can apply Q-mild reduction to avoid the first blow-up of the base as in [VZ03,
PTW18], the second blow-up is in general inevitable. Indeed, the discriminant of the new
family Zy — Y D V obtained by taking the cyclic cover along H in (0.3.5) is in general
not normal crossing. One thus has to blow-up this discriminant locus of Zy — Y to make
it normal crossing as in [PTW18]. Therefore, to assure (), it then suffices to show that
there exists a compactification f : X — Y of the smooth family U" — V so that for some
sufficiently ample line bundle &/ over Y,

(%) fi(mKxy) ® o/ ™ is globally generated over V for some m > 0.
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Indeed, for any given point y € V, by (+) one can find H transverse to the fiber X, := f~!(y),
and thus the new family Zy — Y will be smooth over an open set containing y. To the bests
of our knowledge, () was only known to us when the moduli is canonically polarized [VZ02,
Proposition 3.4]. § 1.5 is devoted to the proof of (x) for the family U — V in Theorem C (see
Theorem D.(iii) below). This in turn achieves (#).

To achieve (#), our idea is to take different cyclic coverings by “moving” H in (0.3.5), to
produce different “fine” VZ Higgs bundles. For any given point y € V, by (), one can take a
birational model v : V. — V so that v is isomorphic at y, and there exists a VZ Higgs bundle
(&, ) on the normal crossing compactification Y > V. To prove that the induced negatively
curved Finsler metric F is positively definite at i := v~!(y), by our definition of F in (0.3.3), it
suffices to show that 71 defined in (0.3.2) is injective at ¢ in the sense of C-linear map between
complex vector spaces

~ P 05 -
rg: Ty — Jy(~logD); 2, H\(Xy, Fx,) = &ig.

As we will see in § 3, when H in (0.3.5) is properly chosen (indeed transverse to the fiber
Xy) which is ensured by (x), ¢; is injective at 7. Hence 7y j is injective by our assumption of
effective parametrization (hence p; is injective) in Theorem C. This is our strategy to prove
Theorem C.

0.4. Results on the positivity of direct images. As we explained above, one has to prove
some results on the positivity of direct images for families with fibers of general type, which
fits our needs in achieving the crucial property (x).

Theorem D (=Theorem 1.21). Let fy : U — V be a smooth projective morphism of quasi-
projective manifolds with connected fibers. Assume that each fiber X, := fU_l(y) is a projective
manifold of general type, and the set of z € V with X, birationally equivalent to X, is finite.
Then

(i) for any smooth projective compactification f : X — Y of fu : U — V and any sufficiently
ample line bundle </ over Y, f.(Kx/y)*™* ® o/~ is globally generated over V for any
€ > 0. In particular, f.((Kx/y) is ample with respect to V.

(ii) In the same setting as (i), det f.({Kxy) ® &/~ is also globally generated over V for any
€ > 0, wherer; := rank f.((Kx/y). In particular, the augmented base locus

B+(detf*(fo/y)) cY \ V.

(iii) For some sufficiently divisible r > 0, there exists an algebraic fiber space f X - Y
compactifying U" — V so that for { large and divisible enough, f.((Kyy) ® L is
globally generated over V. Here £ is some sufficiently ample line bundle over Y, and U"
denotes to be the r-fold fiber product of U — V.

As far as we are aware of, the best known result on Theorem D.(i) is due to Viehweg-
Zuo [VZ02, Proposition 3.4.iii)], in which they proved the same result but for canonically
polarized family. Theorems D.(i) and D.(ii) also refine a theorem by Kollar [Kol87], in which
he proved the bigness (in the sense of Viehweg) of f.({Kx,y) and det f.(¢Kx,/y) under a
weaker assumption that the variation of the family is maximal.

Let us emphasize that we have to apply the Q-mild reduction in the proof of Theorem D.(iii)
to find a “good compactification” of fy : U — V. As we have seen in the work [VZ03,
PTW18], this is a crucial step in the construction of VZ Higgs bundles.

The proof of Theorem D.(i) mainly follows the strategy of [Vie90, Theorem 5.2] and [VZ02,
Proposition 3.4.iii]. The first step is to prove that det f.(umKx,y)? ® det f.(mKx /y)b is ample
with respect to V for some p > m > 0, and b > a > 0. To prove this, we apply Kollar-
Viehweg’s ampleness criterion and the BCHM theorem [BCHM10] to reduce the problem
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to the weak positivity of f.(mKx,y) with respect to V for m > 0. We then apply the tech-
niques in [CP17] to obtain the positivity of Kx/y modulo some multiplicity divisors and
f-exceptional divisors, whereas the properties of m-Bergman metric and the pluricanonical
(L?-)extension theorem enable us to control these multiplicity divisors.

We also give a partial converse of Theorem D.(ii), which can be seen as a criteria for the
birational isotriviality of families of general type varieties, and refines a result by Kawamata
(cf. [Kaw85]).

Theorem E (=Theorem 1.13). Let f : X — Y be an algebraic fiber space between smooth
projective manifolds with general fibers of general type. For the integer m > 2 with f.(mKx y)
non-zero, if the numerical dimension v( det f,(mKx/y)) = 0, then f is birationally isotrivial,
that is, two general fibers X, and X, of the fibration f are birationally equivalent.

We stress here that we have a concrete loci on Y in which any two fibers are birationally
equivalent (see Remark 1.14). To prove Theorem E, we apply the deep results in [CP17] and
the properties of line bundles whose numerical dimension is zero studied in [Bou04,BDPP13].

0.5. Structure of the paper. The paper is organized as follows. In § 1.1, we recall the
Viehweg’s weak positivity for torsion free sheaves in studying the positivity of direct images,
and we prove a slightly more general result on the weak positivity of direct images of log-
arithmic relative pluri-canonical bundles. This result was applied in § 1.2 to obtain a strong
positivity of the determinant of direct image sheaves. § 1.3 is of independent interest: we
apply the recent work by Cao-Paun to give a criterion on birational isotriviality for families
of projective manifolds of general type. § 1.5 is the the first main technical part of our paper.
In this subsection, we prove the “almost ampleness” of relative pluri-canonical bundles as
well as their direct images for certain families. The aim of § 1.6 is to provide the basic setup
for § 3, combining the Q-mild reduction in Appendix A and our main results in § 1.5. § 2
is the core of our paper and is of independent interests. In § 2.1 we give an abstract defin-
ition of the VZ Higgs bundles following [VZ02, VZ03, PTW18] for the purpose of further
applications. In § 2.3 we prove that any VZ Higgs bundle satisfies a “generic local Torelli”. In
§§ 2.5 and 2.6 we prove that for any VZ Higgs bundle we can associate it to a Finsler metric
with the holomorphic sectional curvature bounded above by a negative constant, which is
non-degenerate over the Zariski dense open set on which the local Torelli property holds. This
in turn proves Theorems A and B. § 3 is devoted to the refinements of VZ Higgs bundles,
following the approaches in [VZ02,PTW18]. Based on the constructions in § 2, these refined
Higgs bundles are applied to produce sufficiently many negatively curved Finsler metrics on
different birational models of base spaces for effectively parametrized families of minimal
projective manifolds of general type, which are the obstructions to the degeneracy of Kobay-
ashi pseudo distance of these base spaces. This in turn proves Theorem C. Appendix A is
written by Abramovich to introduce the Q-mild reduction, which is applied in the present
paper to find a good compactification of smooth families without passing to birational models.

The techniques in § 1 seems rather involved, since our objective is not merely to prove
the hyperbolicity of moduli spaces, but also to study the positivity of direct images combin-
ing both the analytic methods and algebraic ones, which (we hope) might bring some new
perspectives in this independent subject. The readers who are only interested in the proof
of Theorem C can skip § 1.1, § 1.2 and § 1.3 since Proposition 1.9 (which is used to prove
Theorem D.(i)) has already been proved by Viehweg [Vie90, Theorem 5.2] when the fibers
are further assumed to be minimal.
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NOTATIONS AND CONVENTIONS.

Throughout this article we will work over the complex number field C.

e An algebraic fiber space® (or fibration for short) f : X — Y is a surjective projective
morphism between projective manifolds with connected geometric fibers. Any Q-divisor
E in X is said to be f-exceptional if f(E) is an algebraic variety of codimension at least
twoin Y.

e We say that a morphism fi; : U — V is a smooth family if fi; is a surjective smooth
projective morphism with connected fibers between quasi-projective varieties.

e For any surjective morphism Y’ — Y, and the algebraic fiber space f : X — Y, we denote
by (X Xy Y’) the (unique) irreducible component (say the main component) of X xy Y’
which dominates Y’.

e Assume that B := Y \ Y} is simple normal crossing and

fB=) Wit > ajVj+ ) bV,
j 7

is normal crossing, where a; > 2, b; > 1, f(V;) is a divisor in Y and Vk’ is f-exceptional.
We denote by Ar := 3 ;(a; — 1)V; the multiplicity divisor of the fibration f. If Ay = 0, the
fibration f is called semi-stable in codimension one.

e Let 4 : X’ — X be a birational morphism from a projective manifold X’ to a singular
variety X. p is called a strong desingularization if p~*(X"™8) — X'™8 is an isomorphism.
Here X™8 denotes to be the smooth locus of X.

e For any birational morphism p : X’ — X, the exceptional locus is the inverse image of the
smallest closed set of X outside of which y is an isomorphism, and denoted by Ex(u).

e Denote by X" := X Xy - -+ Xy X the r-fold fiber product of the fibration f : X — Y, (X")
the main component of X" dominating Y, and X" a strong desingularization of (X").

e For any quasi-projective manifold Y, a Zariski open subset Y, C Y is called a big open set
of Y if and only if codimy\y,(Y) > 2.

e A singular hermitian metric h on the line bundle L is said to be positively curved if the
curvature current O,(L) > 0.

1. POSITIVITY OF DIRECT IMAGES

This section is devoted to the proofs of Theorems D and E, which are used to proved
Theorem C.

1.1. Weak positivity of relative pluricanonical bundles. In [Vie83], Viehweg intro-
duced the definition of weak positivity for torsion free sheaves to study the litaka’s C, -
conjecture. In [Vie90, Theorem 2.7] he further proved the weak positivity of direct images of
relative pluricanonical bundles f.(mKy,/y) when Ky y is relatively semi-ample. In this sec-
tion, following the recent fundamental work by Paun-Takayama [PT18], we will provide a
generalization of Viehweg’s theorem for the purpose of Proposition 1.9. Let us first recall the

Here we follow the definition in [Mor87].
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definitions of weak positivity by Viehweg in [Vie83], and the weak positivity in the sense of
Nakayama in [Nak04]. In [PT18], the author mainly studied the weak positivity in the sense
of Nakayama due to their general statements of the theorems.

For a torsion free sheaf & on a quasi-projective variety Z, we denote by S™& the m-th
symmetric tensor product of &, and let S™& be the double dual of the sheaf S™&.

Definition 1.1 (Viehweg). Let Y be a quasi-projective normal variety, and let ¢ be a torsion
free coherent sheaf on Y, whose restriction to some dense Zariski open set Yy C Y is locally
free. Let 77 be an ample invertible sheaf over Y.

(i) The sheaf ¢ is weakly positive over Yj if for a given number a > 0, there exists some
B > 0 such that S¥*% ® #F is globally generated over Y.

(ii) The sheaf¥ is weakly positive at a point y (in the sense of Nakayama) if for any integer
a > 0, there exists an integer > 0 such that S*Pg @ AP is globally generated at y.

(iii) The sheaf ¢ is ample with respect to Y, if for some p > 0 there exists a morphism

D59
surjective over Y.

Observe that Viehweg’s weak positivity requires global generation in Definition 1.1.(i)
to hold on a Zariski open set, while Nakayama’s weak positivity Definition 1.1.(ii) may be
verified on a countable intersection of Zariski open sets only. Hence we cannot apply the
results on the weak positivity in the sense of Nakayama in [PT18] directly to show the weak
positivity of certain torsion free sheaves.

The following theorem by Berndtsson, Paun and Takayama [BP08,PT18] is a crucial tool
in the study of weak positivity. The (positively curved) singular hermitian metrics on torsion
free sheaves were defined by Raufi in [Rau15], and we do not recall the definitions here.

Theorem 1.2 (Berndtsson-Paun-Takayama). Let f : X — Y be an algebraic fiber space which
is smooth over a Zariski open set Yy C Y. Let L be a pseudo-effective line bundle over X endowed
with a positively curved singular hermitian metric h. For some Zariski open set Y; C Y, assume
that for any y € Y, one has

(1.1.1) H°(Xy, (Kx, + Ly) ® #(hy)) = H(Xy,Kx, + Ly)

where Ly, := Lix,, hy := hix, and _# (hy) denotes the multiplier ideal sheaf with respect to the
singular hermitian metric hy. Then

(i) fi(Kxjy + L) is locally free over Y;.

(ii) There exists a natural singular hermitian metric, say the Narasimhan-Simha metric gns,
over the direct image f.(Kxy + L), which is positively curved.

(iii) The metric g is locally bounded from above over Y;.

Now we state the main technical result in this subsection, which is indeed a special case
of [PT18, Theorem 2.5.3]. In order to prove their much more general theorem, they have to
use the subtle result [ELM*09] in the proof. Here our assumption is less general, and thus the
proof is a direct applications of L*-estimates on (not necessarily compact) complete Kihler
manifolds in [Dem82, Théoreme 5.1], as shown in [PT18, Proof of Theorem 2.5.4]. Since
[PT18, Theorem 2.5.3] only states the weak positivity in the sense of Nakayama (although
their proof implies Theorem 1.3 implicitly), we provide a detailed proof here for the sake of
completeness.

Theorem 1.3 (Paun-Takayama). Let  be a torsion free coherent sheaf over a projective mani-
foldY, equipped with a positively curved singular hermitian metric h#. Let Y; C Y be a Zariski
open set so that Fy, is locally free, and hg is locally bounded from above over Y. Then F is
weakly positive over Y.
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Proof. Take P(¥) := Proj( Do S™F) to be the projectivization of F. Denote by (1) the
tautological line bundle over P(¥), and 7’ : P(¥) — Y the natural projection map. Since ¥
might not be locally free, the projective scheme P(¥) is not smooth in general. We define
P’(¥) to be the normalization of P(F), and p : Z — P’(¥) to be a strong desingularization
of /(). Let Y’ O Y; be the big open set of Y so that F}y- is locally free. Hence Z’ :=
x71(Y’) — Y’ is smooth projective morphism between quasi-projective manifolds with fibers
isomorphic to P"~!, where r := rank ¥, and 7 : Z — Y can be seen as a smooth projective
compactification of Z" — Y’.

P(F)<——2Z 52

[k
Y=—Y DY
Write L := p* 0'(1). The positively curved singular hermitian metric h# of ¥ induces a metric
h for Lz which is positively curved and locally bounded over 7~ !(Y;).
Denote by n = dim Y. Take a Kdhler form w on Y. Let us fix an ample line bundle A over Y
such that A® K;' ® (det 7)~" is sufficiently very ample in the following sense: for any point
y € Y, there exists a singular hermitian metric h, of A® K;' ® (det 7)™ which is smooth

outside y, so that \/—_1®hy (A®K;' ® (det F)™!) > o, and hy has logarithmic poles around y:

(1.1.2) —loghy =~ (n + 1)log|t|%,

where t := (i, ..., ;) is some coordinate system of an open set U, > y centering at y.

Since Z’ is quasi-projective, the manifold Z’ can be equipped with a complete Kdihler form
@ by [Dem82, Théoreme 0.2]. The line bundle L := y* (1) is relatively ample when restricted
to Z' — Y’. One can further assume that L ® 7%A;z is endowed with a smooth hermitian

metric hy so that the curvature form V—10y, is locally strictly positive over Z’, that is, for any

relatively compact subset K of Z’, there is an ¢ > 0 so that V=10, (L ® 7" A7)k > €0k.
Note that

Kz @ L™ @ n*(A’ @ Ky' ® (det ) ™)z = L" ® 1" AL,
for any m € N. Let us fix any y € Y, and any positive integer m > 1. Take relative compact
open sets Uy € Uy € Y; containing y so that 0(A)y, = Oy,, and pick a ¢ cut-off function
A such that A = 1 over Uy, and Supp(1) C Uy. For any section e € H° (P(ﬂ), O'(m) “p(gc'y)), it
can extend to a holomorphic section

0 * A2 0 -1
oc€H (P(ﬁUy), I"®nrx A“P(T[Uy)) =H (7‘[ (Uy),Kzr ®Mmf7f_1(Uy))’

where we write My, := L™ @ 7" (A’ @K' ® (det F)~")z. Let us endow My, with a singular
hermitian metric g, := ho-h™*""1 - 7" hy. Recall that h is locally bounded over Y3, hg is smooth
whose curvature form is locally strictly positive, and h, has log poles at y as (1.1.2). Hence
the zero scheme of the multiplier ideal sheaf

(1.1.3) V(7 (gm) = 77 (y) = P(Fy),

and there exists an gy > 050 that
V=10y,, (Mp) > €40 over JT_I(Uy).

Let us denote by A, := [V-10,,(My), As], which is a semi-positive Hermitian operator

acting on (7, Q;Tr_l’l ® My,). Moreover, A,, > &,1 over 77'(Uy). Define

u=0(r"No) =)Ao € €2, QL @ My)
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which vanishes over n'l(Ué), and is supported in n'l(Uy). Then

1
(Atu, u)g, dVy < / (Atu, u)g, dVy < — |u|§de(;) < +00
z () &y Jr1(Uy)
where the last inequality is due to (1.1.3) and the relative compactness of U, in Y;. By [Dem82,

Théoréme 5.1], one can solve the d-equation over Z’, and thus there exists a section v €
LIZOC(Z’,KZ' ® M,,) so that dv = u and

1
(1.1.4) / |U|§deCg) < / (A lu, U)g,, dVy < — |u|§ded) < +o00,
7’ 7/ Ey ﬂ_l(Uy)
Hence d((n*A)oc — v) = 0. In particular, the section v is holomorphic over n'l(Ué), and
vanishes identically over 77 (y) by (1.1.3) and (1.1.4). Then

(7"N)o —v € H'(Z',Kz ® My) = H'(Z', L™ @ " Al,,)

extends the given section e € H’(P(%,), (m) IB(, )) = S™F,. By the isomorphism
H(Z',L" @ n*A%,) =~ H(Y',S"F ® A%y),

we conclude that for any m > 1, S"F ® Az[y, is generated by globally sections at each point

of Y1 C Y’. By the very definition of the reflexive hull and the fact that codimy\y-(Y) > 2,
the natural inclusion

H(Y', S"F ® A%y,) > H(Y,S"F ® A%).

is an isomorphism. Hence for any m > 1, S"F @ A% is also globally generated over Y; C Y’
This leads to the weak positivity of ¥ over Y;. O

Theorems 1.2 and 1.3 immediately imply the following.

Corollary 1.4. Suppose the algebraic fiber space f : X — Y and the pseudo-effective line
bundle L on X are in the same setup as Theorem 1.2. Then the direct image f.(Kxy + L) is
weakly positive over Y.

We are in a position to prove the main result in this subsection.

Proposition 1.5 (Weak positivity of direct images). Let f : X — Y be an algebraic fiber space
so that the Kodaira dimension of the general fiber is non-negative. Assume that f is smooth over
a dense Zariski open set of Yo C Y so that both B := Y \ Yy and f*B are normal crossing. Then
for any m > 0, the direct image f,(mKx;y — (m — 1)As) is weakly positive over Yo, where A¢
is the multiplicity divisor of f.

Proof. Tt follows from the work of [BP08,CP17] (see [CP17, Theorem 2.3 and Remark 2.5]) that
for m > 0, mKx,y can be equipped with the m-th Bergman metric hy, so that the curvature
current

(1.1.5) V=16, (mKx,y) = m[Af].
hy thus induces a singular metric h of L := (m — 1)(Kx,;y — Ar) defined by
h :Igc hr:__ . |O'Af|2(m_l)

where o, is the local defining equation of A¢. By (1.1.5), h is positively curved. It follows
from [PT18, §3.1.1.(4)] that, (1.1.1) holds for any y € Y,. Hence by Corollary 1.4, we conclude
the weak positivity of f,(Kxy + L) = fi(mKx;y — (m — 1)Af) over Y. O
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Remark 1.6. The weak positivity of the direct images of relative pluricanonical bundles f.(mKx/y)
with Kx/y relative semi-ample was proved by Viehweg in [Vie90, Theorem 2.7] using van-
ishing theorems. In [PS14], Popa-Schnell proved some variants of Viehweg’s weak posit-
ivity results using the theory of Castelnuovo-Mumford regularity and vanishing theorems.

In [Fuj16], Fujino proved that, after passing to a certain base change, the direct image of
pluricanonical bundles are locally free and numerically eventually free (nef for short), which
was refined by Takayama in [Tak16]. In [PT18], Paun-Takayama proved the weak positivity

at certain points in the sense of Nakayama for twisted pluricanonical bundles f.(mKx/y + L)
where L is a pseudo-effective line bundle. In a very recent preprint [Iwal8], Iwai gives a
criterion for the weak positivity of torsion free sheaves.

1.2. From weak positivity to ampleness. Consider locally free sheaves & and 2 over a
complex manifold X of rank n and r respectively. Suppose that for some y € N, there is a
quotient of vector bundles

(1.2.1) 0:S'E > 9.

Write K, C SH& for the kernel of ¢, : S*E, — 2. According to the pioneering work
by Viehweg [Vie89, Vie90] and Kollar [Kol90], if K, varies in S*& with x € X “as much as
possible”, and & possesses some “semi-positivity”, then the vector bundle 2 should be “very
positive”, afortiori its determinant line bundle det 2.

In order to make this precise, we fix a basis e := {ey, .. ., e,} of & for a point x € X. The
inclusion

K, — S'&,

defines a point [Ke x| in the Grassmann variety Grass(S#C", r), which parametrizes r-dimensional
quotient spaces of S#C". The group G := SL(n,C) acts on Grass(S#¥C", r) by changing the
basis of &,. Whereas [Ke x| depends on the chosen basis e for &, the G-orbit G, of [K ] in
Grass(S#C", r) is well defined and depends only on the quotient ¢, : S#&; — 2, defined in
(1.2.1). Note that for two different points x, y € X, either G, = G, or G, N G, = &.

Definition 1.7 (Kollar-Viehweg). For a Zariski open set X, C X, ker(¢) has maximal vari-
ation over X if for any x € X, the set y € X, with equal orbit G, = G is finite, and
dim G, = dimG.

We will need the following crucial ampleness criterion in [Vie90, Ampleness Criterion
5.7].

Theorem 1.8 (Viehweg). Let Y be a projective manifold, and let & be a torsion free coherent
sheaf defined over Y, which is weakly positive over a dense Zariski open set Yy of Y. Let 2 be a
reflexive sheaf on Y, which is also locally free over Y. Assume that we have a map

9:E > 2

such that its restriction to Y, is a quotient of vector bundles. Assume that the kernel of ¢y, has
maximal variation over Y,. Then for b > a > 0, the rational map

Y - P(H'(Y, A))

induced by the invertible sheaf A := det(2)* ® det(&)’, is an embedding when restricted to Y.
In particular, A is ample with respect to Y.

The following result will be used in the proof of Theorem 1.21.(i). Let us mention that
for families of projective manifolds with big and nef canonical bundles, Proposition 1.9 has
already been proved by Viehweg [Vie90, Theorem 5.2], and the proof we presented here is
also in the same spirit.
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Proposition 1.9. Let f : X — Y be an algebraic fiber space which is smooth over a Zariski
open set Yy C Y. Assume that both B := Y \ Yy and f*B is normal crossing. Let V be a dense

Zariski open set of Yy so that for eachy € V, Kx, is big, and the set of z € V with X, b Xy is

finite, where bir stands for the birational equivalence. Then det f.(umKx/y)* ® det f*(mKX/y)b
is ample with respect to V for some b > a > 0 and yu > m > 0.

Proof. Since fy = fix, : Xo = f'(Yy) — Yy is a smooth fibration, Siu’s invariance of pluri-
genera implies that, for any ¢ € N, the direct image f.({Ky/y) is locally free over Y,, with
fi€Kxy)y = HO(Xy, {Kx, ). By the theorem of Birkar-Cascini-Hacon-McKernan [BCHM10]
(see also [Kol13, Theorem 1.26] for a precise statement), the relative canonical sheaf of rings
with respect to fy : Xo — Yo

R(Xo/Yo, Kxy) 1= ) (fo)s O(mKx,)
m=0

is a finitely generated sheaf of Oy,-algebras, and the (unique) relative canonical model for
Xo — Yy is defined by

X = Projy, R(Xo /Yo, Kx,)-
Moreover, X" is normal with canonical singularities, projective over Yy, and there is a nat-
ural birational map ¢ : Xy — X§*" with

X AN X —— P(Fp)
(1.2.2) ’
X‘ lf/
Yo

so that the pushforward by ¢ gives an isomorphism
D fO(mKx) = Y fLO(mKym).
m=0 m=0

Here we write F,, := (fy)«(mKx,y,) which is a locally free. Then there exists m, ;> 0 and a
natural multiplication map

(1.23) 0 S fomKxpy) = (£(umKxy)™,
such that the restriction of ¢ to Yy, denoted by ¢, is a quotient map between vector bundles.
We further assume that Op(r,,) (1) ® Ixen is relatively globally generated, where Ixen is the
ideal sheaf of X;** C P(Fy). We will show that the kernel of ¢y has maximal variation over
V.

Fix any y € V, and we take a basis e := {ep,...,en} ofHO(Xy, mKXy) ~ CN*1, The map
(1.2.3) gives rise to a short exact sequence

(1.24) 0— H° (PN, Opn(p) ® ngan) le—y> H° (PN, ﬁPN(,u)) — H° (lean, ﬁPN(,u)[X;an) — 0,

where X;*" := () ' (y) and Ixgn is the ideal sheaf of X;™" C PN. Write Key:=H° (PN, Opn (0)®
ngan). Recall that Opn(p) ® Ixew is globally generated. Then [Keyl € Grass(S*CN*1 r)
determines X;™" C PN, where r := rankf,(umKy,y). If we take another the basis €’ of
H°(X,, mKy, ), then [K ;] determines another subvariety )N(;an c PN which is projectively
equivalent (hence isomorphic) to X,*". Hence the stabilizer of the action of G := SL(N+1,C)
on Grass(S*CN*1 r) is contained in Aut(Xgan), which is finite for X;*" has canonical singu-

larities and is of general type. Write G, for the G-orbit of [Ke ] in Grass(S*CN*1, r), which
is independent of the basis e. One thus has dim G, = dim G. On the other hand, if G, = G,
for some other z € V, then X;an is isomorphic to X;*", and by the assumption, there exists



14 YA DENG

only finite such z € V. This in turn implies that the kernel of ¢y has maximal variation over
V.

To finish the proof, by Theorem 1.8 it then suffices to show that f.(mKx/y) is weakly pos-
itive over V, which is ensured by our more general result in Proposition 1.5. The proposition
follows. O

1.3. A criterion for birationally isotrivial family. In this subsection we will prove The-
orem E. The idea of the proof is inspired by recent results of Cao [Cao18,Cao16] and Cao-
Paun [CP17]. Let us start with the following result.

Proposition 1.10. Let f : X — Y be any algebraic fiber space. Assume that { is any

positive integer with f,((Kx y) non-zero. If the numerical dimension v(det f.(¢Kx/y)) = 0

(see [BDPP13] for the definition), then

(i)  for any birational morphismy : Y’ — Y, defining X’ to be strong desingularization of the
main component (X Xy Y’) dominating Y’

(1.3.1) X —=XxyY —=X

A

Y ——Y

one has
V(detf;:(fKXr/y/)) = 0.

(ii) For any positive integer m so that f.(mKx/y) is non-zero, one has

v(det fi(mKx/y)) = 0,
and f.(mKx/y) is flat over a Zariski open set of Y.

Proof. Denote by Fy := f.(¢Kx/y) (resp. F, := f/((Kx;y’)), which is torsion free over Y (resp.
Y’). By [CP17, §4] (or Proposition 1.5 in the logarithmic setting) there exists a positively
curved singular hermitian metric (Narasimhan-Simha metric) h; (resp. hy) over Fy (resp. Fy).
Hence the line bundle det Fy (resp. det F)) has a positive curvature current denoted by =,

(resp. E’) induced by hy (resp. h}). Let V C Y be the big open set so that ¢/ : Y L(V) S Vis
an isomorphism. Then

(Fe, he)v = (Fp hy) py-1v),s

and thus =2y ~ E,f In particular, §,(E") = E in the sense of pushforward of positive

Y vy
currents. Hence there exists an {/-exceptional divisor E (may not be effective!) so that

um

(1.3.2) detF, "=" " det F + E.

Take an effective y/-exceptional divisor E’ so that E’ — E is effective as well. It follows from
[Leh13, Theorem 1.1.(1)] that

0 = v(det Fr) = v(y* det Fy + E') > v(y" det Fy + E) = v(det F;) > 0.
This proves Claim (i).

Let us prove Claim (ii). Since the numerical dimension v(det Fy) is a birational invariant,
we may assume that, after passing to a new birational model of the fibration f : X — Y asin
(1.3.1), f is smooth over Yy C Y, and both B := Y \ Y; and f*B are normal crossing divisors.
Recall that the Narasimhan-Simha metric h; over F; induces a singular metric h/ get for the
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line bundle det F; whose curvature current V-10p, , (det Fr) = E is positive. By [BDPP13]
and the assumption that v(det F;) = 0, one has

num

p
ZAiDi AiGQ_FfOI'l':l,...p,
i=1

where Zle D; is an exceptional divisor in the sense of [Bou04, Definition 3.10]. In particular,
by [Bou04, Proposition 3.13], Zle Ai[D;] is the unique positive current in c;(det Fy), and thus

== Z/li[Di].

1

In particular, V-10p, , (det Fy) = 0 over Y\ UleDi.
By [CP17, Eq. (5.10)], there exists another positively-curved singular hermitian metric A’
of det F; so that

(1.3.3) V=10, (det F;) — eV-10y,,, (det F,,) > 0

p
=1

for some ¢ > 0. Recall that c;(det Fy) contains only one positive current Zle Ai[D;]. Then
p
V=10y/(det Fy) = Z AlDil.
i=1
It follows from (1.3.3) that
P
(1.3.4) V=16y,, . (det Fy) = Z XD, X eR>fori=1,...p.
i=1

By [BDPP13, Theorem 3.7], Zle A'D; is also an exceptional divisor, which is thus the unique
positive current in c¢;(det Fy,). This in turn implies that the numerical dimension v( det f.(mKx y)) =
0 for any m € N*. Moreover, by (1.3.4) together with Lemma 1.11 below, over Yy \ UleDi the
Narasimhan-Simha metric h,, of f.(mKx/y) is smooth and the curvature tensor

(1.3.5) Op, (Fn) =0 over Y\ UleDi.
This proves Claim (ii). O

Lemma 1.11 ([CP17, Corollary 2.9]). Let E be a vector bundle over a (possibly non-compact)
Kdhler manifold X, equipped with a positively-curved singular hermitian metric hg. Assume
that ©getp,(det E) = 0 over an open (Euclidean topology) set U C X, then over U, hg is smooth,
and ©y,(E) = 0.

Remark 1.12. In [CP17, Remark 5.10], the authors asked the following question: for any
algebraic fiber space f : X — Y, assume that c¢;(det f.((Kx/y)) = 0 for some non-zero
f«(€Kx/y), then for any birational model f” : X’ — Y’ as in (1.3.1), does it follow that
fL(€Kx+,y) is flat? Proposition 1.10.(ii) can be seen as an answer to their question.

We are now in a position to prove Theorem E.

Theorem 1.13 (=Theorem E). Let f : X — Y be an algebraic fiber space between smooth
projective manifolds with general fibers of general type. Let € > 2 be any positive integer such
that f.((Kx y) is non-zero, and the numerical dimension v(det f.((Kx/y)) = 0. Then f is
birationally isotrivial, that is, two general fibers X, and X, of the fibration f are birationally
equivalent.
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Proof. By Proposition 1.10.(i) one can assume that f is smooth over a non-empty Zariski open
set Yp C Y, and both B :=Y \ Y; and f*B are normal crossing divisors. Take 1 > m > 0, so
that the natural multiplication map

(1.3.6) Q: §HFm - (Fym)**

is surjective over Yy. We denote by Fm C (Fum)*™* the image of ¢, which is also torsion free,
and coincides with (F,lm)** over Yy when p > 0. Since the Narasimhan-Simha metric h,, on
F,, induces positively-curved metric R, over §”Fm, the quotient metric h# on ¥, induced
by Hl, is also positively curved by [PT18, Lemma 2.3.4], and thus the induced metric As get

on the determinant det ¥, is positively curved as well.
On the other hand, the inclusion

det(F.m) — det ((Fﬂm)**) = det(Fym),
induces an effective divisor
T € | det(Fym) — det(Fyum)|.
Hence
‘V—l@h,ﬁdet(det(ﬁm)) +T € ci(det(Fym)).
By (1.3.4), there exists an effective exceptional divisor (in the sense of [Bou04, Definition
3.10]) 2‘?:1 uiD; so that Z‘?:l pi[D;] is the unique positive current in ¢;(det F,,,). Then

p
V=164, (det(Fm)) + [T] = Y il D).
i=1
In particular,
p
Z.ui[Di] —[T] >0,
i=1
and

(1.3.7) \/—_1®hﬁdet(det(ﬁm)) =0 over Y\U’ D,

By Lemma 1.11 again, ©,(F,,) = 0 over ¥j \ U‘?ZlDi. Recall that the restrictions Fy, and
F.m1y, are locally free, and the restriction of ¢ defined in (1.3.6) to Yp

1y, ¢ SﬂmeYO - Fﬂmfyo

is surjective. In particular, over the Zariski open set V := Y} \ UleDi, §”Fm v = S#Fpv, and
Fumv = Fumv, and the restriction ¢y is a quotient map between vector bundles. Hence
both the curvature tensors of (S#Fy,, h’,ln)[v and (Fym, hg)v vanish identically. Since hg is
the quotient metric induced by hl,, the second fundamental form with respect to ¢y thus
vanishes identically. We denote by E := ker ¢. Then E\y is a flat subbundle of SHF,y.

In other words, for any y € V, we take an open set U C V containing y so that there exists
a holomorphic frame e, ey, . ..,ey € H°(U, F,) which trivializes F, =~ U X CN*1 50 that
V(e;) = 0fori =0,...,N, where V is the hermitian connection with respect to the metric
k.. We can also take such a holomorphic frame fi, . .., f, € H(U, E) which trivialize E;y.
Then

(1.3.8) o(fi) = Z oy ey ey
lal=p
where aj, € C are all constant for any j = 1,...,r and a.

Now we will pursue the similar strategy in the proofs of [CH17, Proposition 4.1] or [Cao16,
Proposition 2.8] to show the birational equivalence of general fibers. We denote by X§*" the
relative canonical model for X, — Y; as in the proof of Proposition 1.9. By (1.2.2) and (1.2.4),
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for p > m > 0, (1.3.8) shows that X;*" over U is a subvariety of U X PN ~ P(F,,)y defined
by equations

{Z a]azg 1 ) ]O\CIN}jzl ..... re
la|=p
Recall that aj,’s are all constant, then f¢ : X" — Y are locally trivial. The theorem
follows. O

Remark 1.14. (i) The proof of Theorem 1.13 further indicates the locus of Y in which any
two fibers are birationally equivalent. More precisely, in the same setting as Theorem 1.13,
let Yy be the maximal Zariski open set of Y over which f is smooth, and let D be the only
effective divisor which is numerically equivalent to det f.(¢(Kx/y). Then for any y, y’ € Y, \ D,
Xy is birationally equivalent to X,

(ii) It is worthwhile mentioning that in [Kaw85] Kawamata proved the subadditivity of
Kodaira dimensions for algebraic fiber spaces (litaka C, ,-conjecture) whose geometric gen-
eric fiber admits a good minimal model. For such algebraic fiber spaces f : X — Y,
in [Kaw85, Theorem 1.1.(i)] he further showed that there exists a certain positive integer
¢ such that the Kodaira dimension

(1.3.9) x(det fu(¢Kx/y)) = Var(f).

By [BCHM10] we know the existence of good minimal models for varieties of general type.
Hence (1.3.9) holds for algebraic fiber spaces whose general fibers are of general type. In par-
ticular, when « ( det f.(¢Kx/y)) < 0 for the positive integer £ in (1.3.9), f must be birationally
isotrivial. Theorem 1.13 can therefore be seen as a further refinement of Kawamata’s result.

1.4. m-Bergman metric and pluricanonical extension techniques. Before we prove
Theorem D, we need some technical results. The first one is a pluricanonical extension the-
orem which is a refinement of [Den17, Theorem 2.11] and [Cao16, Theorem 2.10]. Its proof
is a combination of the Ohsawa-Takegoshi-Manivel L%-extension theorem, with the semi-
positivity of m-relative Bergman metric studied by Berndtsson-Paun [BP08,BP10] and Paun-
Takayama [PT18].

Theorem 1.15 (Pluricanonical L?-extension). Let f : X — Y be an algebraic fiber space so
that the Kodaira dimension of the general fiber is non-negative. Assume that f is smooth over
a dense Zariski open set of Yy C Y so that both B := Y \ Y, and f*B are normal crossing. Let
L be any pseudo-effective line bundle L on X equipped with a positively curved singular metric
hy with algebraic singularities satisfying the following property

(i) There exists some regular value z € Y of f, such that for some m € N, all the sections
H°(X,,(mKx + L)|x,) extends locally near z.

1
(i) H°(Xg,(mKx, +Lix,) ® /(hﬁx)) * 2.
Then for any regular value y of f satisfying that

(i) all sections H° (Xy, mKx, + ery) extends locally near y,
(ii) the metric hyx, is not identically equal to +oo,

both the restriction maps in the diagram

I

H°(X,mKx )y — mAg + L+ f*Ay)
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are both surjective. Here Ay is a universal ample line bundle on Y which does not depend on L,

f and m.

Proof. Thanks to [BP10, A.2.1], the assumptions in the theorem imply that there exists a m-
relative Bergman type metric h,, g on mKx /Y- + L Wlth respect to hy such that the curvature

current i®p,, ,(mKx;y + L) > 0. Thus h := h ’" h defines a possible singular metric on
—_~ m —
L:= —(me/Y + L) + —L = (m - 1)Kx/y + L,
m m
with i©4(L) = 0
1
Take any s € H’(X,, (mKx, +Lix,) ® 7 (hi"rx ). It follows from the construction of the
Yy

m-relative Bergman kernel metric that |s| }21 is €°-bounded. Then we see that

9 2(m-1) l) 2
/ |S|w,thXy’w = / |S|h B S m dVX N
Xy

2
< |S|Z LdVXy,w < +09,
Xy w,hL’"
which implies that s € H°(X,, (Kx + L+ f*(Ay - Ky))ix, ® /(hrxy))- Take Ay sufficiently
ample such that Ay — Ky — B separates (2n + 1)-jets everywhere, where n := dim Y. We then
can apply the Ohsawa-Takegoshi-Manivel L?-extension theorem (see [CDM17,Dem16]) for
Kx +L+ f*(Ay — Ky — B), to extend s to a section S in H°(X, (Kx,y + L+ f*Ay) ® #(h)).
In conclusion, the restriction

1
HY (X, mKyy + L+ f*(Ay = B)) = H' (X, (mKx, + Lix,) ® 7 (B, )

is surjective.

On the other hand, as in (1.1.5), the m-Bergman metric h,, g of mKx,y + L also has certain
singularities along the multiplicity divisor As of the fibration f, which forces the extended
section of s vanishes on A r. More concretely, the curvature of the m-relative Bergman metric

i®p,, ,(MKxy + L) = m[Af]

where [Ar] is the positive (1,1)-current associated to the effective divisor A¢. One thus has

iOp(L) >

-1 1
i®hm,3(mKX/Y +L)+ ;iGhL > (m— 1)[Af].

By the assumption the support [A¢| is simple normal crossing, which in turn implies that
the multiplier ideal

J(h) € Ox(—(m- l)Af).
Recall that
S e H'(X,(Kx/y + L+ f*Ay) ® 7 (h)),

then one can divide S by (m — 1)Ay to obtain a holomorphic section
S' € H'(X,mKx)y + L— (m—1)As + f*(Ay — B)).
By definition f*B > Ay. The theorem immediately follows from that Ay N X, = . O

We will apply a technical lemma in [CP17, Claim 3.5] to prove Theorem 1.21.(i). Let us
first recall some definitions of singularities of divisors in [Vie95, Chapter 5.3] in a slightly
different language.
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Definition 1.16. Let X be a smooth projective variety, and let . be a line bundle such that
H°(X,.%) # @. One defines

(1.4.1) e(Z) = sup{% | D € |.Z] is an effective divisor}
c
where

¢(D) :=sup{c > 0 | (X, c- D) is a klt divisor}
is the log canonical threshold of D.

Viehweg showed that one can control the lower bound of e(.%).

Lemma 1.17 ([Vie95, Corollary 5.11]). Let X be a smooth projective variety equipped with a
very ample line bundle 5, and let £ be a line bundle such that H(X, ) + @.

(i) Then there is a uniform estimate

(1.4.2) e(L) < ()X e (L) + 1.

(i) LetZ :=X X ---x X be the r-fold product. Then for # := );_, pr;.Z, one has e(A) =
e(ZL).

Lemma 1.18 (Cao-Paun). Let f : X — Y be an algebraic fiber space so that the Kodaira
dimension of the general fiber is non-negative. Assume that f is smooth over a dense Zariski
open set of Yy C Y so that both B := Y \ Yy and f*B are normal crossing. Then there exists some
positive integer C > 2 so that foranym > my and a € N, anyy € Y, and any section

o€ HO(Xy, amCKx, ),
there exists a section
(1.4.3) > € H'(X, f*Ay — af * det fi(mKx/y) + amr,,CKxy + a(Py, + Fp))

whose restriction to the fiber X, is equal to c®™. Here Fy,, and Py, are effective divisors on X
(independent of a) such that Fy, is f -exceptional with f(F,,) C Supp(B), Supp(Pn) C Supp(Ay),
m := rank f,(mKx/y), and Ay is the universal ample line bundle on Y defined in Theorem 1.15.

Since [CP17, Claim 3.5] does not provide an effective estimate for the coefficients in (1.4.3),
we will give a sketch proof of Lemma 1.18 to show how to apply Lemma 1.17 to achieve that.
This proof is exactly the same as [CP17, Claim 3.5].

Sketch proof of Lemma 1.18. To make the proof less technical, we may assume that X — Y
is a smooth fibration. Write r = rankf.(mKyx/y) for short. Consider the r-fold fiber product
X=X Xy XXy Xy Xof f. Let f* : X" — Y be the natural induced fibration, and let
pr; : X" — X be the projection on the i-th factor. Then

r r
Kxrjy = ®pr?(KX/Y), and fJ(K;?I’}Y) = ® fe(mKx/y).
i=1 i=1

We see that there exists a natural morphism

det f.(mKxy) — ® fe(mKxy),
i=1

which induces a zero divisor T of the section
HO (Xr, mKX’/Y - fr* detﬁ(me/y))

such that I' does not contain any fiber of f”. Then there exists for ¢, € Q" small enough,
such that for each fiber Xj of f" : X" — Y, (X7, enI}xy) is a klt pair.
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Indeed, one can apply Lemma 1.17 to control the lower bound of ¢,. Take a very ample
line bundle . over X and fix a point z € Y. Write d := dim X,. Since f : X — Y is a flat
family,

e(mKy,) < cl(,fzf)d_l ~ci(mKx,))+1=m- er()t ca(Kx,) +1,
by (1.4.2) for any y € Y. Note that X; = X, X - - - X X, is the r-fold product of X;. Since I'x;
is a zero divisor of a non-zero global section in

,
H(X;, mKx;) = H' (X, Q) pri (K§™).
i=1

By Lemma 1.17 for any m > 0 and any y € Y, the log canonical threshold

1 1 1 2
1.4.4) c(Tixr) > - = > >
(1.4.4) c(Tixy) e(®iz1pr?(K§T)) e(mKx,) = m-ci(#)? 1 c;(Kx,)+1 ~ (C-1)m

for some C € N which does not depend on m. We thus can take ¢, = (C_+)m
Write L, := mKxr/y — f"" det f.(mKx/y), which is equipped with a singular hermitian
metric h induced by I'. Then by our choice of C, forany y € Y

®Emy _
/(hpig)— Ox;-

By Siu’s invariance of plurigenera, for any k € N with ke, € N, all the sections H (X" kK X+

kemLyix;) extends locally near y for any y € Y. Applying Theorem 1.15 to X ") with L = L,,
there exists an ample line bundle Ay over Y such that, the following surjection holds

(1.4.5) H® (X", kKxry + kemL, + f*Ay) — H(X, kKx; + kemLrixy)-

Let iy : Xy < X, be the diagonal embedding. For any o € HO(Xy, k(1 + emm)KXy), there is
a natural section s € H°(X?, kKx; + kemLrixy) such that iys = c®". By (1.4.5), s extends to a
section S € H’ (Xr, kKxrjy +kemL, +fr*Ay). Denote by > € H° (X, frAy +rk(1+e,m)Kx y —
kep f* det f.(mKyx/y) the restriction of S to the diagonal X < X". By the following commut-
ative diagram

SeH° (Xr, kar/y + ke Ly + fr*Ay) HO(Xr, kag + ké‘errxg)

| |

H°(X, f*Ay + rk(1 + emm)Kx )y — kem f* det fu(mKyxy)) — H(X,, rk(1 + emm)Kx, ),

1 p_a
(C-1)m> k= Em’ o

> extends o”. The lemma is obtained by setting ¢,, =
1.5. Positivity of the direct images. This section is devoted to the proof of Theorem D,
which refines results by Viehweg-Zuo [VZ02, Proposition 3.4] and [VZ03, Proposition 4.3],
and a theorem by Kollar [Kol87]. We first recall the definition of Kollar family of varieties
with semi-log canonical singularities (slc family for short).

Definition 1.19 (slc family). An slc family is a flat proper morphism f : X — B such that:
(i) each fiber X := f~1(b) is a projective variety with slc singularities.

(i) a))[?;]B is flat.

(iii) The family f : X — B satisfies the Kollar condition, which means that, for any m € N,

the reflexive power o™

x/p commutes with arbitrary base change.
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To make Definition 1.19.(iii) precise, for every base change 7 : B" — B, given the induced
morphism p : X’ = X Xg B" — X we have that the natural homomorphism p*a)gr;]B — a))[?f} B

is an isomorphism. Let us collect the basic properties of slc families, as is well-known to the
experts.

Lemma 1.20. Let g : Z — W be a surjective morphism between quasi-projective manifolds
with connected fibers, which is birational to an slc family g’ : Z' — W whose generic fiber has
at most Gorenstein canonical singularities. Then

(i) the total space Z' is normal and has only canonical singularities at worst.

(i) Ifv: W' — W is a dominant morphism with W’ smooth quasi-projective, then Z' Xy,
W’ — W’ is still an slc family whose generic fiber has at most Gorenstein canonical
singularities, and is birational to (Z Xy W’) — W’.

(iii) Denote by Z'" the r-fold fiber product Z' Xy - - - Xw Z'. Then g"" : Z'" — W is also an slc
family whose generic fiber has at most Gorenstein canonical singularities. Moreover, Z'" is
birational to the main component (Z") of Z" dominating W.

(iv) Let Z") be a desingularization of (Z"). Then (g(r))*({’KZ(r)/W) =~ (g")«(EKzr jw) is reflexive
for every sufficiently divisible £ > 0.

Now let us state and prove our main result on the positivity of direct images.

Theorem 1.21 (=Theorem D). Let fy : Xg — Y, be a smooth family of projective manifolds of
general type. Assume that for any y € Yy, the set of z € Yy with X, b Xy is finite.

(i) Foranysmooth projective compactification f : X — Y of fo : Xo — Yy and any sufficiently
ample line bundle Ay overY, ﬁ(fo/y)**®A;,1 is globally generated over Y, for any{ > 0.
In particular, f.(€Kx/y) is ample with respect to Yy.

(ii) In the same setting as (i), det f,((Kx/y) ® A}’ is also globally generated over Y, for any
€ > 0, wherer; = rank fi((Kx y). In particular, B, (det f.(¢Kx/y)) C Y \ Yo.

(iii) For somer > 0, there exists an algebraic fiber space f : X — Y compactifying X; — Y,
so that f.((Kxy) ®A;€ is globally generated over Y, for ¢ large and divisible enough. Here
X denotes to be the r-fold fiber product of Xo — Y,, and Ay is some sufficiently ample
line bundle overY.

Proof. Let us first show that, to prove Claims (i) and (ii), one can assume that both B := Y \ Y}
and f*B are normal crossing.

For the arbitrary smooth projective compactification f’ : X" — Y’ of fy : Xy — Yo, we
take a log resolution v : Y — Y’ with centers supported on Y’ \ Y, so that B := v71(Y’\ Y;)
is a simple normal crossing divisor. Define X to be strong desingularization of the main
component (X’ Xy: Y) dominant over Y

(1.5.1) X—=X' Xy Y —= X’
\ l lf’
f 14
Y ——Y

so that f*B is normal crossing. By [Vie90, Lemma 2.5.a], there is the inclusion

(1.5.2) Vi fu(mKxy) = f.(mKx:y)

which is an isomorphism over Y, for each m € N. Hence for any ample line bundle A over
Y’, once fi(mKx;y)** ® (v*A)™! is globally generated over v'(Yy) =~ Y, for some m > 0,
fl(mKx/jy)*™* ® A™! will be also globally generated over Y,. As we will see, Claim (ii) is a
direct consequence of Claim (i). This proves the above statement.



22 YA DENG

(i) Let us fix a sufficiently ample line bundle Ay on Y. Assume that both B := Y \ Y, and
f*B are normal crossing. It follows from Proposition 1.9 that one can take some b > a > 0,
g > m > 0ands > 0suchthat Z := det f.(umKx/y)®* ®detﬁ(me/y)®b is ample over Yj.
In other words, B..(.Z’) C Supp(B). By the definition of augmented base locus, one can even
arrange a, b > 0 such that there exists a singular hermitian metric h; of .2 — 4Ay which is
smooth over Yy, and the curvature current \/—_1®h ,(Z) > w for some Kahler form w in Y.
Denote by r := rankf.(umKx,y) and ry := rank f,(mKyx/y). It follows from Lemma 1.18 that
for any sections

o1 € HO(Xy, aumCKx,), 02 € HO(Xy, bmCKx,),

there exists effective divisors >; and >, such that
X1 +af”det fi(muKx)y) — f*Ay lingar amuriCKyy + Py + F
Sy + bf* det fi(mKy y) — f*Ay "€ bmryCKyjy + Py + F,

and

— %N
ZIFXy - O-l ’

Here F; is f-exceptional with f(F;) C Supp(B), Supp(P;) C Supp(Ay) fori =1, 2.

Write N := amur,C 4+ bmry,C, P := Py + P, and F := F; + F,. Fix any y € Y. Then the
effective divisor 2; + X, induces a singular hermitian metric h, for the line bundle L, :=
NKx;y — f*Z + 2f*Ay + P + F such that hlx, is not identically equal to +co, and so is the
singular hermitian metric h := f*h;-hy over Ly := Ly+f* £ —4f*Ay = NKx)y—2f"Ay+P+F.

_ @
Zz[xy —0'2 .

1
In particular, when ¢ sufficiently large, the multiplier ideal sheaf #(h ny) = Ox,. By Siu’s

invariance of plurigenera, all the global sections H* (X, ((Kx + L) [Xy) ~ H° (Xy, ((+N)K. Xy)
extends locally, and we thus can apply Theorem 1.15 to obtain the desired surjectivity

(1.5.3) H°(X, €Kxy + Lo — tAf + f*Ay) — H*(X,, (€ + N)Kx, ),

Recall that Supp(P) C Supp(Af). Then £As > P for £ > 0, and one has the inclusion of
sheaves

fo/y + Ly — (f — I)Af + f*AY —> (N + f)Kx/y - f*AY + F.

which is an isomorphism over X, . By (1.5.3) this implies that the direct image sheaves
f«(€Kx )y — f*Ay + F) are globally generated over some Zariski open set U, C Y, containing
y for £ > 0. Since y is an arbitrary point in Yy, the direct image fi((Kx/y + F) ® Aj' is
globally generated over Y, for £ > 0 by noetherianity. Recall that F is f-exceptional with
f(F) € Supp(B). Then there is an injection

fi(tKx)y + F) ® Ay — fu(€Kx)y)*™* ® A

which is an isomorphism over Yo. Hence f,((Kx/y)** ® A}' is also globally generated over
Yy. By Definition 1.1.(iii), fi({Kx/y) is ample with respect to Y, for £ > 0. The first claim
follows.

(ii) The trick to prove the second claim has already appeared in [Den17] in proving a con-
jecture by Demailly-Peternell-Schneider. We first recall that f.({Kx/y) is locally free out-
side a codimension 2 analytic subset of Y. By the proof of Theorem 1.21.(i), for ¢ suffi-
ciently large and divisible, f.((Kx/y + F) ® A}' is locally free and generated by global sec-
tions over Y;, where F is some f-exceptional effective divisor. Therefore, its determinant
det f.((Kxy +F) ®A;r" is also globally generated over Yy, where r; := rank f,({Kx/y). Since
F is f-exceptional and effective, one has

det fi(€Kxy + F) ® A} = det f.((Kx)y) ® A},
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and therefore, det f.({Kx,y) ® A;rf is also globally generated over Yj. By the very definition
of the augmented base locus B, (e) we conclude that

B. (det fi(¢Kx/y)) < Supp(B).

The second claim is proved.

(iii) We combine the ideas in [VZ03, Proposition 4.1] as well as the pluricanonical extension
techniques in Theorem 1.15 to prove the result. By Corollary A.2, there exists a smooth
projective compactification Y of Yy with B := Y \ Y, simple normal crossing, a non-singular
finite covering ¥ : W — Y, and an slc family ¢’ : Z’ — W, which extends the family
Xy Xy, W. By Lemma 1.20.(iii) for any r € Z,, the r-fold fiber product g : Z — W is still
an slc family, which compactifies the smooth family X} Xy, W — W, where Wy := /7 (Yp).
Note that Z" has canonical singularities.

Take a smooth projective compactification f : X — Y of Xj — Y so that B is normal
crossing. Let Z — Z'" be a strong desingularization of Z”", which also resolves this birational
map Z” > (X xy W). Then g : Z — W is smooth over W, := ¢~1(Yp).

e

7S 7" -3 X —— (X Xy W)

Lol

We—w Y 3yyv« "V W

Let Z be a strong desingularization of Z’, which is thus smooth over W := i~ 1(Y,). For
the new family § : Z — W, we denote by Zy := §~'(W,). Then Z, — W, is also a smooth
family, and any fiber of Z,, with w € W} is a projective manifold of general type. By our

assumption in the theorem, for any w € W, the set of w' € W, with Zo bir Z,, is finite as
¥ : W — Y is a finite morphism. We thus can apply Theorems 1.21.(i) and 1.21.(ii) to our
new family §: Z — W.

From now on, we will always assume that £ > 0 is sufficiently divisible so that (K
is Cartier. Let Ay be a sufficiently ample line bundle over Y, so that Ay := ¢*Ay is also
sufficiently ample. Since Z’ has canonical singularity, §.(¢K; ;) = g.((Kz/jw). It follows
from Theorem 1.21.(ii) that, for any ¢ > 0, the line bundle

(1.5.4) det §.((K5yy) ® Ay = det g, ((Kz jw) ® Ay

is globally generated over Wy, where r := rank g,({K7 /i) depending on £. Then there exists
a positively-curved singular hermitian metric hqe; on the line bundle det g, (¢Kz /) ® A}}
such that hy.; is smooth over W,

By the base change properties of slc families (see [BHPS13, Proposition 2.12] and [KP17,
Lemma 2.6]), one has

r
Z/r/W = ® pr wZ’/W’ g;r(fKZ/r/W) ~ ® g;(fKZ,/W),

where pr; : Z”" — Z’ is the i-th directional projection map. Hence (K is Cartier as well,
and we have

.
X) 9tz w) = gL (EKzr pw) = gu(EKzyw).
By Lemma 1.20.(iv), g.(€Kz,w ) is reflexive, and we thus have

det g, (CKzrw) = (X) 9.(CK 71 jw) = g.(EKzyw),
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which induces a natural effective divisor
I'€|tKzw — g detg.((Kz/jw)
such that Iz, # 0 for any (smooth) fiber Z,, with w € W;. By (1.4.4), there exists a positive
integer C which does not depend on ¢, so that the log canonical threshold
2
(Cc-1)¢
for any ¢ > 0. Denote by h the singular hermitian metric on

(Kzyw — g" det g, ((Kz jw)

(1.5.5) c(liz,) =

1
induced by I'. By (1.5.5) the multiplier ideal sheaf ¢ (hFZM) = Oy, for any fiber Z,, with
w € Wj. Let us define a positively-curved singular metric h# for the line bundle .7 :=

1
tKz/w — rg*Aw by setting hz := h - g"hger. Then /(h(;}gi) = 0y, forany w € Wj.
For any n € N*, applying Theorem 1.15 to n.# we obtain the surjectivity
(1.5.6) H°(Z,(C - DnlKzyw + nF + g*Aw) — H’(Z,,,CnlKy,)
for all w € W,. In other words,
- (CﬁnKZ/W) ® A;é"r_l)

is globally generated over W, for any £ > 0 and any n > 1.
Since K X, 18 big, one thus has

r:rg~{’d as £ — +oo

where d := dim Z,, > 2 (if the fibers of f are curves, one can take a fiber product to replace
the original family). Recall that C is a constant which does not depend on ¢. One thus can
take an a priori £ > 0 so that r > C{. In conclusion, for sufficiently large and divisible m,

g (mKZ/W) ® A;\,zm = g*(mKZ/W) ® WA}Z"’

is globally generated over W,. Therefore, we have a morphism

N
(1.5.7) B v ar - g.(mKzw) @ v A",

i=1
which is surjective over Wj. On the other hand, by [Vie90, Lemma 2.5.b], one has the inclu-
sion
9«(mKzpw) = ¥* fi(mKxy),
which is an isomorphism over Wj. (1.5.7) thus induces a morphism

N
(1.5.8) B v 0w ® AT — g, (mKzpw) ® A" — 9ut)” (fu(mKxy)) ® A,

i=1
which is surjective over Y. Note that that even if f.(mKx/y) is merely a coherent sheaf,
the projection formula .y* (fu(mKx,y)) = fi(mKx,y)) ® y» O still holds for ¢ is finite
(see [Ara04, Lemma 5.7]). The trace map

lﬁ* ﬁW - ﬁY

splits the natural inclusion Oy — .0y, and is thus surjective. Hence (1.5.8) gives rise to a
morphism

N
-m @ -
(1.5.9) D v. 0w ® AT — g, (mKzpw) ® A" = fu(mKyxy) © A",
i=1
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which is surjective over Y,. By taking m sufficiently large, we may assume that . Oy ® A}
is generated by its global sections. Then f.(mKx,y) ® A} is globally generated over Y,. We
complete the proof. O

Remark 1.22. In a recent paper [PX17], Xu-Patakfalvi proved that for an n-dimensional
KSBA-stable family f : (Z,A) — T with finite fiber isomorphism equivalence classes over a
normal variety T, f.((Kz/r + A)**!) is ample on T. Their proof relies on some kind of Nakai-
Moishezon criterion by Kollar in [Kol90]. In the case of Theorem 1.21, we cannot apply their
result to show Theorems 1.21.(i) or 1.21.(ii) directly, as Y, might be non-compact.

Since the Q-mild reduction in Corollary A.2 holds for any smooth surjective projective
morphism with connected fibers and smooth base, it follows from our proofin Theorem 1.21.(iii)
and Kawamata’s theorem (1.3.9), one still has the generic global generation as follows.

Theorem 1.23. Let fy : U — V be a smooth projective morphism between quasi-projective
varieties with connected fibers. Assume that the general fiber F of fy has semi-ample canonical
bundle, and fy is of maximal variation. Then there exists a positive integerr > 0 and a smooth
projective compactification f : X — Y of U" — V so that f.(mKxy) ® o/~ is globally
generated over some Zariski open subset of V. Here U" — V is the r-fold fiber product of
U — V, and &/ is some ample line bundle on Y. O

1.6. Sufficiently many “moving” hypersurfaces. As we will see in the construction of
VZ Higgs bundles in Theorem 3.1, one has to require the following: for the algebraic fiber
space f : X — Y defined in Theorem 1.21.(iii), the positivity of Kx,;y must be almost fonctorial
under base changes (see Theorem 1.24 for a precise statement). Since f : X — Y is not flat,
we are forced to perform the base changes on its Q-mild reductions to study the positivity of
relative canonical bundles. Let us state and prove our main result in this subsection, which
will be our basic setup in constructing refined VZ Higgs bundles in § 3. The proof we present
here follows from [PTW18, Proposition 4.4].

Theorem 1.24. Let Xy — Yy be a smooth family of minimal projective manifolds of general
type over a quasi-projective manifold Y. Suppose that for any y € Yy, the set of z € Y, with
X, b y is finite. Let Y D Y, be the smooth compactification in Corollary A.2. Fix any
Yo € Yo and some sufficiently ample line bundle Ay on'Y. Then there exist a birational morphism
v:Y' — Y and a new algebraic fiber space f' : X’ — Y’ which is smooth over v~1(Yy), so that

for any sufficiently large and divisible €, one can find a hypersurface
(1.6.1) He |€KX’/Y’ — é’(v o f,)*AY + €E|

satisfying that

e the divisor D := v~ 1(Y \ Yy) is simple normal crossing.

o There exists a reduced divisor S in'Y’, so that D + S is simple normal crossing, and H — Y’
is smooth over Y \ DU S.

o The exceptional locus Ex(v) C Supp(D + S), and yy ¢ v(D U S).

o The divisor E is effective and f’-exceptional with f'(E) C Supp(D + S).

Moreover, when X, — Y, is effectively parametrized over some open set containing yy, so is the
new family X’ — Y'.

Proof. The proof is a continuation of that of Theorem 1.21.(iii), and we adopt the same nota-
tions therein. By (1.5.9) and the isomorphism

H%Z,tKzjw — tg"Aw) =~ H(Z" , tKzr jw — (") Aw),
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the morphism @ : .9, ((Kz/w) ® A}f — fi(€Kx/y) ® A}f in (1.5.9) gives rise to a natural
map

(1.6.2) Y : HZ", tKzr jw — €(g") Aw) — H(Y, f.(€Kx)y) ® AY)

whose image I generates f.((Kxy) ® A}f over Y. Note that Y is fonctorial in the sense that
it does not depend on the choice of the birational model Z — Z’". By the base point free
theorem, for any y € Yy, Kx, is semi-ample, and we can assume that £ > 0 is sufficiently
large and divisible so that /Ky is relatively semi-ample over Y;. Hence we can take a section

(1.6.3) o€ H(Z" (K jw — 6(g") Aw)
so that the zero divisor of
Y(0) € H*(X, (Ky)y — €f*Ay) = H°(Y, fu(tKxy) ® AY),

denoted by H; € |[(Kywry — C(f)*Ayl, is transverse to the fiber Xy,- Denote by T the
discriminant locus of H — Y, and B := Y \ Y. Then yo ¢ T U B. Take a log-resolution
v: Y’ — Y with centers in T U B so that both D := v~1(B) and D + S := v~!(T U B) are simple
normal crossing. Let X’ be a strong desingularization of (X Xy Y’), and write f’ : X’ — Y’,
which is smooth over Y] := v7(Y). Set X} := f'~!(Y;). It suffices to show that, there exists a
hypersurface H in (1.6.1) with Hyyopry1vy = H, (PO (V)s where V := Y \ S’ UB C Y,. Since
the birational morphism v is isomorphic at y, we can write yo as v~ !(y,) abusively.

Now we follow the similar arguments in [PTW 18, Proposition 4.4] to prove the existence
of H (in which they apply their methods for mild morphisms). Let W’ be a strong desingu-
larization of W Xy Y’ which is finite at yo € Y. Write W := v'"}(W,). By Lemma 1.20.(ii),
the new family Z” := Z'" Xy W' — W’ is still an slc family, which compactifies the smooth
family X; Xy; W — W(. Let M’ be a desingularization of Z” so that it resolves the rational
maps to X’ as well as Z.

/X Z /er

/ J‘ / l / | qr
X/ M/ 174

| | l

Y<~—¢ | — W =——= w

| —v—]
/ ]/ l/

Y/ —— i — W ———— W
By the properties of slc families, ,u’*a)[Z{,]r W= co[;,], s which induces a natural map
(1.6.4) p 2 HY(Z"  tKzr jyy — €9 ) Aw) — H(Z", tKzn jwr — £V 0 g")" Aw).

Since both Z’" and Z” have canonical singularities, one has the following natural morphisms

9+(CKzjw) = (§")(tKzrjw),  B(EKnryw) = G (EKz pw).
We can leave out a subvariety of codimension at least two in Y’ supported on D + S (which

thus avoids yy by our construction) so that ' : W/ — Y’ becomes a flat finite morphism. As
discussed at the beginning of the proof, there is also a natural map

(1.6.5) Y HY(Z" tKznpywr — €(V' 0 ¢")*Aw) — H* (X', €Kx:jy — (v o f')"Ay)
as (1.6.2) by factorizing through M’.

Note that for V. := Y\ TUB, v : v (V) = Vs also an isomorphism, and thus the
restriction of X — Y to V is isomorphic to that of X’ — Y’ to v"1(V). Hence by our
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construction,the restriction of Z”7 — W to /" (V) is isomorphic to that of Z” — W’ to
(v o)y }(V) = (v o ¢)"1(V). In particular, under the above isomorphism, for the section
o € H(Z",tKzrw — £(g"")*Aw) in (1.6.3) with Y(o) defining H;, one has

Y1) = Y O wor 1)
where ;* and Y’ are defined in (1.6.4) and (1.6.5). Denote by H the zero divisor defined by
Y'(u*o) € H (X', tKx:jy — (v o f')* Ay).

Recall that H; is smooth over V, then H is also smooth over v=(V).
Note that Y'(u*0) € H (Y, f{(Kx/jy') ® V*A;f) is only defined over a big open set of Y’
containing v~!(V). Hence it extends to a global section

s € H(X', €Kx/jyr — (v o f)" Ay + (E),

where E is an f’-exceptional effective divisor with f’(E) € Supp(D + S). Denote by H the
hypersurface in X’ defined by s. Hence H,(,o -1 (v) = H \(vof7)-1(v)» Which is smooth over
v (V) = Y\DUS = V 3 . Note that the property of effective parametrization is invariant
under fiber product. The theorem follows. O

Based on Theorem 1.23, one can apply the same methods in Theorem 1.24 to obtain the
following result.

Theorem 1.25. Let fy : U — V be the smooth projective morphism as in Theorem 1.23. Then
there exists a positive integer r > 0, a birational morphism from a smooth quasi-projective
variety v : V. — V, a smooth projective compactification f : X = Y of U Xy V>V

U +— U xy Ve—3 X

lU 1 lf

|7 V < S Y

and a big and nef line bundle .2 over Y so that there is a hypersurface H € |[mKx;y —mf*.Z +
mE| satisfying the following conditions.

(i) The boundary D := Y \ V is a simple normal crossing divisor.

(i) The hypersurface H is smooth over some Zariski open set Vo C V, and D+ S := Y \ Vy isa
simple normal crossing divisor.

(iii) The divisor E is effective and f -exceptional divisor with f(E) NV, = @.

(iv) The augmented base locus BL(Z) NV, = @.

Here U™ — V is the r-fold fiber product of fy : U — V. m|

2. CONSTRUCTION OF NEGATIVELY CURVED FINSLER METRIC

To begin with, let us introduce the definition of Viehweg-Zuo Higgs bundles over quasi-
projective manifolds in an abstract way following [VZ03,PTW18]. Then we prove a generic
local Torelli for VZ Higgs bundles. Next we establish an algorithm to construct Finsler met-
rics whose holomorphic sectional curvatures are bounded above by a negative constant via
VZ Higgs bundles. By our construction and generic local Torelli, those Finsler metrics are
positively definite over a Zariski open set, and by the Ahlfors-Schwarz lemma, we prove that
a quasi-projective manifold is pseudo Kobayashi hyperbolic once it is equipped with a VZ
Higgs bundle.
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2.1. Abstract Viehweg-Zuo Higgs bundles. The definition we present below follows from
the formulation in [PTW18, Proposition 2.7], which relaxes the monodromy condition in
[VZ03] and is thus less restrictive.

Definition 2.1 (Abstract Viehweg-Zuo Higgs bundles). Let V be a quasi-projective manifold,
and let Y D V be a projective compactification of V with the boundary D := Y \ V simple
normal crossing. A Viehweg-Zuo Higgs bundle on'V is a logarithmic Higgs bundle (&,0) over
Y consisting of the following data:

(i) adivisor S on Y so that D + S is simple normal crossing,

(ii) a big and nef line bundle .# over Y with B,(¥) c DU S,

(iii) a Higgs bundle (&, 60) := ( @;:0 E"%4, @ZZO Gn_q,q) induced by the lower canonical

extension of a polarized VHS defined over Y \ (D U S),

(iv) a sub-Higgs sheaf (#,n) c (&, 0),

which satisfy the following properties.

(1) The Higgs bundle ((;@, é) =(Z'®&,1®0). In particular, 0:&—> & Qy (log(D +)),
and 0 A 6 = 0.

(2) The sub-Higgs sheaf (.#,7) has log poles only on the boundary D, thatis, n : . ¥ —
FQ Q~y(log D) 5

(3) Write & := £~' ® E"%* and denote by .% := & N .%. Then the first stage .%, of .7 is
an effective line bundle. In other words, there exists a non-trivial morphism 0y — %,.

As shown in [VZ02], by iterating 7 for k-times, we obtain

k times
—_——
’70 e}

fo A fk ® (Qy(logD))®k.

Since 7 A 5 = 0, the above morphism factors through %, ® Sym*Qy(log D), and by (3) one
thus obtains

Oy — Sy — Fi ® Sykay(log D)— % 'e E" kg Sykay(log D).
Equivalently, we have a morphism
(2.1.1) 7 : Sym* Fy(~log D) —» £~ @ E" Rk,

It was proven in [VZ02, Corollary 4.5] that 7; is always non-trivial. We say that a VZ Higgs
bundle satisfies the generic local Torelli if r; : Jy(~logD) — £ ' ® E" 1 in (2.1.1) is
generically injective. As we will see in § 2.3, in Theorem F we prove that the generic local
Torelli holds for any VZ Higgs bundles.

2.2. Proper metrics for logarithmic Higgs bundles. We adopt the same notations as
Definition 2.1 in the rest of § 2. As is well-known, & can be endowed with the Hodge met-
ric h induced by the polarization, which may blow-up around the simple normal crossing
boundary D + S. However, according to the work of Schmid and Cattani-Schmid-Kaplan
[Sch73, CKS86], h has mild singularities (at most logarithmic singularities), and as proved
in [VZ03, §7] (for unipotent monodromies) and [PTW18, §3] (for quasi-unipotent mono-
dromies), one can take a proper singular metric g, on £ such that the induced singular
hermitian metric g,' ® h on E:=L1e& is locally bounded from above. Before we sum-
marize the above-mentioned results in [PTW18, §3], we introduce some notations in loc.
cit.

Write the simple normal crossing divisor D = Dy + -+ 4+ Dy and S = S; + -+ + S¢. Let
fp, € HO(Y, ﬁy(Dl-)) and fs, € H(Y, ﬁy(Si)) be the canonical section defining D; and S;. We
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fix smooth hermitian metrics gp, and gs, on Oy(D;) and Oy(S;). Set

2 2
rp, := —logl| fp,llg, »  7s; = —logll fs; llg, -
and define
k 4
rp = 1_[ rDi, rsg = 1_[ rsi.
i=1 i=1

Let g be a singular hermitian metric with analytic singularities of the big and nef line bundle
& such that g is smooth on Y\B,(.Z) O Y\ DUS, and the curvature current V-10,(%) > w
for some smooth Kahler form w on Y. For a € N, define

9o :=g - (rp-15)"
The following proposition is a slight variant of [PTW18, Lemma 3.1, Corollary 3.4].

Proposition 2.2 ([PTW18]). Whena > 0, afterrescaling fp, and fs,, there exists a continuous,
positively definite hermitian form w, on Jy(—log D) such that

(i) overVy: =Y\ DUS, the curvature form
‘_1®9a($)fVo > rISZ " WaVy-

(ii) The singular hermitian metric hy := gl ® hon L1 ® & is locally bounded on Y, and
smooth outside (D + S). Moreover, hy is degenerate on D + S.

(iii) The singular hermitian metric rf)hg‘ on L' ® & is also locally bounded on Y. ]

Remark 2.3. It follows from Proposition 2.2 that both hg and r]%h;‘ can be seen as Finsler
metrics on .£~! ® & which are degenerate on Supp(D + S), and positively definite on V.

Although the last statement of Proposition 2.2.(ii) is not explicitly stated in [PTW18], it
can be easily seen from the proof of [PTW 18, Corollary 3.4]. Proposition 2.2 mainly relies on
the asymptotic behavior of the Hodge metric for lower canonical extension of a variation of
Hodge structure (cf. Theorem 2.4 below) when the monodromy around the boundaries are
only quasi-unipotent.

Theorem 2.4 ([PTW18, Lemma 3.2]). Let H = F° > F! > --- > FN > 0 be a variation of
Hodge structures defined over (A*)P x A1, where A (resp. A*) is the (resp. punctured) unit disk.
Consider the lower canonical extension !F* over AP*9 > (A*)P x A9, and denote by (£, 0) the
associated Higgs bundle. Then for any holomorphic section s € T'(U, &), whereU C AP*1 is a
relatively compact open set containing the origin, one has the following norm estimate

(2.2.1) Ishod < C((=log [t:]) - (= log [ta]) - - - (= log [,])“,

where a is some positive constant independent of s, andt = (t,..., tp+q) denotes to be the
coordinates of AP*4.

Let us mention that the estimates of Hodge metric for upper canonical extension were ob-
tained by Peters [Pet84] in one variable, and by Catanese-Kawamata [CK17] in several vari-
ables, based on the work [Sch73,CKS86]. We provide a slightly different proof of Theorem 2.4
for completeness sake, following closely the approaches in [Pet84, CK17].

Proof of Theorem 2.4. The fundamental group m; ((A*)PXAY) is generated by elements y1, . . ., ¥,
where y; may be identified with the counter-clockwise generator of the fundamental group
of the j-th copy of A* in (A*). Set T; to be the monodromy transformation with respect to y;,
which pairwise commute and are known to be quasi-unipotent; that is, for any multivalued
section v(ty, . . ., ty+q) of H, one has

eZm ¢

u(ty,. .., e tprg) = T 0(ty, oo tpag)
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and [T;, Ti] = 0 for any j,k = 1,...,p. Set Tj = D; - U, to be the (unique) Jordan-Chevally
decomposition, so that D; diagonalizable and U; is unipotent with [D;, U;] = 0. Since T;
is quasi-unipotent by the theorem of Borel, all the eigenvalues of D; are thus the roots of
unity. Set Nj := 5= 3, (I - Uj)k/k. If D; = diag.(dj¢) then we set S; = diag.(4;r) with

27i

Aje € (—=2mi,0] and exp(Aj¢) = dj¢. Since [T}, Tx] = 0, Jordan-Chevally decomposition implies
that

(2.2.2) [S;, Sl = [S;, Ne] = [Nj, Ni] = 0.

Fix a point ¢y € (A*)? x A9, and take a basis vy, ...,v, € V; so that Sy, ..., S, are simultan-
eously diagonal, that is, one has

(2.2.3) Sj(U{) = /ljg.

Let us define v (2), ..., v,(t) to be the induced multivalued flat sections. Then

4
)= exp (- D6+ N log ), )

is single-valued and forms a basis of holomorphic sections for the lower canonical extension
.

Recall that dj, are all roots of unity. One thus can take a positive integer m so that m;, :=
—mAj¢/2ri are all non-negative integers. Equivalently, each ij is unipotent. Define a ramified
cover

7 APTT — APTE

(W1, .o oy Wpag) > (W], . .,wj',",wpﬂ, e Wpig)

and set 7’ to be the restriction of 7 to (A*)? X A4. Then n"*F * is a variation of Hodge structure
on (A*) x A? with unipotent monodromy, and we define ‘z"*H the canonical extension of
n""H. Set u;(w) = n""v; which are multivalued sections for the local system 7"*H. Then

.
Uiwi, €W W) = T w(wr, . W)

Define
1 p
(2.2.4) éj(w) == exp (- Py ; mN; - log wi)gj(w)

which forms a basis of ‘z"*H. Based on the work of [Sch73,CKS86], it was shown in [VZ03,
Claim 7.8] that one has the upper bound of norms

(2.2.5) |€j(W)lhoa < Co((=log |wi]) - (= log[wa]) - - (~log [wp]))*
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for some positive constants Cy and «. One the other hand, we have
1 P
7'"ej(w) = exp (- Py Z(Si + N;) - log w{")ﬂ'*gj(w)

(2.2.2)

="exp ——ZmN log w;) - exp ——ZmS log w;) ™" U(W)

2.2.3

p p
(2.2. 1 1
= exp =5 :EI mN; - logw;) - exp ( = o :EI m;jlog w;)r’ vi(w)

:ﬁw - exp ——ZmN logwl) U(W)

i=1

p
1—[ w, - Ei(w).

i=1
By the definition of lower canonical extension, m;; are all non-negative integers, and thus

7" [ejlhod(W) = |7 ej(W)lhod = 1_[ |wi| ™7 €;(w)|hod
i=1
(225 Y
Co((—log |wil) - (—log [wal) - - - (= log [wp]))".

Hence

l¢jlhod(t) < %((—bg 1)) - (=log |t2]) - - (= log [,])) "

%oo
Note that “H '~ &. Therefore, for any holomorphic section s € I'(U, &), there exist smooth
functions fi,.. ., f; € O(U) so that s = 377, fie;. This shows the estimate (2.2.1). O

Remark 2.5. For the Hodge metric of upper canonical extension, one makes the choice that
Aje € [0, 27ri) instead of Aj; € (=27i, 0] in the proof of Theorem 2.4. Then the same computa-
tion as above can easily show that

P Y C
elhoat) < | [ 16757 — ((~ log |1a]) - (~log]tal) -~ (= log [15]))
i=1
which were obtained in [CK17].

2.3. A generic local Torelli for VZ Higgs bundle. In this section we prove that the gen-
eric local Torelli holds for any VZ Higgs bundle, which is a crucial step in the proofs of
Theorems A and B.

Theorem F (Generic local Torelli). For the abstract Viehweg-Zuo Higgs bundles defined in
Definition 2.1, the morphism 11 : y(—log D) — £~ ! ® E" 1! defined in (2.1.1) is generically
injective.

Proof of Theorem F. By Definition 2.1, the non-zero morphism 0y — %, —» ¥ ! @ E"™°

induces a global section s € H(Y, ™' ® E™?), which is generically non-vanishing over
Vo:=Y\DUS. Set

(2.3.1) Vi={y eV |s(y) #0}

which is a non-empty Zariski open set of V. For the first stage of VZ Higgs bundle . ! ®E™°,
we equip it with a singular metric hy := g,! ® h as in Proposition 2.2, so that Proposi-
tions 2.2.(1) and 2.2.(ii) are satisfied. Note that hg is smooth over Vy. Let us denote D’ to be
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the (1, 0)-part of its Chern connection over V;, and © to be its curvature form. Then by the
Griffiths curvature formula of Hodge bundles (see [GT84]), over V we have

O = -0y, ® 1+ 18 O4E™)
=-0gy, ®1-18 0,y A Ono)
(2.3.2) = Qg4 ®1=05,A 0,

where we set én—k,k =1Q®04k: L' ® Erkk 5 gl Erk-lkil g Qy (log(D + S)), and
define 9;’0 to be the adjoint of 0, with respect to the metric hg. Hence over V; one has

{V—1®0(3),3}hg V—l{D’s,s}hg A {s, D’s}hg V-1{D’s, D’s}hg
+ —

—V-184 log |s|,212, =

2 4 2
Slia Sl S|y a
| Ihg | Ihg | Ihg
{ V-l@o(S), S}ha
(2.3.3) < - z
ISIhg

thanks to the Lagrange’s inequality
V-1 [slis - {D's, D's}g > V=1{D's, s}pz A {5, D's}pa.
Putting (2.3.2) to (2.3.3), over V; one has
(V=105 A 0no().shye V=T{000(5). Ono(9)}

2 2
sf, I,

(2.3.4) V=104, — V-14dlog |s|}213 < -

where én,o(s) € HO(Y, L1 B @ Qy(log(D + S))) By Proposition 2.2.(ii), for any
y € DUS, one has

lim [s|2%(y) = 0.
R | |h§’ ")

Therefore, it follows from the compactness of Y that there exists yy € V; so that |s|}213 (yo) =
|s|}21;(y) for any y € V. Hence |s|zg(y0) > 0, and by (2.3.1), yo € V1. Since |s|z; is smooth over
Vo, V=104 log |s|}21;, (yo) is semi-negative. By Proposition 2.2.(i), \/—_163,% is strictly positive
at yo. By (2.3.4) and |s|}21(y0) > 0, we conclude that V-1 {é,,,o(s), én,o(s)}h;, is strictly positive
at yo. In particular, for any non-zero & € Jy y, 0,(s)(&) # 0. For

7 : Fy(=logD) —» £ '@ 1

in (2.1.1), over V, it is defined by 71(¢) := én,o(s)(.f), which is thus injective at y, € V;. Hence
7y is generically injective. The theorem is thus proved. O

Remark 2.6. Let us stress here that, we cannot give a precise description of the loci where 77 is
injective, for our method in proving Theorem F relies on the global aspects of the VZ Higgs
bundles. Roughly speaking, the bigness of .# forces 7; to be injective at least one point,
which is analogous to Demailly’s (weak) holomorphic Morse inequality [Dem12, §8.2(a)].

2.4. Finsler metric and (pseudo) Kobayashi hyperbolicity. Throughout this subsection
X will denoted to be a complex manifold of dimension n.
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Definition 2.7 (Finsler metric). Let & be a holomorphic vector bundle on X. A Finsler metric®
on & is a real non-negative continuous function F : & —[0, +oo[ such that

F(av) = |a|F(v)

for any a € C and v € &. The Finsler metricF is positively definite at some subset S C X if
for any x € S and any non-zero vector v € &, F(v) > 0.

When F is a Finsler metric on J, we also say that F is a Finsler metric on X.
Let & and ¢ be two locally free sheaves on X, and suppose that there is a morphism

¢:Sym"& - 94
Then for any Finsler metric F on ¢, ¢ induces a pseudo metric (¢*F )# on & defined by

(2.4.1) (9" Fym(e) := F(p(e®™) "

for any e € &. It is easy to verify that (¢p*F )% is also a Finsler metric on &. Moreover, if over
some open set U, ¢ is an injection as a morphism between vector bundles, and F is positively

definite over U, then ((p*F)% is also positively definite over U.

Definition 2.8. (i) The Kobayashi-Royden infinitesimal pseudo-metric of X is alength func-
tion ky : Jx — [0, +oo[, defined by

(2.4.2) kx(&) = i];}f {/1 >0|3dy:D— X,y(0)=x,A-y'(0) = §}

for any x € X and ¢ € Jx, where D denotes the unit disk in C.
(i) The Kobayashi pseudo distance of X, denoted by dx : X X X — [0, +oo[, is

1
dx(p,q) = ir;f/o kx (€'(r))dr

for every pair of points p,q € X, where the infimum is taken over all differentiable
curves ¢ : [0, 1] — X joining p to gq.

(iif) Let A C X be a closed subset. A complex manifold X is Kobayashi hyperbolic modulo A
if dx(p, q) > 0 for every pair of distinct points p, ¢ € X not both contained in A. When
A is an empty set, the manifold X is Kobayashi hyperbolic; when A is proper and Zariski
closed, the manifold X is pseudo Kobayashi hyperbolic.

By definition it is easy to show that if X is Kobayashi hyperbolic (resp. pseudo Kobayashi
hyperbolic), then X is Brody hyperbolic (resp. algebraically degenerate). Brody’s theorem
says that when X is compact, X is Kobayashi hyperbolic if it is Brody hyperbolic. How-
ever unlike the case of Kobayashi hyperbolicity, no criteria is known for pseudo Kobayashi
hyperbolicity of a compact complex space in terms of entire curves. Moreover, there are
many examples of complex (quasi-projective) manifolds which are Brody hyperbolic but not
Kobayashi hyperbolic.

For any holomorphic map y : D — X, the Finsler metric F induces a continuous Hermitian
pseudo-metric on D

y*F? = V=1A(t)dt A di,
where A(t) is a non-negative continuous function on D. The Gaussian curvature K,z of the
pseudo-metric y*F? is defined to be

10%log A

3This definition is a bit different from the definition in [Kob98], which requires convexity or triangle inequal-
ity, and the Finsler metric there can be upper-semi continuous.
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Definition 2.9. Let X be a complex manifold endowed with a Finsler metric F.

(i) Forany x € X, and v € Jx, let [v] denote the complex line spanned by v. We define
the holomorphic sectional curvature K [, in the direction of [v] by

KF [v] := sup Ky«p2 (0)

where the supremum is taken over all y : D — X such that y(0) = x and [v] is tangent
to y’(0).

(ii) We say that F is negatively curved if there is a positive constant ¢ such that Kg || < —c
for all v € Jx  for which F(v) > 0.

(iii) A point x € X is a degeneracy point of F if F(v) = 0 for some nonzero v € Jx y, and the
set of such points is denoted by Ar.

As mentioned in § 0, our negatively curved Finsler metrics are only constructed on bira-
tional models of the base spaces in Theorems A and C, we thus have to establish bimero-
morphic criteria for (pseudo) Kobayashi hyperbolicity to prove the main theorems.

Lemma 2.10 (Bimeromorphic criteria for pseudo Kobayashi hyperbolicity). Letp: X — Y
be a bimeromorphic morphism between complex manifolds. If there exists a Finsler metric F on
X which is negatively curved in the sense of Definition 2.9.(ii), then X is Kobayashi hyperbolic
modulo A, and Y is Kobayashi hyperbolic modulo i (Ex(u)UAF), where Ex(p) is the exceptional
locus of 1. In particular, when Ar is a proper analytic subvariety of X, both X and Y are pseudo
Kobayashi hyperbolic.

Proof. The first statement is a slight variant of [Kob98, Theorem 3.7.4]. By normalizing F
we may assume that Kr < —1. By the Ahlfors-Schwarz lemma, one has F < xx. Let 6 :
X X X — [0, +oo[ be the distance function on X defined by F in a similar way as dx:

1
Sr(p, q) == ir;f/o F({'(r))dr

for every pair of points p, ¢ € X, where the infimum is taken over all differentiable curves
¢ : [0,1] — X joining p to g. Since F is continuous and positively definite over X \ Ar, for any
p € X \ Ar, one has dx(p, q) = 6r(p, q) > 0 for any g # p, which proves the first statement.

Let us denote by Hol(Y, y) to be the set of holomorphic maps y : D — Y with y(0) = y.
Pick any pointy € U := Y \ p(Ex(u)), then there is a unique point x € X with u(x) = y.
Hence p induces a bijection between the sets

Hol(X, x) — Hol(Y, y)

defined by y + p o y. Indeed, observe that ! : Y --» X is a meromorphic map, sois ' oy
for any y € Hol(Y, y). Since dim D = 1, the map p~! o y is moreover holomorphic. It follows
from (2.4.2) that

ex(§) = xey (1(&))
for any ¢ € Jx .. Hence one has
Hrylw) = ’xlow) 2 Fliw).

LetG : 9y — [0, +oo[ be the Finsler metric on U so that y*G = F|,-1(y). Then G is continuous
and positively definite over U \ p(Af), and one has

kyly = G.

Therefore, for any y € Y \ p(Ar U Ex(p)), one has dy(y, z) > 0 for any z # y, which proves
the second statement. O

The above criteria can be refined further to show the Kobayashi hyperbolicity of the com-
plex manifold.
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Lemma 2.11 (Bimeromorphic criteria for Kobayashi hyperbolicity). Let X be a complex man-
ifold. Assume that for each point p € X, there is a bimeromorphic morphism i : X — X with
X equipped with a negatively curved Finsler metric F such that p ¢ p(AF UEx(p)). Then X is
Kobayashi hyperbolic.

Proof. 1t suffices to show that dx(p, q) > 0 for every pair of distinct points p, g € X. We take
the bimeromorphic morphism y : X — X in the lemma with respect to p. By Lemma 2.10, X
is Kobayashi hyperbolic modulo y(Ar UEx(u)), which shows that dx(p, ) > 0 for any q # p.
The lemma follows. m]

2.5. Curvature formula. Let (&, 0)be the VZ Higgs bundles on a quasi-projective manifold
V defined in § 2.1. In the next two subsections, we will construct a negatively curved Finsler

metric on V via ((ga , é). Our main result is the following.

Theorem 2.12 (Existence of negatively curved Finsler metrics). Same notations as Defini-
tion 2.1. Assume that 1 is injective over a non-empty Zariski open set Vi € Y \ DU S. Then
there exists a Finsler metric F (see (2.6.6) below) on 9y (—log D) such that

(i) it is positively definite over V;.
(ii) When F is seen as a Finsler metricon'V = Y \ D, it is negatively curved in the sense of
Definition 2.9.(ii).

Let us first construct the desired Finsler metric F, and we then proved the curvature prop-
erty. By (2.1.1), for each k = 1, .. ., n, there exists

(2.5.1) 7% : Sym* Fy(~log D) —» £~ @ "Rk,
Then it follows from Proposition 2.2.(ii) that the Finsler metric h7 on £~ ® E'FF induces
a Finsler metric Fy on Zy(—log D) defined as follows: for any e € .7y(—log D),
*1a 1 24 1

(2.5.2) Fi(e) := (tphS) % (e) = b (ri(e®))
For any y : D — V, one has

dy : Ip > y" Ty — y* Fy(-log D)
and thus the Finsler metric Fy induces a continuous Hermitian pseudo-metric on D, denoted
by
(2.5.3) y*F := V=1Gy(t)dt A dt.

In general, Gi(t) may be identically equal to zero for all k. However, if we further assume
that y(D) N V; # &, by the assumption in Theorem 2.12 that the restriction of 7; to Vj is
injective, one has G;(t) # 0. Denote by d; := % the canonical vector fields in D, and 9, := %
its conjugate. Set C := y~1(V;), and note that D \ C is a discrete set in D.

Lemma 2.13. Assume that Gi(t) # 0 for some k > 1. Then the Gaussian curvature K of the
continuous pseudo-hermitian metric y*F]f on C satisfies that

9 log Gy 1 Gr k-1 Gks1\k+1
254 Ky i =—— /G, < —( — + )
(2:54) k aror O Sk (Gk_l Gr )
over C C D.
Proof. For i = 1,...,n, let us write ¢; := 1; (dy(at)‘g’i), which can be seen as a section of

Y (£ ® E"). Then by (2.5.2) one observes that

(2.5.5) Gi(t) = lleillys'
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Let #Z) = @h;(g'l ® E" k) be the curvature form of ' @ E"** on V; := Y\ DU S
induced by the metric h§ = g, ! - h defined in Proposition 2.2.(ii), and let D’ be the (1, 0)-part
of the Chern connection D of (7! ® Enkk h;‘). Then for k = 1,...,n, one has

_ 1 AV-1%(e0). exctye  VET{D ek, exhns A {ew Dlectns N—1{D ek, D'eg e
~V=10910g Gy = 1 ( AR A ‘ . _ Y
k ||ek||ha ||ek||ha ||ek||ha
g9 g 9
1 { V_lf@k(ek)’ ek}h;t
< —
k ||ek||;21;

thanks to the Lagrange’s inequality
V=1llekllys - {Dex. D'ei}ng > V=1{D'ex. ex}ng A {ex. D'eickg.
Hence

_82 log Gk < l ) <‘@k(ek)(at’ at)a ek>hg

atof  k lexlI2,
g9

(2.5.6)

Recall that for the logarithmic Higgs bundle (@220 Erkk, @Z:o On—k k), the curvature Oy
n—k.k

onE Vo

induced by the Hodge metric h is given by
O = _gz—k,k A Qn—k,k - 9n—k+l,k—l A 9:;_k+1’k_1a

where we recall that 0,_ x : E* %k — Erk-lk+l g Qy (log(D +S)). Set én—k,k =1®0,kk:
LIQEVkk 5 gl g Erklitl g Qy(log(D + S)), and one has

On—tcs1, k-1(0r) Otk (r)
—_ e
Z_l ® En—k+1,k—1 Z_l ® En—k,k g—l ® En—k—l,k+1
\_/ \_/
é;—kﬂ,k—l(gt) é;—k,k(éf)

where é;_k ; 1s the adjoint of én—k,k with respect to the metric hg‘ over Y \ DU S. Here we
also write 0; (resp. d;) for dy(d;) (resp. dy(d;) ) abusively. Then over V;, we have

(2.5.7)
Ky =-0g4,01+100r=-0gy &1 - gz—k,k A On—ick = On—ks1k-1 N 9;—k+1,k—1'

By the definition of 7 in (2.1.1), for any k = 2, ..., n one has

(2.5.8) ek = On—rk+1.4-1(0)(ex-1),

)
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and we can derive the following curvature formula

(%1 (er) (01, Oy), €k>hg = —0.2.,4, (0, 01)llex ||;2,a+
<Q1kﬁat°9nka%X%)— k1 e Kaﬂoezkﬂk Kaﬂ@A%%>%
< (07 k(00 © O i (D) er), €k>h;
- <én—k+1,k—1(at) © 9;: k+1k— 1(5_t)(€k), €k>h;

(258) .
||ek+1||ha [ 1(0t)(ek)||ha

|<9n k+1,k— l(at)(ek)a ek—l>h;¢|2

< ||ek+1||ia - > (Cauchy-Schwarz inequality)
g ”ek—l”h;t
) |<€k, 9n—k+1,k—1(at)(ek—1)>hg |2
= ||ek+1||h0f -
I llex—1ll7e
9
4
(258) ||ek||hg
” k+1||h0f - 2
llex—11l5
g

2k
255 ye1_ Gk

k+1 k—1
Gk—l
Putting this into (2.5.6), we obtain (2.5.4). O

Remark 2.14. For the final stage E®" of the Higgs bundle (@220 E"94, @220 On—q,q)- We
make the convention that G,;; = 0. Then the Gaussian curvature for G, in (2.5.6) is al-

ways semi-negative, which is similar as the Griffiths curvature formula for Hodge bundles
in [GT84].

When k = 1, by (2.5.6) one has
82 0% log Gy (Z1(e1)(0:, D), €1>h;Y
grof 71T leallZ.
g9

(2.5.7) —®$,ga (8t, 8_t) +

lex e

(9 11(8t o 9n 1,1(0¢)(e1) — nO(at)oe*o(at)(el) €1> a

leall
(2.5.8) _®$,ga(ata8_t)”el”£a + ||€2||ia
s ol
Ulpe
_ _Gf,ga(at, a_t) + (%)2
leally, G

We need the following lemma to control the negative term in the above inequality.
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Lemma 2.15. When o > 0, there exists a universal constant ¢ > 0, such that foranyy : D —
V with y(D) NV, # &, one has

®$,ga (5t, 5t) S

C
leall,  ~

In particular,

Proof. By Proposition 2.2.(ii), it suffices to prove that
Y (”52 : (Ua)(at, a-t) S

259 >
@59 lexlye
Note that
vy’ 0d)0,9) v (0a)00) v w.(0,,8)
lex s vp)-lledllie  yiei(h - b0 8)

where 7 (ré-h;‘ ) is the Finsler metric on .9y (- log D) defined by (2.4.1). By Proposition 2.2.(iii),
wq is a positively definite Hermitian metric on .7y (—log D). Since Y is compact, there exists
a uniform constant ¢ > 0 such that

wy = ety (rh - hy).
We thus obtained the desired inequality (2.5.9). O

In summary, we have the following curvature estimate for the Finsler metrics Fy, ..., F,
defined in (2.5.2), which is similar as [Sch17b, Lemma 9] for the Weil-Petersson metric.

Proposition 2.16. For anyy : D — V such that y(D) NV} # &. Assume that Gy # 0 for
k=1,...,9, and Ggr1 = 0 (thus G; = 0 forall j > ¢+ 1). Then q > 1, and over C := y~'(V),
which is a complement of a discrete set in D, one has

8210gG1 Gy 2
5. - < - —
(2.5.10) T107 /Gy c+ (Gl)
9* log Gy 1 Gr \k-1 . ;Gr+1\k+1
2.5.11 —— /G < | - V1<k<aqg.
(25.11) eor 19 <zl ot o ) vi<k<g

Here the constant ¢ > 0 does not depend on the choice of y.

2.6. Construction of the Finsler metric. By Proposition 2.16, we observe that none of
the Finsler metrics Fi, .. ., F, defined in (2.5.2) is negatively curved. Following the similar
strategies in [TY15,Sch17b,BPW17], we construct a new Finsler metric F (see (2.6.6) below)
by defining a convex sum of all Fi, . . ., F,, to cancel the positive terms in (2.5.10) and (2.5.11)
by negative terms in the next stage. By Remark 2.14, we observe that the highest last order
term is always semi-negative. We mainly follow the computations in [Sch17b], and try to
make this subsection as self-contained as possible. Let us first recall the following basic
inequalities by Schumacher.

Lemma 2.17 ([Sch12, Lemma 8]). Let V be a complex manifold, and let Gy, . .., G, be non-
negative ¢* functions onV. Then

_ n " G;V-18dlog G;
(2.6.1) V=10dlog( ) G;) > = Sl
i=1

i=1 Gi
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Lemma 2.18 ([Sch17b, Lemma 17]). Let a; > 0 for j = 1,...,n. Then for all x; > 0

n
j+1 N\ 2 2
Z(O(JX'J] - aj_lx]])x]_l S e e e " xl

j=2
3 n-1 n-1 71 J*?
1 o an” i ;
(2.6.2) >l - 222+ L2kt ik N s
271 n—-27n 1 -2 +1 |7 1
2\ o an = aj 0‘;+1
Set x; = % for j =2,...,nand x; := G; where G; > 0 for j = 1,...,n. Put them into
(2.6.2) and we obtain
n ( G" G|
] ]_1 aj_l ]—2)
j=2 G]—l G}—l
3 n—1 n—1 ij_l ij+2
I & o % Y- Y 2
(2.6.3) > |- 260+ 2LGE Z = - 2|G
2\ o an (x]. O‘JJ+1

The following technical lemma is crucial in constructlng our negatively curved Finsler
metric F.

Lemma 2.19 ([Sch17b, Lemma 10]). Let F, ..., F, be Finsler metrics on a complex space X,

with the holomorphic sectional curvatures denoted by K1, . . .,K,. Then for the Finsler metric
F:=(F+...+ F2)'2 its holomorphic sectional curvature

" KiF?

J=1747
(2.6.4) Kp < =

Proof. For any holomorphic map y : D — X, we denote by Gy, ..., G, the semi-positive
functions on D such that
= V-1G;dt A dt

fori=1,...,n Then

= \/—_1(2 G))dt A di,
i=1

and it follows from (2.4.3) that the Gaussian curvature of y*F?

1 0 log(¥i2; Gi)

K

e T TSR G atoi
(2.6.1) 2 9%logG;
< 1 Z jo—g_,
(Z G)2 otot
1 K -G2
S z
(Z 1 Gi)
The lemma follows from Definition 2.9.(i). O

For any y : D — V with C := y71(V}) # &, we define a Hermitian pseudo-metric o :=
V—1H(t)dt A dt on D by taking convex sum in the following form

n
H(t) = ) kaxGio).
k=1
where Gy is defined in (2.5.3), and a1, . . ., &, € R™ are some universal constants which will be

fixed later. Following the similar estimate in [Sch17b, Proposition 11], one can choose those
constants properly such that the Gaussian curvature K, of ¢ is uniformly bounded.



40 YA DENG

Proposition 2.20. There exists universal constants0 < a; < ... < a, andK > 0 (independent
of y : D — V) such that the Gaussian curvature

K, < -K.
onC.
Proof. 1t follows from (2.6.4) that
1 . )
Ko' < 2 ]ajK]Gj
j=1
and
9% log G;
! ator

By Proposition 2.16, one has

a1G? G2\ 1 < ) i\l (Gipp L
Ks < 7 (—c+(—) +ﬁZajGJ _(_Gj—l) +(Gj)

j=2
1 n GJ:H GJ:
< —2(—60(le a]% i—1 jiZ)
H Jj=2 G]—l Gj—l
2e3) i((_chl_z)aleJr}"'l(“fz_"‘f_:ll) , 1ayT 2)
= 2 5 179 = d+1 aj_z J 20{2—2 n

1 v )
=: _ﬁZﬁjGj
j=1

One can take a; = 1, and choose the further o; > a;_; inductively such that min; ; > 0. Set

Bo := min; Oﬁ_j)z Then

1 .
K, < _ﬁﬁo Z(/a]G])z
j=1
ﬁ n
0 . 2

< —ﬁ(; JjaiGj)

= —@ =: —-K.
n

Note that ay, . . ., a, and K is universal. The lemma is thus proved. O

It follows from Proposition 2.20 and (2.4.3) that one has the following estimate
d*log H(t)
otot

over the Zariski dense open set C C D, and in particular log H(t) is a subharmonic function
over C. Since H(t) €[0, +oo[ is continuous (in particular locally bounded from above) over
D, log H(t) is a subharmonic function over D, and the estimate (2.6.5) holds over the whole
D.

In summary, we construct a negatively curved Finsler metric F on Y \ D, defined by

(2.6.5) > KH(t) >0

n
(2.6.6) F:= (Z kaxF2)'/2,
k=1
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where Fy is defined in (2.5.2), such that y*F?> = V—1H(t)dt A df for any y : D — V. Since
we assume that 77 is injective over Vj, the Finsler metric F; is positively definite on Vj, and
a fortiori F. Therefore, we finish the proof of Theorem 2.12.

2.7. Existence of Viehweg-Zuo Higgs bundles. For the smooth family U — V in The-
orem A, it was shown in [PTW18, Proposition 2.7] that there is a VZ Higgs bundle over
some birational model V of V. Indeed, using the deep theory of mixed Hodge modules, they
can even construct VZ Higgs bundles over the bases of maximal variational smooth families
whose geometric generic fiber admits a good minimal model. In this subsection we provide
a construction of VZ Higgs bundles over the base space V (up to a birational model and a
projective compactification) in Theorem A combining the methods in [PTW18] and [VZ02]
without using the tools of mixed Hodge modules for completeness sake. In § 3, we show
how to refine this construction to prove Theorem C.

Theorem 2.21 (Popa-Taji-Wu). Let U — V be the smooth family in Theorem A. Then after
replacing V by a birational model V, there is a smooth compactificationY > V and a VZ Higgs
bundle over V.

Proof. By Theorem 1.25, one can take a birational morphism v : V — V and a smooth
compactification f : X — Y of U" Xy V — V so that there exists a hypersurface

(2.7.1) H e |KQ§/Y(log A)—Cf* L +CE|, n:=dimX -dimY

with . a big and nef line bundle over Y satisfying that

(1) the complement D := Y \ V is simple normal crossing.

(2) The hypersurface H is smooth over some Zariski open set V, € V with D + S := Y \ V},
simple normal crossing.

(3) The divisor E is effective and f-exceptional divisor with f(E) NV, = @.

(4) The augmented base locus B,(Z) NV, = @.

Here we denote by A := f~1(D) so that (X, A) — (Y, D) is a log morphism. Within this basic

setup, let us first introduce two Higgs bundles in the theorem following [VZ02, §4]. Leaving

out a codimension two subvariety of Y supported on D + S, we assume that

e the morphism f is flat, and E in (2.7.1) disappears.
e The divisor D+S is smooth. Moreover, both A and > = 1S are relative normal crossing.

Set L := Q?(/Y(log A). Let § : W — X be a blow-up of X with centers in A + ¥ such that
*(H + A + X) is a normal crossing divisor. One thus obtains a cyclic covering of §*H, by
taking the ¢-th root out of §*H. Let Z to be a strong desingularization of this covering, which
is smooth over V; by (2). We denote the compositionsby h: W — Yand g : Z — Y, whose
restrictions to V; are both smooth. Write IT := g~1(SUD) which can be assumed to be normal
crossing. Leaving out codimension two subvariety supported D + S further, we assume that
h and g are also flat, and both §*(H + A + X) and II are relative normal crossing. Set
5£HJ))/torsion.

It was shown in [VZ02, §4] that there exists a natural edge morphism

(2.7.2) Thogq : P71 — F" 97191 @ Qy(log D),

Prood = o (5 (@1 Qog ) © 5" L7 © Oy (|

which gives rise to the first Higgs bundle ( @220 F'™24, @220 Tn—gq,q) defined over a big open
set of Y containing Vj.

Write Zj := Z \ II. Then the local system R"¢.C,, extends to a locally free sheaf V on Y
(here Y is projective rather than the big open set!) equipped with the logarithmic connection

V:V - Ve Qy(logD+5),
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whose eigenvalues of the residues lie in [0, 1) (the so-called lower canonical extension). By
[Sch73, CKS86, Kol86], the Hodge filtration of R"g.C,z, extends to a filtration V := 70 >
F1 > .-+ > F" of subbundles so that their graded sheaves E""99 := F"9/F" %! are also
locally free, and there exists

Ongq: E" 91 — E" 171" @ Qy(log D + S).
This defines the second Higgs bundle (@220 E"%9,0,_q4). As observed in [VZ02, VZ03],
EF949 = ng*Qgg(log IT) over a big open set of Y by the theorem of Steenbrink [Ste77,

Zuc84]. By the construction of the cyclic cover Z, this in turn implies the following com-
mutative diagram over a big open set of Y:

180,—q,
(2.7.3) L1 @ Ee4 Yo 271 @ Bt @ Qy (log(D + S))
Pn—q.q T Pn—q-1,q+19!
o s Fr=4-1441 @ Qy(log D)

as shown in [VZ03, Lemma 6.2] (cf. also [VZ02, Lemma 4.4]).

Note that all the objects are defined on a big open set of Y except for ( @;:0 E"%9,0,_g4),
which are defined on the whole Y. Following [VZ03, §6], for every q = 0, ..., n, we define
F'"%4 to be the reflexive hull, and the morphisms 7,44 and p,_4 4 extend naturally.

To conclude that ( @ZZO LTQE, @2:0 1® 0,—q,4) is a VZ Higgs bundle as in Defin-
ition 2.1, we have to introduce a sub-Higgs sheaf with log poles supported on D. Write
On—g,q := 1 ® Op_qq for short. Following [VZ02, Corollary 4.5] (cf. also [PTW18]), for each
q = 0,...,n, we define a coherent torsion-free sheaf .7, := p,_,,(F""%9) c E"%9 . By
F™ 5 Oy, %, O Oy. By (2.7.2) and (2.7.3), one has

en_q’q . ﬁq — cgq_kl ® QY(log D),
and let us by 5, the restriction of én_q,q to .#,. Then (Z,n) := ( @;:0 Zq, @2:0 ng) is a
sub-Higgs bundle of (&, 6) := ( @ZZO L1 QE", @ZZO On—qq)- o

Remark 2.22. The methods we presented in the above proof were originally established in
[VZ02] for the construction of Viehweg-Zuo sheaf.

2.8. Proofs of Theorems A and B.

Proof of Theorem A. By Theorem 2.21, there is a VZ Higgs bundle over some birational model
V of V. By Theorem F and Theorem 2.12, we can associate this VZ Higgs bundle with a
negatively curved Finsler metric which is positively definite over some Zariski dense open
set of V. The theorem follows directly from the bimeromorphic criteria for pseudo Kobayashi
hyperbolicity in Lemma 2.10. O

A standard inductive arguments in [VZ03,PTW 18] can easily show that Theorem A implies
Theorem B.

Proof of Theorem B. We will proceed by contradiction. Suppose that there exists a non-constant
Zar

holomorphic map y : C — V. By Theorem A, y cannot be Zariski dense. Let Z := y(C)

be its Zariski closure, which is an irreducible quasi-projective variety. Take a desingular-
ization 7 : Z' — Z, and the entire curve y can be lifted to a Zariski dense curve in Z’,
denoted by y* : C — Z’. Note that the moduli map ¢y’ : Z° — P, associated with
W' :=Uxy Z' - Z',) € P(Z’') is the composition of the morphism Z’ — V and the
quasi-finite moduli map ¢y : V. — Py associated with (f : U — V,7) € &,(V). Therefore,
the morphism ¢y is generically finite, which implies that the smooth family U xy 2’ — Z’
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is of maximal variation. By Theorem A again, Z’ must be algebraically degenerate. This is a
contradiction. O

3. KOBAYASHI HYPERBOLICITY OF THE MODULI SPACES

In this section, for effectively parametrized smooth family of minimal projective mani-
folds of general type, we refine the Viehweg-Zuo Higgs bundles in Theorem 2.21 so that
we can apply Theorem 2.12 and the bimeromorphic criteria for Kobayashi hyperbolicity in
Lemma 2.11 to prove Theorem C.

Theorem 3.1. LetU — V be an effectively parametrized smooth family of minimal projective
manifolds of general type over the quasi-projective manifold V. Then for any given pointy € V,
there exists a smooth projective compactification Y for a birational modelv : V — V, and a VZ
Higgs bundle (&,0) > (Z, n) over Y satisfying the following properties:

(i) thereis a Zariski open set V, of V containingy so thatv : v=1(Vy) — Vq is an isomorphism.
(i) BothD:=Y\VandD+S:=Y \ v }(V,) are simple normal crossing divisors in Y.

(i) The Higgs bundle (E, ) has log poles supported on DUS, that is, 0 : E — E® (log(D+S)).
(iv) The morphism

(3.0.1) 7 : Fy(=logD) —» £ '@ E" 1
induced by the sub-Higgs sheaf (%, n) is injective over V.

Proof. The proof is a continuation of that of Theorem 2.21, and we will adopt the same nota-
tions. _

We first prove that for any y € V, the set of z € V with X, bir Xy is finite. Take a
polarization .7 for U — V with the Hilbert polynomial h. Denote by &2,(V) the set of such
pairs (U — V, ), up to isomorphisms and up to fiberwise numerical equivalence for 7.
By [Vie95, Section 7.6], there exists a coarse quasi-projective moduli scheme Py, for &, and
thus the family induces a morphism V' — Pj. By the assumption that the family U — V is
effectively parametrized, the induced morphism V' — P}, is quasi-finite, which in turn shows
that the set of z € V with X, isomorphic to X, is finite. Note that a projective manifold of

general type has finitely many minimal models. Hence the set of z € V' with X, b Xy is
finite as well.

Now we will choose the hypersurface in (2.7.1) carefully so that the cyclic cover construc-
tion in Theorem 2.21 can provide the desired refined VZ Higgs bundle. Let Y’ D V be the
smooth compactification in Corollary A.2. By Theorem 1.24, for any given point y € V and
any sufficiently ample line bundle 2/ on Y’, there exists a birational morphism v : ¥ — Y’
and a new algebraic fiber space f : X — Y so that one can find a hypersurface

(3.0.2) H € |6QY y(log A) = £(v o f)'e/ + CE|, n:=dimX - dimY

satisfying that
e the inverse image D := v~}(Y’ \ V) is a simple normal crossing divisor.
e There exists a reduced divisor S so that D + S is simple normal crossing, and H — Y is
smooth over Vy := Y \ (DU S).
e The restriction v : v-1(Vy) — Vj is an isomorphism.
e The given point y is contained in V.
e The divisor E is effective and f-exceptional with f(E) C Supp(D + S).
e For any z € V := v~1(V’), the canonical bundle of the fiber X, := f~!(z) is big and nef.
e The restricted family f~(Vy) — V; is smooth and effectively parametrized.

Here we set A := f*D and X := f*S. Write .2 := v*.&/. Now we take the cyclic cover with
respect to H in (3.0.2) instead of that in (2.7.1), and perform the same construction of VZ
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Higgs (&,0) > (Z,7) bundle as in Theorem 2.21. Theorems 3.1.(i) to 3.1.(iii) can be seen
directly from the properties of H and the cyclic construction.

Theorem 3.1.(iv) has already appeared in [PTW18, Proposition 2.11] implicitly, and we
give a proof here for the sake of completeness. Recall that both Z and H are smooth over V4.
Denote by Hy := HN f1(Vp), fo : Xo = f1(Vy) = Vp,and g : Zy = g~ 1(Vy) — V,. We have

P = f(Q y(log A @ L), = Oy,

ETM = RY(g0)o(Q ) = RN (fy)- (U, @ @ Q% 1v, (log Ho) ® (Kx, v, ® fy- 7))

(3.0.3)
Fiob = R (QF Vlog A) @ L£7) 0 = R (o) (% 1y, © Kxl ) = R (fo)u(Tio/,)-

Hence 11}y, factors through

T, 2T = R Txgm) = Ry, ® Kxlpy,) =
RY(fo) (1, (log Ho) ® Ky 1) — R go)u(Q ) © .27,

where p is the Kodaira-Spencer map. Although the intermediate objects in the above factor-
ization might not be locally free, the induced C-linear map by the sheaf morphism 7, y, at
the z € V

T1,z * %,z - (g—l ® En_l’l)z
coincides with the following composition of C-linear maps between finite dimensional com-
plex vector spaces

(3.0.4) fet Fra o H (X Fi) > H'(OG, QT @ Kyl 5

H'(X.. Q5 H(log H) @ Ky!) — H'(Z:. Q).
To prove Theorem 3.1.(iv), it then suffices to prove that each linear map in (3.0.4) is injective
for any z € V.

By the effective parametrization assumption, p, is injective. The map j, in (3.0.4) is the
same as the H'-cohomology map of the short exact sequence

0— Ky ® Q' — Kyl @ Q4 '(log H) — Kyl 1y ® Qf 2 — 0.
Observe that Ky, p, is big. Indeed, this follows from that
vol(Kx, 1r,) = c1(Kx,1m,)" ™" = e1(Kx,)" ™" - Hy = €er(Kx,)" = £vol(Kx,) > 0.
Hence j, injective by the Bogomolov-Sommese vanishing theorem

H(H, Ky' . ® QF %) =0,

as observed in [PTW18]. Since ¢, : Z, — X, is the cyclic cover obtained by taking the £-th
roots out of the smooth hypersurface H, € |(KXx,|, the morphism ¥ is finite. It follows from
the degeneration of the Leray spectral sequence that

(3.0.5)
-1
HY(Z:. Q") = H' (X, (920,95 1) = H' (X.. ') © (P H! (... Q% (log H) ® Ky ).
i=1
The last map in (3.0.4) is therefore injective, for the cohomology group H' (X, Q%" 1(log H,)®
KXZI) is a direct summand of H'(Z,, ng 1) by (3.0.5). As a consequence, the composmon Tiz
in (3.0.4) is injective at each point z € V. Theorem 3.1.(iv) is thus proved. O



ANALYTIC SHAFAREVICH HYPERBOLICITY CONJECTURE 45

Remark 3.2. When the condition of effective parametrization in Theorem 3.1 is replaced by
the quasi-finiteness of the morphism from the base to coarse moduli space V. — P} as in
[VZ03,PTW18], all the statements in Theorem 3.1 hold true except Theorem 3.1.(iv). Indeed,
it is easy to construct an example of smooth family U — V so that V — P} is quasi-finite
but the Kodaira-Spencer map is degenerate somewhere.

Pick a smooth family of projective manifolds U — V so that V' — Py, is quasi-finite. Fix
any smooth hypersurface S ¢ V which is sufficiently ample, so that we can take a cyclic
cover of degree { > 2 along S to obtain V’. Then ¢ : V' — V is a finite covering ramified
over S. Perform the base change to obtain another smooth family

U =UxyV - V.
Hence V' — Py, is still quasi-finite. We will show that the Kodaira-Spencer map py- : V' —
R'f/(Fyv') degenerates at the ramified locus ¢~ (S).
Pick any point y’ € ¢~'(S), and set y := ¢(y’). Then there exists non-zero ¢ € 3, such

that ¢.(¢) = 0. As is well-known, the Kodaira-Spencer map is invariant under base change
(see [Man05, Theorem 1.34]). One thus has

py(§) = py(eu(§)) =0,
where p, and p, are the Kodaira-Spencer maps defined in (0.1.1) aty € Vand y’ € V'.

Let us explain how Lemma 2.11 and Theorems 2.12 and 3.1 imply our main theorem.

Proof of Theorem C. We first take a smooth compactification Y D V as in Corollary A.2,. By
Theorem 3.1, for any given point y € V, there exists a birational morphism v : Y — Y
which is isomorphic at y, so that D := Y’ \ v"!(V) is a simple normal crossing divisor, and
there exists a VZ Higgs bundle (&, 0) whose log pole D+ S avoids ¢’ := v™(y). Moreover, by
Theorem 3.1.(iv), 77 is injective at y’. Applying Theorem 2.12, we can associate (&,0) aFinsler
metric F on Zy/(—D) which is positively definite at y’. Moreover, if we think of F as a Finsler
metric on v~!(V), it is negatively curved in the sense of Definition 2.9.(ii). Hence the base V
satisfies the conditions in Lemma 2.11, and we conclude that V is Kobayashi hyperbolic. O

APPENDIX A. Q-MILD REDUCTIONS (BY DAN ABRAMOVICH)

Let us work over complex number field C.
The main result in this appendix is the following:

Theorem A.1. Let fy : Sy — Ty be a projective family of smooth varieties with Ty quasi-
projective.

(i) There are compactifications Sy C S and Ty C T, with S and T Deligne-Mumford stacks
with projective coarse moduli spaces, and a projective morphism f : S — T extending fj
which is a Kollar family of slc varieties.

(ii) Given a finite subset Z C Ty there is a projective variety W and finite surjective lci morph-
ismp: W — T, unramified over Z, such that p”'7°™ = W™,

Here the notion of Kollar family refers to the condition that the sheaf wgrr;!r

formation commutes with arbitrary base change for each m. We refer the readers to [AH11,
Definition 5.2.1] for further details.

Note that the pullback family S x+W — W is a Kollar family of slc varieties compactifying
the pullback Sy X1, Wy — W of the original family to Wj := W x4 Ty.

This is applied in the present paper, where some mild regularity assumption on T, and W
is required:

is flat and its

Corollary A.2 (Q-mild reduction). Assume further Ty is smooth. For any given finite subset
Z C Ty, there exist
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(i) acompactification Ty C T_ with T_ a regular projective scheme,

(ii) a simple normal crossings divisor D C 7 containing 7\ Ty and disjoint from Z,
(iii) a finite morphism W — T unramified outside D, and

(iv) A Kollar family Sw — W of slc varieties extending the given family Sy X5 W.

The significance of these extended families is through their Q-mildness property. Recall
from [AKO00] that a family S — T is Q-mild if whenever T; — T is a dominant morphism
with 77 having at most Gorenstein canonical singularities, then the total space S; = T; X T
has canonical singularities. It was shown by Kollar-Shepherd-Barron [KSB88, Theorem 5.1]
and Karu [Kar00, Theorem 2.5] that Kollar families of slc varieties whose generic fiber has at
most Gorenstein canonical singularities are Q-mild.

The main result is proved using moduli of Alexeev stable maps.

Let V be a projective variety. A morphism ¢ : U — V is a stable map if U is slc and Ky is
¢-ample. More generally, given 7 : U — T, a morphism ¢ : U — V is a stable map over T
or a family of stable maps parametrized by T if 7 is a Kollar family of slc varieties and Ky 7
is ¢ x m-ample. Note that this condition is very flexible and does not require the fibers to
be of general type, although key applications in Theorems 1.24 and 1.21.(iii) require some
positivity of the fibers.

Theorem A.3 ([DR18, Theorem 1.5]). Stable maps form an algebraic stack M(V') locally of
finite type over C, each of whose connected components is a proper global quotient stack with
projective coarse moduli space.

The existence of an algebraic stack satisfying the valuative criterion for properness was
known to Alexeev, and can also be deduced directly from the results of [AH11], which
presents it as a global quotient stack. The work [DR18] shows that the stack has bounded,
hence proper components, admitting projective course moduli spaces. An algebraic ap-
proach for these statements is provided in [Kar00, Corollary 1.2].

Proof of Theorem A.1. (i) Let Ty € T and S, C S be projective compactifications with r :
S — T extending fy. The family Sy — T; with the injective morphism ¢ : S — S is a family
of stable maps into S, providing a morphism Ty, — M(S) which is in fact injective. Let 7~ be
the closure of Tj. Since M(S) is proper, 7 is proper. Let S be the pullback of the universal
family along 7~ — M(S/T). Then S D S, is a compactification as needed.

(ii) The existence of W follows from the main result of [KV04]. O

Proof of Corollary A.2. Consider the coarse moduli space 7 of the stack 7~ provided by the
first part of the main result. This might be singular, but by Hironaka’s theorem we may
replace it by a resolution of singularities such that Dy, := 7\ Tj is a simple normal crossings
divisor. Thus condition (i) is satisfied.

For each component D; C Dy, denote by m; the ramification index of 7~ — 7. In particular
any covering W — 7 whose ramification indices over D; are divisible by m; lifts along the
generic point of D; to 7.

Choosing a Kawamata covering package [AK00] disjoint from Z we obtain a simple normal
crossings divisor D as required by (ii), and finite covering W — 7~ as required by (iii), such
that W — 7 factors through 7~ at every generic point of D;.

By the Purity Lemma [AV02, Lemma 2.4.1] the morphism W — 7 extends over all of W,
hence we obtain a family Syy — W as required by (iv). O
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