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ON THE HYPERBOLICITY OF BASE SPACES FOR MAXIMALLY
VARIATIONAL FAMILIES OF SMOOTH PROJECTIVE VARIETIES

YA DENG, WITH AN APPENDIX BY DAN ABRAMOVICH

Abstract. For smooth families with maximal variation, whose general �bers have semi-
ample canonical bundle, the generalized Viehweg hyperbolicity conjecture states that the
base spaces of such families are of log general type. �is deep conjecture was recently proved
by Popa-Schnell using the theory of Hodge modules and a theorem by Campana-Păun. In
this paper we prove that those base spaces are pseudo Kobayashi hyperbolic, as predicted by
the Lang conjecture: any complex quasi-projective manifold is pseudo Kobayashi hyperbolic
if it is of log general type. As a consequence, we prove the Brody hyperbolicity of moduli
spaces of polarized manifolds with semi-ample canonical bundle. �is answers a question by
Viehweg-Zuo in 2003. We also prove the Kobayashi hyperbolicity of base spaces of e�ectively
parametrized families of minimal projective manifolds of general type. �is generalizes pre-
vious work by To-Yeung, in which they further assumed that these families are canonically
polarized.
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0. Introduction

0.1. Main theorems. A complex space X is said to be pseudo Kobayashi hyperbolic, if X
is hyperbolic modulo a proper Zariski closed subset ∆ ( X , that is, the Kobayashi pseudo
distance dX : X × X → [0,+∞[ of X satis�es that dX (p,q) > 0 for every pair of distinct
points p,q ∈ X not both contained in ∆. In particular, any non-constant holomorphic map
γ : C → X has image γ (C) ⊂ ∆. When such ∆ is an empty set, this de�nition reduces
to the usual de�nition of Kobayashi hyperbolicity, and the Kobayashi pseudo distance dX
is a distance. Proven by Parshin and Arakelov in the early 70’s, Shafarevich’s hyperbolicity
conjecture states that a non-isotrivial smooth family of curves of genus д > 2 over a non
hyperbolic curve has to be isotrivial, that is, all the �bers are isomorphic. One aim of this
paper is to prove a result which can be seen as some sort of analytic Shafarevich hyperbolicity
conjecture in higher dimensions.
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2 YA DENG

�eorem A. Let fU : U → V be a smooth projective morphism between complex quasi-
projective manifolds with connected �bers. Assume that the general �ber of fU has semi-ample
canonical bundle, and fU is of maximal variation, that is, the general �ber can only be birational
to countably other �bers. �en the base space V is pseudo-Kobayashi hyperbolic.

As a consequence of �eorem A, we prove a�rmatively a conjecture by Viehweg-Zuo
[VZ03, �estion 0.2] on the Brody hyperbolicity of moduli spaces for polarized manifolds
with semi-ample canonical sheaf.

�eorem B (Brody hyperbolicity of moduli spaces). Consider the moduli functor Ph of po-
larized manifolds with semi-ample canonical sheaf introduced by Viehweg [Vie95, §7.6], where
h is the Hilbert polynomial associated to the polarization H . Assume that for some quasi-
projective manifold V there exists a smooth family (fU : U → V ,H ) ∈ Ph(V ) for which the
induced moduli map φU : V → Ph is quasi-�nite over its image, where Ph denotes to be the
quasi-projective1 coarse moduli scheme for Ph. �en the base spaceV is Brody hyperbolic, that
is, there are no non-constant entire holomorphic curves γ : C→ V .

As a byproduct, we reduce the pseudoKobayashi hyperbolicity of varieties to the existence
of certain negatively curved Higgs bundles (which we call Viehweg-Zuo Higgs bundles in
De�nition 2.1). �is provides a main building block for our recent work [Den19] on the
hyperbolicity of bases of log Calabi-Yau pairs.

Another aim of the paper is to prove a�rmatively a folklore conjecture on the Kobayashi
hyperbolicity for moduli spaces of minimal projective manifolds of general type, which can
be thought of as an analytic re�nement of �eorem B in case the �bers have big and nef
canonical bundle.

�eorem C. Let fU : U → V be a smooth family of minimal projective manifolds of general
type over the quasi-projective manifold V . Assume that the family fU is e�ectively paramet-
rized, that is, the Kodaira-Spencer map

ρy : TV ,y → H1(Uy,TUy )(0.1.1)

is injective for each pointy ∈ V , whereTUy denotes the tangent bundle of the �berUy := f −1U (y).
�en the base space V is Kobayashi hyperbolic.

0.2. Previous related results. �eorem A is closely related to the Viehweg hyperbolicity
conjecture: let fU : U → V be a maximally variational smooth family of polarized mani-
folds with semi-ample canonical bundle over a quasi-projective manifold V , then the base
V must be of log-general type. In the series of works [VZ01, VZ02, VZ03], Viehweg-Zuo
construct in a �rst step a big subsheaf of symmetric log di�erential forms of the base (so-
called Viehweg-Zuo sheaves). Built on this result, Viehweg hyperbolicity conjecture was
shown by Kebekus-Kovács [KK08a, KK08b, KK10] when V is a surface or threefold, by Pa-
takfalvi [Pat12] when V is compact or admits a non-uniruled compacti�cation, and it was
completely solved by Campana-Păun [CP15b], in which they proved a vast generalization of
the famous generic semipositivity result of Miyaoka (see also [CP15a,CP16,Sch17a] for other
di�erent proofs). More recently, using deep theory of Hodge modules, Popa-Schnell [PS17]
constructed Viehweg-Zuo sheaves on the base space V of the smooth family fU : U → V
of projective manifolds whose geometric generic �ber admits a good minimal model. Com-
bining this with the aforementioned theorem of Campana-Păun, they proved that such base
space V is of log general type. �erefore, �eorem A is predicted by a famous conjecture
of Lang (cf. [Lan91, Chapter VIII. Conjecture 1.4]), which stipulates that a complex quasi-
projective manifold is pseudo Kobayashi hyperbolic if and only if it is of log general type. To
our knowledge, Lang’s conjecture is by now known for the trivial case of curves, for general

1�e quasi-projectivity of Ph was proved by Viehweg in [Vie95].
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hypersurface X in the complex projective space CPn of high degrees [Bro17,Dem18, Siu15]
as well as their complementsCPn \X [BD19], for projective manifolds whose universal cover
carries a bounded strictly plurisubharmonic function [BD18], for quotients of bounded (sym-
metric) domains [Rou16,CRT19,CDG19], and for subvarieties on abelian varieties [Yam19].
�eorem A therefore provides some new evidences for Lang’s conjecture.

�eorem B was �rst proved by Viehweg-Zuo [VZ03, �eorem 0.1] for moduli spaces of
canonically polarized manifolds. Combining the approaches by Viehweg-Zuo [VZ03] with
those by Popa-Schnell [PS17], very recently, Popa-Taji-Wu [PTW18, �eorem 1.1] proved
�eorem B for moduli spaces of polarized manifolds with big and semi-ample canonical
bundles. As we will see below, our work owes a lot to the general strategies and techniques
in their work [VZ03,PTW18].

�e Kobayashi hyperbolicity of moduli spacesMд of compact Riemann surfaces of genus
д > 2 has long been known to us by the work of Royden and Wolpert [Roy75, Wol86].
�e �rst important breakthrough on higher dimensional generalizations was made by To-
Yeung [TY15], in which they proved Kobayashi hyperbolicity of the base V considered in
�eoremCwhen the canonical bundleKUy of each �berUy := f −1U (y) of fU : U → V is further
assumed to be ample (see also [BPW17,Sch17b] for alternative proofs). Di�erently from the
approaches in [VZ03, PTW18], their strategy is to study the curvature of the generalized
Weil-Petersson metric for families of canonically polarized manifolds, along the approaches
initiated by Siu [Siu86] and later developed by Schumacher [Sch08, Sch10, Sch12]. For the
smooth family of Calabi-Yau manifolds (resp. orbifolds), Berndtsson-Păun-Wang [BPW17]
and Schumacher [Sch17b] (resp. To-Yeung [TY18]) proved the Kobayashi hyperbolicity of
the base once this family is assumed to be e�ectively parametrized.

0.3. Strategy of the proof. For the smooth family fU : U → V of canonically polar-
ized manifolds with maximal variation, Viehweg-Zuo [VZ03] constructed certain negat-
ively twisted Higgs bundles (which we call Viehweg-Zuo Higgs bundles in De�nition 2.1)

(Ẽ , θ̃) := (
⊕n

q=0 L −1 ⊗ En−q,q,
⊕n

q=0 1 ⊗ θn−q,q), over some smooth projective compacti-

�cation Y of a certain birational model Ṽ of V , where L is some big and nef line bundle
on Y , and

(⊕n
q=0 E

n−q,q,
⊕n

q=0 θn−q,q
)
is a Higgs bundle induced by a polarized variation of

Hodge structure de�ned over a Zariski open set of Ṽ . In a recent remarkable paper [PTW18],
Popa-Taji-Wu introduced several new inputs to develop Viehweg-Zuo’s strategy in [VZ03],
which enables them to construct those Higgs bundles on base spaces of smooth families
whose geometric generic �ber admits a good minimal model (see also �eorem 2.21 for a
weaker statement as well as a slightly di�erent proof). As we will see in the main content,
the Viehweg-Zuo Higgs bundles (VZ Higgs bundles for short) are the crucial tools in proving
our main results.

When each �bersUy := f −1U (y) of the smooth family fU : U → V considered in�eoremA
have ample or big and nef canonical bundles, let us brie�y recall the general strategies in
proving the algebraic degeneracy ofV in [VZ03,PTW18]. A certain sub-Higgs bundle (F ,η)
of (Ẽ , θ̃) with log poles contained in the divisor D := Y \ Ṽ gives rise to a morphism

τγ ,k : T ⊗k
C

→ γ ∗(L −1 ⊗ En−k ,k)(0.3.1)

for any entire curve γ : C → Ṽ . If γ : C → Ṽ is Zariski dense, by the Kodaira-Nakano
vanishing (when KUy is ample) and Bogomolov-Sommese vanishing theorems (when KUy
is big and nef), one can verify that τγ ,1(C) . 0. Hence there is some m > 0 (depending
on γ ) so that τγ ,m factors through γ ∗(L −1 ⊗ Nn−m,m), where Nn−m,m is the kernel of the
Higgs �eld θm : En−m,m → En−m−1,m+1 ⊗ ΩY (logD). Applying Zuo’s theorem [Zuo00] on
the negativity of Nn−m,m , a certain positively curved metric for L can produce a singular
hermitian metric on TC with the Gaussian curvature bounded from above by a negative
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constant, which contradicts with the (Demailly’s) Ahlfors-Schwarz lemma [Dem97, Lemma
3.2]. However, this approach did not provide enough information for the Kobayashi pseudo
distance of the base V . Moreover, the use of vanishing theorem cannot show τγ ,1(C) . 0
when �bers of fU : U → V is not minimal manifolds of general type.

One of the main results in the present paper is to apply the VZ Higgs bundle to construct a
(possibly degenerate) Finsler metric F on some birational model Ṽ of the baseV , whose holo-
morphic sectional curvature is bounded above by a negative constant (say negatively curved
Finsler metric in De�nition 2.9.(ii)). A bimeromorphic criteria for pseudo Kobayashi hyper-
bolicity in Lemma 2.10 states that, the base is pseudo Kobayashi hyperbolic if F is positively
de�nite over a Zariski dense open set. Let us now brie�y explain our idea of the construc-

tions. By factorizing through some sub-Higgs sheaf (F ,η) ⊆ (Ẽ , θ̃) with logarithmic poles
only along the boundary divisor D := Y \Ṽ , one can de�ne a morphism for any k = 1, . . . ,n:

τk : Sym
kTY (− logD) → L −1 ⊗ En−k ,k ,(0.3.2)

whereL is some big line bundle overY equippedwith a positively curved singular hermitian

metric hL . �en for each k , the hermitian metric hk on Ẽk := L −1 ⊗ En−k ,k induced by the
Hodge metric as well as hL (see Proposition 2.2 for details) will give rise to a Finsler metric
Fk on TY (− logD) by taking the k-th root of the pull-back τ ∗

k
hk . However, the holomorphic

sectional curvature of Fk might not be negatively curved. Inspired by the aforementioned
work of Schumacher, To-Yeung and Berndtsson-Păun-Wang [Sch12, Sch17b, TY15, BPW17]
on the curvature computations of generalized Weil-Petersson metric for families of canon-
ically polarized manifolds, we de�ne a convex sum of Finsler metrics

F := (
n∑

k=1

αkF
2
k )

1/2 with α1, . . . ,αn ∈ R+(0.3.3)

on TY (− logD), to o�set the unwanted positive terms in the curvature ΘẼk
by negative con-

tributions from theΘẼk+1
(the last order termwasΘẼn

is always semi-negative by the Gri�ths

curvature formula). We proved in Proposition 2.20 that for proper α1, . . . ,αn > 0, the holo-
morphic sectional curvature of F is negative and bounded away from zero. To summarize,
we establish an algorithm for the construction of Finsler metrics via VZ Higgs bundles.

To prove �eorem A, we �rst note that the VZ Higgs bundles over some birational model
Ṽ of the base space V were constructed by Popa-Taji-Wu in their elaborate work [PTW18].
Let Y be some smooth projective compacti�cation Ṽ with simple normal crossing boundary
D := Y \ Ṽ . By our construction of negatively curved Finsler metric F de�ned in (0.3.3) via
VZ Higgs bundles, to show that F is positively de�nite over some Zariski open set, it su�ces
to prove that τ1 : TY (− logD) → L −1⊗En−1,1 de�ned in (0.3.2) is generically injective (which
we call generic local Torelli for VZ Higgs bundles in § 2.1). �is was proved in �eorem F, by
using the degeneration of Hodge metric and the curvature properties of Hodge bundles. In
particular, we show that the generic injectivity of τ1 is indeed an intrinsic feature of all VZ
Higgs bundles (not related to the Kodaira dimension of �bers of f !). By a standard inductive
argument in [VZ03,PTW18], one can easily show that �eorem A implies �eorem B.

Nowwe will explain the strategy to prove�eorem C. Note that the VZ Higgs bundles are
only constructed over some birational model Ṽ of V , which is not Kobayashi hyperbolic in
general. �is motivates us �rst to establish a bimeromorphic criteria for Kobayashi hyperbol-
icity in Lemma 2.11. Based on this criteria, in order to apply the VZ Higgs bundles to prove
the Kobayashi hyperbolicity of the base V in �eorem C, it su�ces to show that

(♠) for any given point y on the base V , there exists a VZ Higgs bundle (Ẽ , θ̃) constructed
over some birational model ν : Ṽ → V , such that ν−1 : V d Ṽ is de�ned at y.
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(♣) �e negatively curved Finsler metric F on Ṽ de�ned in (0.3.3) induced by the above VZ

Higgs bundle (Ẽ , θ̃) is positively de�nite at the point ν−1(y).
Roughly speaking, the idea is to produce an abundant supply of �ne VZ Higgs bundles to
construct su�ciently many negatively curved Finsler metrics, which are obstructions to the
degeneracy of Kobayashi pseudo distance dV of V . �is is much more demanding than the
Brody hyperbolicity and Viewheg hyperbolicity of V , which can be shown by the existence
of only one VZ Higgs bundle on an arbitrary birational model of V , as mentioned in [VZ02,
VZ03,PS17,PTW18].

Let us brie�y explain how we achieve both (♠) and (♣).
As far as we see in [VZ03, PTW18], in their construction of VZ Higgs bundles, one has

to blow-up the base for several times (indeed twice). Recall that the basic setup in [VZ03,
PTW18] is the following: a�er passing to some smooth birational model fŨ : Ũ = U ×V Ṽ →
Ṽ of fU : U → V , one can �nd a smooth projective compacti�cation f : X → Y of Ũ r → Ṽ

U r

��

Ũ r
bir∼oo

��

⊆ // X

f

��
V Ṽ

ν

bir∼oo ⊆ // Y

(0.3.4)

so that there exists (at least) one hypersurface

H ∈
��ℓKX/Y − ℓ f ∗L

�� for some ℓ ≫ 0(0.3.5)

which is transverse to the general �bers of f . Here L is some big and nef line bundle over
Y , and U r := U ×V × · · · ×V U (resp. Ũ r ) is the r -fold �ber product of fU : U → V (resp.
fŨ : Ũ → Ṽ ). �e VZ Higgs bundle is indeed the logarithmic Higgs bundles associated to
the Hodge �ltration of an auxiliary variation of polarized Hodge structures constructed by
taking the middle dimensional relative de Rham cohomlogy on the cyclic cover ofX rami�ed
along H .

In order to �nd suchH in (0.3.5), a crucial step in [VZ03,PTW18] is the use ofweakly semi-
stable reduction by Abramovich-Karu [AK00] so that, a�er changing the birational model
U → V by performing certain (uncontrollable) base change Ũ := U ×V Ṽ → Ṽ , one can �nd
a “good” compacti�cationX → Y of Ũ r → Ṽ and a �nite dominantmorphismW → Y from a
smooth projective manifoldW such that the base changeX ×YW →W is birational to amild
morphismZ →W , which is in particular �at with reduced �bers (even fonctorial under �ber
products). For our goal (♠), we need a more re�ned control of the alteration for the base in the
weakly semistable reduction [AK00, �eorem 0.3], which remains unknown at the moment.
Fortunately, as was suggested to us and proved in Appendix A by Abramovich, using moduli
of Alexeev stable maps one can establish a Q-mild reduction for the family U → V in place
of themild reduction in [VZ03], so that we can also �nd a “good” compacti�cationX → Y of
U r → V without passing the birational models Ṽ → V as in (0.3.4). �is is the main theme
of Appendix A.

Even if we can apply Q-mild reduction to avoid the �rst blow-up of the base as in [VZ03,
PTW18], the second blow-up is in general inevitable. Indeed, the discriminant of the new
family ZH → Y ⊃ V obtained by taking the cyclic cover along H in (0.3.5) is in general
not normal crossing. One thus has to blow-up this discriminant locus of ZH → Y to make
it normal crossing as in [PTW18]. �erefore, to assure (♠), it then su�ces to show that
there exists a compacti�cation f : X → Y of the smooth family U r → V so that for some
su�ciently ample line bundle A over Y ,

(∗) f∗(mKX/Y ) ⊗ A −m is globally generated over V for somem ≫ 0.
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Indeed, for any given point y ∈ V , by (∗) one can �nd H transverse to the �ber Xy := f −1(y),
and thus the new family ZH → Y will be smooth over an open set containing y. To the bests
of our knowledge, (∗) was only known to us when the moduli is canonically polarized [VZ02,
Proposition 3.4]. § 1.5 is devoted to the proof of (∗) for the familyU → V in �eorem C (see
�eorem D.(iii) below). �is in turn achieves (♠).

To achieve (♣), our idea is to take di�erent cyclic coverings by “moving” H in (0.3.5), to
produce di�erent “�ne” VZ Higgs bundles. For any given point y ∈ V , by (♠), one can take a
birational model ν : Ṽ → V so that ν is isomorphic at y, and there exists a VZ Higgs bundle

(Ẽ , θ̃) on the normal crossing compacti�cation Y ⊃ Ṽ . To prove that the induced negatively
curved Finsler metric F is positively de�nite at ỹ := ν−1(y), by our de�nition of F in (0.3.3), it
su�ces to show that τ1 de�ned in (0.3.2) is injective at ỹ in the sense of C-linear map between
complex vector spaces

τ1,ỹ : TṼ ,ỹ

≃−→ TY (− logD)ỹ
ρỹ−−→ H1(Xỹ,TXỹ

)
φỹ−−→ Ẽ1,ỹ .

As we will see in § 3, when H in (0.3.5) is properly chosen (indeed transverse to the �ber
Xy) which is ensured by (∗), φỹ is injective at ỹ. Hence τ1,ỹ is injective by our assumption of
e�ective parametrization (hence ρỹ is injective) in �eorem C. �is is our strategy to prove
�eorem C.

0.4. Results on the positivity of direct images. As we explained above, one has to prove
some results on the positivity of direct images for families with �bers of general type, which
�ts our needs in achieving the crucial property (∗).
�eorem D (=�eorem 1.21). Let fU : U → V be a smooth projective morphism of quasi-
projective manifolds with connected �bers. Assume that each �ber Xy := f −1U (y) is a projective
manifold of general type, and the set of z ∈ V with Xz birationally equivalent to Xy is �nite.
�en

(i) for any smooth projective compacti�cation f : X → Y of fU : U → V and any su�ciently
ample line bundle A over Y , f∗(ℓKX/Y )⋆⋆ ⊗ A −1 is globally generated over V for any
ℓ ≫ 0. In particular, f∗(ℓKX/Y ) is ample with respect to V .

(ii) In the same se�ing as (i), det f∗(ℓKX/Y ) ⊗ A −rℓ is also globally generated over V for any
ℓ ≫ 0, where rℓ := rank f∗(ℓKX/Y ). In particular, the augmented base locus

B+

(
det f∗(ℓKX/Y )

)
⊂ Y \V .

(iii) For some su�ciently divisible r ≫ 0, there exists an algebraic �ber space f̃ : X̃ → Ỹ

compactifying U r → V so that for ℓ large and divisible enough, f̃∗(ℓKX̃/Ỹ ) ⊗ L −ℓ is

globally generated over V . Here L is some su�ciently ample line bundle over Ỹ , and U r

denotes to be the r -fold �ber product ofU → V .

As far as we are aware of, the best known result on �eorem D.(i) is due to Viehweg-
Zuo [VZ02, Proposition 3.4.iii)], in which they proved the same result but for canonically
polarized family. �eorems D.(i) and D.(ii) also re�ne a theorem by Kollár [Kol87], in which
he proved the bigness (in the sense of Viehweg) of f∗(ℓKX/Y ) and det f∗(ℓKX/Y ) under a
weaker assumption that the variation of the family is maximal.

Let us emphasize thatwe have to apply theQ-mild reduction in the proof of�eoremD.(iii)
to �nd a “good compacti�cation” of fU : U → V . As we have seen in the work [VZ03,
PTW18], this is a crucial step in the construction of VZ Higgs bundles.

�e proof of�eorem D.(i) mainly follows the strategy of [Vie90,�eorem 5.2] and [VZ02,
Proposition 3.4.iii]. �e �rst step is to prove that det f∗(µmKX/Y )a ⊗ det f∗(mKX/Y )b is ample
with respect to V for some µ ≫ m ≫ 0, and b ≫ a ≫ 0. To prove this, we apply Kollár-
Viehweg’s ampleness criterion and the BCHM theorem [BCHM10] to reduce the problem
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to the weak positivity of f∗(mKX/Y ) with respect to V form ≫ 0. We then apply the tech-
niques in [CP17] to obtain the positivity of KX/Y modulo some multiplicity divisors and
f -exceptional divisors, whereas the properties ofm-Bergman metric and the pluricanonical
(L2-)extension theorem enable us to control these multiplicity divisors.

We also give a partial converse of �eorem D.(ii), which can be seen as a criteria for the
birational isotriviality of families of general type varieties, and re�nes a result by Kawamata
(cf. [Kaw85]).

�eorem E (=�eorem 1.13). Let f : X → Y be an algebraic �ber space between smooth
projective manifolds with general �bers of general type. For the integerm > 2 with f∗(mKX/Y )
non-zero, if the numerical dimension ν

(
det f∗(mKX/Y )

)
= 0, then f is birationally isotrivial,

that is, two general �bers Xy and Xz of the �bration f are birationally equivalent.

We stress here that we have a concrete loci on Y in which any two �bers are birationally
equivalent (see Remark 1.14). To prove �eorem E, we apply the deep results in [CP17] and
the properties of line bundleswhose numerical dimension is zero studied in [Bou04,BDPP13].

0.5. Structure of the paper. �e paper is organized as follows. In § 1.1, we recall the
Viehweg’s weak positivity for torsion free sheaves in studying the positivity of direct images,
and we prove a slightly more general result on the weak positivity of direct images of log-
arithmic relative pluri-canonical bundles. �is result was applied in § 1.2 to obtain a strong
positivity of the determinant of direct image sheaves. § 1.3 is of independent interest: we
apply the recent work by Cao-Păun to give a criterion on birational isotriviality for families
of projective manifolds of general type. § 1.5 is the the �rst main technical part of our paper.
In this subsection, we prove the “almost ampleness” of relative pluri-canonical bundles as
well as their direct images for certain families. �e aim of § 1.6 is to provide the basic setup
for § 3, combining the Q-mild reduction in Appendix A and our main results in § 1.5. § 2
is the core of our paper and is of independent interests. In § 2.1 we give an abstract de�n-
ition of the VZ Higgs bundles following [VZ02, VZ03, PTW18] for the purpose of further
applications. In § 2.3 we prove that any VZ Higgs bundle satis�es a “generic local Torelli”. In
§§ 2.5 and 2.6 we prove that for any VZ Higgs bundle we can associate it to a Finsler metric
with the holomorphic sectional curvature bounded above by a negative constant, which is
non-degenerate over the Zariski dense open set on which the local Torelli property holds. �is
in turn proves �eorems A and B. § 3 is devoted to the re�nements of VZ Higgs bundles,
following the approaches in [VZ02,PTW18]. Based on the constructions in § 2, these re�ned
Higgs bundles are applied to produce su�ciently many negatively curved Finsler metrics on
di�erent birational models of base spaces for e�ectively parametrized families of minimal
projective manifolds of general type, which are the obstructions to the degeneracy of Kobay-
ashi pseudo distance of these base spaces. �is in turn proves �eorem C. Appendix A is
wri�en by Abramovich to introduce the Q-mild reduction, which is applied in the present
paper to �nd a good compacti�cation of smooth familieswithout passing to birational models.

�e techniques in § 1 seems rather involved, since our objective is not merely to prove
the hyperbolicity of moduli spaces, but also to study the positivity of direct images combin-
ing both the analytic methods and algebraic ones, which (we hope) might bring some new
perspectives in this independent subject. �e readers who are only interested in the proof
of �eorem C can skip § 1.1, § 1.2 and § 1.3 since Proposition 1.9 (which is used to prove
�eorem D.(i)) has already been proved by Viehweg [Vie90, �eorem 5.2] when the �bers
are further assumed to be minimal.
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Notations and conventions.

�roughout this article we will work over the complex number �eld C.

• An algebraic �ber space2 (or �bration for short) f : X → Y is a surjective projective
morphism between projective manifolds with connected geometric �bers. Any Q-divisor
E in X is said to be f -exceptional if f (E) is an algebraic variety of codimension at least
two in Y .

• We say that a morphism fU : U → V is a smooth family if fU is a surjective smooth
projective morphism with connected �bers between quasi-projective varieties.

• For any surjective morphism Y ′ → Y , and the algebraic �ber space f : X → Y , we denote
by (X ×Y Y ′)̃ the (unique) irreducible component (say the main component) of X ×Y Y ′

which dominates Y ′.
• Assume that B := Y \ Y0 is simple normal crossing and

f ∗B =
∑

Wi +

∑

j

ajVj +
∑

k

bkV
′
k ,

is normal crossing, where aj > 2, bj > 1, f (Vj) is a divisor in Y and V ′
k
is f -exceptional.

We denote by ∆f :=
∑
j(aj − 1)Vj the multiplicity divisor of the �bration f . If ∆f = 0, the

�bration f is called semi-stable in codimension one.
• Let µ : X ′ → X be a birational morphism from a projective manifold X ′ to a singular
variety X . µ is called a strong desingularization if µ−1(X reg) → X reg is an isomorphism.
Here X reg denotes to be the smooth locus of X .

• For any birational morphism µ : X ′ → X , the exceptional locus is the inverse image of the
smallest closed set of X outside of which µ is an isomorphism, and denoted by Ex(µ).

• Denote by X r := X ×Y · · · ×Y X the r -fold �ber product of the �bration f : X → Y , (X r )̃
the main component of X r dominating Y , and X (r ) a strong desingularization of (X r )̃.

• For any quasi-projective manifold Y , a Zariski open subset Y0 ⊂ Y is called a big open set
of Y if and only if codimY\Y0(Y ) > 2.

• A singular hermitian metric h on the line bundle L is said to be positively curved if the
curvature current Θh(L) > 0.

1. Positivity of direct images

�is section is devoted to the proofs of �eorems D and E, which are used to proved
�eorem C.

1.1. Weak positivity of relative pluricanonical bundles. In [Vie83], Viehweg intro-
duced the de�nition of weak positivity for torsion free sheaves to study the Iitaka’s Cn,m-
conjecture. In [Vie90, �eorem 2.7] he further proved the weak positivity of direct images of
relative pluricanonical bundles f∗(mKX/Y ) when KX/Y is relatively semi-ample. In this sec-
tion, following the recent fundamental work by Păun-Takayama [PT18], we will provide a
generalization of Viehweg’s theorem for the purpose of Proposition 1.9. Let us �rst recall the

2Here we follow the de�nition in [Mor87].
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de�nitions of weak positivity by Viehweg in [Vie83], and the weak positivity in the sense of
Nakayama in [Nak04]. In [PT18], the author mainly studied the weak positivity in the sense
of Nakayama due to their general statements of the theorems.

For a torsion free sheaf E on a quasi-projective variety Z , we denote by SmE the m-th

symmetric tensor product of E , and let ŜmE be the double dual of the sheaf SmE .

De�nition 1.1 (Viehweg). Let Y be a quasi-projective normal variety, and let G be a torsion
free coherent sheaf on Y , whose restriction to some dense Zariski open set Y0 ⊂ Y is locally
free. Let H be an ample invertible sheaf over Y .

(i) �e sheaf G is weakly positive over Y0 if for a given number α > 0, there exists some

β > 0 such that ŜαβG ⊗ H β is globally generated over Y0.
(ii) �e sheaf G is weakly positive at a point y (in the sense of Nakayama) if for any integer

α > 0, there exists an integer β > 0 such that ŜαβG ⊗ H β is globally generated at y.
(iii) �e sheaf G is ample with respect to Y0 if for some µ > 0 there exists a morphism⊕

H → ŜµG

surjective over Y0.

Observe that Viehweg’s weak positivity requires global generation in De�nition 1.1.(i)
to hold on a Zariski open set, while Nakayama’s weak positivity De�nition 1.1.(ii) may be
veri�ed on a countable intersection of Zariski open sets only. Hence we cannot apply the
results on the weak positivity in the sense of Nakayama in [PT18] directly to show the weak
positivity of certain torsion free sheaves.

�e following theorem by Berndtsson, Păun and Takayama [BP08, PT18] is a crucial tool
in the study of weak positivity. �e (positively curved) singular hermitianmetrics on torsion
free sheaves were de�ned by Rau� in [Rau15], and we do not recall the de�nitions here.

�eorem 1.2 (Berndtsson-Păun-Takayama). Let f : X → Y be an algebraic �ber space which
is smooth over a Zariski open setY0 ⊂ Y . Let L be a pseudo-e�ective line bundle overX endowed
with a positively curved singular hermitian metric h. For some Zariski open set Y1 ⊂ Y0, assume
that for any y ∈ Y1, one has

H0 (Xy, (KXy
+ Ly) ⊗ J (hy)

)
= H0(Xy,KXy

+ Ly)(1.1.1)

where Ly := L↾Xy
, hy := h↾Xy

and J (hy) denotes the multiplier ideal sheaf with respect to the

singular hermitian metric hy . �en

(i) f∗(KX/Y + L) is locally free over Y1.
(ii) �ere exists a natural singular hermitian metric, say the Narasimhan-Simha metric дNS ,

over the direct image f∗(KX/Y + L), which is positively curved.
(iii) �e metric дNS is locally bounded from above over Y1.

Now we state the main technical result in this subsection, which is indeed a special case
of [PT18, �eorem 2.5.3]. In order to prove their much more general theorem, they have to
use the subtle result [ELM+09] in the proof. Here our assumption is less general, and thus the
proof is a direct applications of L2-estimates on (not necessarily compact) complete Kähler
manifolds in [Dem82, �éorème 5.1], as shown in [PT18, Proof of �eorem 2.5.4]. Since
[PT18, �eorem 2.5.3] only states the weak positivity in the sense of Nakayama (although
their proof implies �eorem 1.3 implicitly), we provide a detailed proof here for the sake of
completeness.

�eorem 1.3 (Păun-Takayama). Let F be a torsion free coherent sheaf over a projective mani-
foldY , equipped with a positively curved singular hermitian metric hF . Let Y1 ⊂ Y be a Zariski
open set so that F↾Y1 is locally free, and hF is locally bounded from above over Y1. �en F is
weakly positive over Y1.
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Proof. Take P(F ) := Proj
(⊕

m>0 S
mF

)
to be the projectivization of F . Denote by O(1) the

tautological line bundle over P(F ), and π ′ : P(F ) → Y the natural projection map. Since F
might not be locally free, the projective scheme P(F ) is not smooth in general. We de�ne
P′(F ) to be the normalization of P(F ), and µ : Z → P′(F ) to be a strong desingularization
of P′(F ). Let Y ′ ⊃ Y1 be the big open set of Y so that F↾Y ′ is locally free. Hence Z ′ :=
π−1(Y ′) → Y ′ is smooth projective morphism between quasi-projective manifolds with �bers
isomorphic to Pr−1, where r := rank F , and π : Z → Y can be seen as a smooth projective
compacti�cation of Z ′ → Y ′.

P(F )
π ′

��

Z ⊃ Z ′µ
oo

π

�� ��
Y Y ⊃ Y ′

Write L := µ∗O(1). �e positively curved singular hermitianmetrichF of F induces a metric
h for L↾Z ′ which is positively curved and locally bounded over π−1(Y1).

Denote by n = dimY . Take a Kähler formω on Y . Let us �x an ample line bundleA over Y
such thatA⊗K−1

Y ⊗ (detF )−1 is su�ciently very ample in the following sense: for any point

y ∈ Y , there exists a singular hermitian metric hy of A ⊗ K−1
Y ⊗ (detF )−1 which is smooth

outside y, so that
√
−1Θhy

(
A⊗K−1

Y
⊗ (detF )−1

)
> ω, and hy has logarithmic poles around y:

− loghy ≃ (n + 1) log |t |2,(1.1.2)

where t := (t1, . . . , tn) is some coordinate system of an open setUy ∋ y centering at y.
Since Z ′ is quasi-projective, the manifold Z ′ can be equipped with a complete Kähler form

ω̂ by [Dem82,�éorème 0.2]. �e line bundle L := µ∗O(1) is relatively ample when restricted
to Z ′ → Y ′. One can further assume that L ⊗ π ∗A↾Z ′ is endowed with a smooth hermitian

metric h0 so that the curvature form
√
−1Θh0 is locally strictly positive overZ

′, that is, for any
relatively compact subset K of Z ′, there is an ε > 0 so that

√
−1Θh0(L ⊗ π ∗A↾Z ′)↾K > εω̂↾K .

Note that

KZ ′ ⊗ Lm+r ⊗ π ∗(A2 ⊗ K−1
Y ⊗ (detF )−1)↾Z ′ = Lm ⊗ π ∗A2

↾Z ′

for anym ∈ N. Let us �x any y ∈ Y1, and any positive integerm > 1. Take relative compact
open setsU ′

y ⋐ Uy ⋐ Y1 containing y so that O(A)↾Uy ≃ OUy , and pick a C∞ cut-o� function

λ such that λ ≡ 1 over U ′
y , and Supp(λ) ⊂ Uy . For any section e ∈ H0

(
P(Fy),O(m)↾P(Fy)

)
, it

can extend to a holomorphic section

σ ∈ H0 (P(F↾Uy ), Lm ⊗ π ∗A2
↾P(F↾Uy )

)
= H0 (π−1(Uy),KZ ′ ⊗ Mm↾π−1(Uy )

)
,

where we writeMm := Lm+r ⊗π ∗(A2 ⊗K−1
Y ⊗ (detF )−1)↾Z ′ . Let us endowMm with a singular

hermitianmetricдm := h0 ·hm+r−1 ·π ∗hy . Recall thath is locally bounded overY1, h0 is smooth
whose curvature form is locally strictly positive, and hy has log poles at y as (1.1.2). Hence
the zero scheme of the multiplier ideal sheaf

V
(
J (дm)

)
= π−1(y) = P(Fy),(1.1.3)

and there exists an εy > 0 so that
√
−1Θдm (Mm) > εyω̂ over π−1(Uy).

Let us denote by Am := [
√
−1Θдm (Mm),Λω̂], which is a semi-positive Hermitian operator

acting on C ∞(Z ′,Ωn+r−1,1
Z ′ ⊗ Mm). Moreover, Am > εy1 over π−1(Uy). De�ne

u := ∂̄
(
(π ∗λ)σ

)
= ∂̄(π ∗λ) ∧ σ ∈ C∞(Z ′,Ωn+r−1,1

Z ′ ⊗Mm)
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which vanishes over π−1(U ′
y), and is supported in π−1(Uy). �en

∫

Z ′
〈A−1

m u,u〉дmdVω̂ 6

∫

π−1(Uy )
〈A−1

m u,u〉дmdVω̂ 6
1

εy

∫

π−1(Uy )
|u |2дmdVω̂ < +∞

where the last inequality is due to (1.1.3) and the relative compactness ofUy inY1. By [Dem82,

�éorème 5.1], one can solve the ∂̄-equation over Z ′, and thus there exists a section v ∈
L2
loc
(Z ′,KZ ′ ⊗Mm) so that ∂̄v = u and

∫

Z ′
|v |2дmdVω̂ 6

∫

Z ′
〈A−1

m u,u〉дmdVω̂ 6
1

εy

∫

π−1(Uy )
|u |2дmdVω̂ < +∞.(1.1.4)

Hence ∂̄
(
(π ∗λ)σ − v

)
= 0. In particular, the section v is holomorphic over π−1(U ′

y), and
vanishes identically over π−1(y) by (1.1.3) and (1.1.4). �en

(π ∗λ)σ −v ∈ H0(Z ′
,KZ ′ ⊗ Mm) = H0(Z ′

, Lm ⊗ π ∗A2
↾Z ′)

extends the given section e ∈ H0
(
P(Fy),O(m)↾P(Fy )

)
≃ SmFy . By the isomorphism

H0(Z ′, Lm ⊗ π ∗A2
↾Z ′) ≃ H0(Y ′, SmF ⊗ A2

↾Y ′),

we conclude that for anym > 1, SmF ⊗ A2
↾Y ′ is generated by globally sections at each point

of Y1 ⊂ Y ′. By the very de�nition of the re�exive hull and the fact that codimY\Y ′(Y ) > 2,
the natural inclusion

H0(Y ′, SmF ⊗ A2
↾Y ′)

≃→ H0(Y , ŜmF ⊗ A2).

is an isomorphism. Hence for anym > 1, ŜmF ⊗ A2 is also globally generated over Y1 ⊂ Y ′.
�is leads to the weak positivity of F over Y1. �

�eorems 1.2 and 1.3 immediately imply the following.

Corollary 1.4. Suppose the algebraic �ber space f : X → Y and the pseudo-e�ective line
bundle L on X are in the same setup as �eorem 1.2. �en the direct image f∗(KX/Y + L) is
weakly positive over Y1.

We are in a position to prove the main result in this subsection.

Proposition 1.5 (Weak positivity of direct images). Let f : X → Y be an algebraic �ber space
so that the Kodaira dimension of the general �ber is non-negative. Assume that f is smooth over
a dense Zariski open set of Y0 ⊂ Y so that both B := Y \ Y0 and f ∗B are normal crossing. �en
for anym ≫ 0, the direct image f∗

(
mKX/Y − (m − 1)∆f

)
is weakly positive over Y0, where ∆f

is the multiplicity divisor of f .

Proof. It follows from thework of [BP08,CP17] (see [CP17,�eorem 2.3 and Remark 2.5]) that
form ≫ 0,mKX/Y can be equipped with them-th Bergman metric hm so that the curvature
current

√
−1Θhm (mKX/Y ) >m[∆f ].(1.1.5)

hm thus induces a singular metric h of L := (m − 1)(KX/Y − ∆f ) de�ned by

h :
loc
= h

m−1
m

m · |σ∆f
|2(m−1)

where σ∆f
is the local de�ning equation of ∆f . By (1.1.5), h is positively curved. It follows

from [PT18, §3.1.1.(4)] that, (1.1.1) holds for anyy ∈ Y0. Hence by Corollary 1.4, we conclude
the weak positivity of f∗(KX/Y + L) = f∗

(
mKX/Y − (m − 1)∆f

)
over Y0. �
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Remark 1.6. �eweak positivity of the direct images of relative pluricanonical bundles f∗(mKX/Y )
with KX/Y relative semi-ample was proved by Viehweg in [Vie90, �eorem 2.7] using van-
ishing theorems. In [PS14], Popa-Schnell proved some variants of Viehweg’s weak posit-
ivity results using the theory of Castelnuovo-Mumford regularity and vanishing theorems.
In [Fuj16], Fujino proved that, a�er passing to a certain base change, the direct image of
pluricanonical bundles are locally free and numerically eventually free (nef for short), which
was re�ned by Takayama in [Tak16]. In [PT18], Păun-Takayama proved the weak positivity
at certain points in the sense of Nakayama for twisted pluricanonical bundles f∗(mKX/Y +L)
where L is a pseudo-e�ective line bundle. In a very recent preprint [Iwa18], Iwai gives a
criterion for the weak positivity of torsion free sheaves.

1.2. From weak positivity to ampleness. Consider locally free sheaves E and Q over a
complex manifold X of rank n and r respectively. Suppose that for some µ ∈ N, there is a
quotient of vector bundles

φ : SµE ։ Q.(1.2.1)

Write Kx ⊂ SµEx for the kernel of φx : SµEx → Qx . According to the pioneering work
by Viehweg [Vie89, Vie90] and Kollár [Kol90], if Kx varies in SµE with x ∈ X “as much as
possible”, and E possesses some “semi-positivity”, then the vector bundle Q should be “very
positive”, afortiori its determinant line bundle detQ.

In order to make this precise, we �x a basis e := {e1, . . . , en} of Ex for a point x ∈ X . �e
inclusion

Kx ֒→ SµEx

de�nes a point [Ke,x ] in theGrassmannvarietyGrass(SµCn, r ), which parametrizes r -dimensional
quotient spaces of SµCn . �e group G := SL(n,C) acts on Grass(SµCn, r ) by changing the
basis of Ex . Whereas [Ke,x ] depends on the chosen basis e for Ex , the G-orbit Gx of [Ke,x ] in
Grass(SµCn, r ) is well de�ned and depends only on the quotient φx : SµEx → Qx de�ned in
(1.2.1). Note that for two di�erent points x,y ∈ X , either Gx = Gy , or Gx ∩Gy = ∅.

De�nition 1.7 (Kollár-Viehweg). For a Zariski open set X0 ⊂ X , ker(φ) has maximal vari-
ation over X0 if for any x ∈ X0, the set y ∈ X0 with equal orbit Gy = Gx is �nite, and
dimGx = dimG.

We will need the following crucial ampleness criterion in [Vie90, Ampleness Criterion
5.7].

�eorem 1.8 (Viehweg). Let Y be a projective manifold, and let E be a torsion free coherent
sheaf de�ned over Y , which is weakly positive over a dense Zariski open set Y0 of Y . Let Q be a
re�exive sheaf on Y , which is also locally free over Y0. Assume that we have a map

φ : ŜµE → Q

such that its restriction to Y0 is a quotient of vector bundles. Assume that the kernel of φ↾Y0 has
maximal variation over Y0. �en for b ≫ a ≫ 0, the rational map

Y d P
(
H0(Y ,A)

)

induced by the invertible sheafA := det(Q)a ⊗ det(E )b , is an embedding when restricted to Y0.
In particular, A is ample with respect to Y0.

�e following result will be used in the proof of �eorem 1.21.(i). Let us mention that
for families of projective manifolds with big and nef canonical bundles, Proposition 1.9 has
already been proved by Viehweg [Vie90, �eorem 5.2], and the proof we presented here is
also in the same spirit.
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Proposition 1.9. Let f : X → Y be an algebraic �ber space which is smooth over a Zariski
open set Y0 ⊂ Y . Assume that both B := Y \ Y0 and f ∗B is normal crossing. Let V be a dense

Zariski open set of Y0 so that for each y ∈ V , KXy
is big, and the set of z ∈ V with Xz

bir∼ Xy is

�nite, where
bir∼ stands for the birational equivalence. �en det f∗(µmKX/Y )a ⊗ det f∗(mKX/Y )b

is ample with respect to V for some b ≫ a ≫ 0 and µ ≫ m ≫ 0.

Proof. Since f0 = f↾X0 : X0 = f −1(Y0) → Y0 is a smooth �bration, Siu’s invariance of pluri-
genera implies that, for any ℓ ∈ N, the direct image f∗(ℓKX/Y ) is locally free over Y0, with
f∗(ℓKX/Y )y ≃ H0(Xy, ℓKXy

). By the theorem of Birkar-Cascini-Hacon-McKernan [BCHM10]
(see also [Kol13, �eorem 1.26] for a precise statement), the relative canonical sheaf of rings
with respect to f0 : X0 → Y0

R(X0/Y0,KX0) :=
∑

m>0

(f0)∗O(mKX0)

is a �nitely generated sheaf of OY0-algebras, and the (unique) relative canonical model for
X0 → Y0 is de�ned by

X can
0 := ProjY0R(X0/Y0,KX0).

Moreover, X can
0 is normal with canonical singularities, projective over Y0, and there is a nat-

ural birational map ϕ : X0 → X can
0 with

(1.2.2)

X0 X can
0 P(Fm)

Y0

f

ϕ

f c

ι

so that the pushforward by ϕ gives an isomorphism
∑

m>0

f∗O(mKX0) ≃
∑

m>0

f c∗ O(mKX can
0
).

Here we write Fm := (f0)∗(mKX0/Y0) which is a locally free. �en there existsm, µ ≫ 0 and a
natural multiplication map

φ : Ŝµ f∗(mKX/Y ) →
(
f∗(µmKX/Y )

)⋆⋆
,(1.2.3)

such that the restriction of φ to Y0, denoted by φ0, is a quotient map between vector bundles.
We further assume that OP(Fm)(µ) ⊗ IX can

0
is relatively globally generated, where IX can

0
is the

ideal sheaf of X can
0 ⊂ P(Fm). We will show that the kernel of φ0 has maximal variation over

V .
Fix any y ∈ V , and we take a basis e := {e0, . . . , eN } of H0(Xy,mKXy

) ≃ CN+1. �e map
(1.2.3) gives rise to a short exact sequence

0 → H0 (PN ,OPN (µ) ⊗ IX can
y

) ie,y−−→ H0 (PN ,OPN (µ)
)
→ H0 (X can

y ,OPN (µ)↾X can
y

)
→ 0,(1.2.4)

whereX can
y := (f c)−1(y) andIX can

y
is the ideal sheaf ofX can

y ⊂ PN . WriteKe,y := H0
(
PN ,OPN (µ)⊗

IX can
y

)
. Recall that OPN (µ) ⊗ IX can

y
is globally generated. �en [Ke,y] ∈ Grass(SµCN+1, r )

determines X can
y ⊂ PN , where r := rankf∗(µmKX/Y ). If we take another the basis e

′ of

H0(Xy,mKXy
), then [Ke′,y] determines another subvariety X̃ can

y ⊂ PN which is projectively
equivalent (hence isomorphic) toX can

y . Hence the stabilizer of the action ofG := SL(N +1,C)
on Grass(SµCN+1, r ) is contained in Aut(X can

y ), which is �nite for X can
y has canonical singu-

larities and is of general type. Write Gy for the G-orbit of [Ke,y] in Grass(SµCN+1, r ), which
is independent of the basis e. One thus has dimGy = dimG. On the other hand, if Gz = Gy
for some other z ∈ V , then X can

y is isomorphic to X can
z , and by the assumption, there exists
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only �nite such z ∈ V . �is in turn implies that the kernel of φ0 has maximal variation over
V .

To �nish the proof, by �eorem 1.8 it then su�ces to show that f∗(mKX/Y ) is weakly pos-
itive overV , which is ensured by our more general result in Proposition 1.5. �e proposition
follows. �

1.3. A criterion for birationally isotrivial family. In this subsection we will prove �e-
orem E. �e idea of the proof is inspired by recent results of Cao [Cao18, Cao16] and Cao-
Păun [CP17]. Let us start with the following result.

Proposition 1.10. Let f : X → Y be any algebraic �ber space. Assume that ℓ is any
positive integer with f∗(ℓKX/Y ) non-zero. If the numerical dimension ν

(
det f∗(ℓKX/Y )

)
= 0

(see [BDPP13] for the de�nition), then

(i) for any birational morphismψ : Y ′ → Y , de�ning X ′ to be strong desingularization of the
main component (X ×Y Y ′)˜ dominating Y ′

X ′ //

f ′ $$❍
❍❍

❍❍
❍❍

❍❍
❍ X ×Y Y ′

��

// X

f

��
Y ′ ψ

// Y

(1.3.1)

one has

ν
(
det f ′∗ (ℓKX ′/Y ′)

)
= 0.

(ii) For any positive integerm so that f∗(mKX/Y ) is non-zero, one has

ν
(
det f∗(mKX/Y )

)
= 0,

and f∗(mKX/Y ) is �at over a Zariski open set of Y .

Proof. Denote by Fℓ := f∗(ℓKX/Y ) (resp. F ′ℓ := f ′∗ (ℓKX ′/Y ′)), which is torsion free over Y (resp.
Y ′). By [CP17, §4] (or Proposition 1.5 in the logarithmic se�ing) there exists a positively
curved singular hermitian metric (Narasimhan-Simha metric) hℓ (resp. h

′
ℓ
) over Fℓ (resp. F

′
ℓ
).

Hence the line bundle det Fℓ (resp. det F
′
ℓ
) has a positive curvature current denoted by Ξ,

(resp. Ξ′) induced by hℓ (resp. h
′
ℓ
). Let V ⊂ Y be the big open set so that ψ : ψ−1(V ) ≃−→ V is

an isomorphism. �en

(Fℓ,hℓ)↾V ≃ (F ′ℓ,h
′
ℓ)↾ψ−1(V ),

and thus Ξ↾V ≃ Ξ
′
↾ψ−1(V ). In particular, ψ∗(Ξ′) = Ξ in the sense of pushforward of positive

currents. Hence there exists anψ -exceptional divisor E (may not be e�ective!) so that

det F ′
ℓ

num≡ ψ ∗ det Fℓ + E.(1.3.2)

Take an e�ective ψ -exceptional divisor E′ so that E′ − E is e�ective as well. It follows from
[Leh13, �eorem 1.1.(1)] that

0 = ν(det Fℓ) = ν(ψ ∗ det Fℓ + E
′) > ν(ψ ∗ det Fℓ + E) = ν(det F ′ℓ) > 0.

�is proves Claim (i).

Let us prove Claim (ii). Since the numerical dimension ν(det Fℓ) is a birational invariant,
we may assume that, a�er passing to a new birational model of the �bration f : X → Y as in
(1.3.1), f is smooth over Y0 ⊂ Y , and both B := Y \ Y0 and f ∗B are normal crossing divisors.
Recall that the Narasimhan-Simha metric hℓ over Fℓ induces a singular metric hℓ,det for the
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line bundle det Fℓ whose curvature current
√
−1Θhℓ,det(det Fℓ) = Ξ is positive. By [BDPP13]

and the assumption that ν(det Fℓ) = 0, one has

det Fℓ
num≡

p∑

i=1

λiDi λi ∈ Q+ for i = 1, . . .p,

where
∑p
i=1 Di is an exceptional divisor in the sense of [Bou04, De�nition 3.10]. In particular,

by [Bou04, Proposition 3.13],
∑p
i=1 λi[Di ] is the unique positive current in c1(det Fℓ), and thus

Ξ =

p∑

i=1

λi[Di].

In particular,
√
−1Θhℓ,det(det Fℓ) ≡ 0 over Y \ ∪pi=1Di .

By [CP17, Eq. (5.10)], there exists another positively-curved singular hermitian metric h′

of det Fℓ so that
√
−1Θh′(det Fℓ) − ε

√
−1Θhm,det

(det Fm) > 0(1.3.3)

for some ε > 0. Recall that c1(det Fℓ) contains only one positive current
∑p
i=1 λi[Di]. �en

√
−1Θh′(det Fℓ) =

p∑

i=1

λi[Di ].

It follows from (1.3.3) that

√
−1Θhm,det

(det Fm) =
p∑

i=1

λ′i[Di], λ′i ∈ R>0 for i = 1, . . .p.(1.3.4)

By [BDPP13, �eorem 3.7],
∑p
i=1 λ

′
iDi is also an exceptional divisor, which is thus the unique

positive current in c1(det Fm). �is in turn implies that the numerical dimensionν
(
det f∗(mKX/Y )

)
=

0 for anym ∈ N∗. Moreover, by (1.3.4) together with Lemma 1.11 below, over Y0 \∪pi=1Di the
Narasimhan-Simha metric hm of f∗(mKX/Y ) is smooth and the curvature tensor

Θhm (Fm) ≡ 0 over Y0 \ ∪pi=1Di .(1.3.5)

�is proves Claim (ii). �

Lemma 1.11 ([CP17, Corollary 2.9]). Let E be a vector bundle over a (possibly non-compact)
Kähler manifold X , equipped with a positively-curved singular hermitian metric hE . Assume
that ΘdethE (detE) ≡ 0 over an open (Euclidean topology) setU ⊂ X , then overU , hE is smooth,
and ΘhE (E) ≡ 0.

Remark 1.12. In [CP17, Remark 5.10], the authors asked the following question: for any
algebraic �ber space f : X → Y , assume that c1

(
det f∗(ℓKX/Y )

)
= 0 for some non-zero

f∗(ℓKX/Y ), then for any birational model f ′ : X ′ → Y ′ as in (1.3.1), does it follow that
f ′∗ (ℓKX ′/Y ′) is �at? Proposition 1.10.(ii) can be seen as an answer to their question.

We are now in a position to prove �eorem E.

�eorem 1.13 (=�eorem E). Let f : X → Y be an algebraic �ber space between smooth
projective manifolds with general �bers of general type. Let ℓ > 2 be any positive integer such
that f∗(ℓKX/Y ) is non-zero, and the numerical dimension ν

(
det f∗(ℓKX/Y )

)
= 0. �en f is

birationally isotrivial, that is, two general �bers Xy and Xz of the �bration f are birationally
equivalent.
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Proof. By Proposition 1.10.(i) one can assume that f is smooth over a non-empty Zariski open
set Y0 ⊂ Y , and both B := Y \ Y0 and f ∗B are normal crossing divisors. Take µ ≫ m ≫ 0, so
that the natural multiplication map

φ : ŜµFm → (Fµm)⋆⋆(1.3.6)

is surjective over Y0. We denote by Fµm ⊂ (Fµm)⋆⋆ the image of φ, which is also torsion free,
and coincides with (Fµm)⋆⋆ over Y0 when µ ≫ 0. Since the Narasimhan-Simha metric hm on

Fm induces positively-curved metric h
µ
m over ŜµFm , the quotient metric hF on Fµm induced

by h
µ
m is also positively curved by [PT18, Lemma 2.3.4], and thus the induced metric hF ,det

on the determinant detFµm is positively curved as well.
On the other hand, the inclusion

det(Fµm) ֒→ det
(
(Fµm)⋆⋆

)
= det(Fµm),

induces an e�ective divisor
T ∈ | det(Fµm) − det(Fµm)|.

Hence √
−1ΘhF,det

(
det(Fµm)

)
+T ∈ c1

(
det(Fµm)

)
.

By (1.3.4), there exists an e�ective exceptional divisor (in the sense of [Bou04, De�nition
3.10])

∑p
i=1 µiDi so that

∑p
i=1 µi[Di ] is the unique positive current in c1(det Fµm). �en

√
−1ΘhF,det

(
det(Fµm)

)
+ [T ] =

p∑

i=1

µi [Di].

In particular,
p∑

i=1

µi[Di ] − [T ] > 0,

and
√
−1ΘhF,det

(
det(Fµm)

)
≡ 0 over Y \ ∪pi=1Di .(1.3.7)

By Lemma 1.11 again, ΘhF(Fµm) ≡ 0 over Y0 \ ∪pi=1Di . Recall that the restrictions Fm↾Y0 and
Fµm↾Y0 are locally free, and the restriction of φ de�ned in (1.3.6) to Y0

φ↾Y0 : S
µFm↾Y0 ։ Fµm↾Y0

is surjective. In particular, over the Zariski open set V := Y0 \ ∪pi=1Di , ŜµFm↾V = S
µFm↾V , and

Fµm↾V = Fµm↾V , and the restriction φ↾V is a quotient map between vector bundles. Hence

both the curvature tensors of (SµFm,hµm)↾V and (Fµm,hF )↾V vanish identically. Since hF is

the quotient metric induced by h
µ
m , the second fundamental form with respect to φ↾V thus

vanishes identically. We denote by E := kerφ. �en E↾V is a �at subbundle of SµFm↾V .
In other words, for any y ∈ V , we take an open setU ⊂ V containingy so that there exists

a holomorphic frame e0, e1, . . . , eN ∈ H0(U , Fm) which trivializes Fm ≃ U × CN+1 so that
∇(ei) ≡ 0 for i = 0, . . . ,N , where ∇ is the hermitian connection with respect to the metric
h
µ
m . We can also take such a holomorphic frame f1, . . . , fr ∈ H0(U , E) which trivialize E↾U .
�en

φ(fj) =
∑

|α |=µ
ajαe

α0
0 e

α1
1 · · · eαN

N
,(1.3.8)

where ajα ∈ C are all constant for any j = 1, . . . , r and α .
Nowwewill pursue the similar strategy in the proofs of [CH17, Proposition 4.1] or [Cao16,

Proposition 2.8] to show the birational equivalence of general �bers. We denote by X can
0 the

relative canonical model for X0 → Y0 as in the proof of Proposition 1.9. By (1.2.2) and (1.2.4),



ANALYTIC SHAFAREVICH HYPERBOLICITY CONJECTURE 17

for µ ≫ m ≫ 0, (1.3.8) shows that X can
0 overU is a subvariety of U × PN ≃ P(Fm)↾U de�ned

by equations

{
∑

|α |=µ
ajαz

α0
0 z

α1
1 · · · zαN

N
}j=1,...,r .

Recall that ajα ’s are all constant, then f c : X can
0 → Y0 are locally trivial. �e theorem

follows. �

Remark 1.14. (i) �e proof of �eorem 1.13 further indicates the locus of Y in which any
two �bers are birationally equivalent. More precisely, in the same se�ing as �eorem 1.13,
let Y0 be the maximal Zariski open set of Y over which f is smooth, and let D be the only
e�ective divisor which is numerically equivalent to det f∗(ℓKX/Y ). �en for anyy,y′ ∈ Y0\D,
Xy is birationally equivalent to Xy′ .

(ii) It is worthwhile mentioning that in [Kaw85] Kawamata proved the subadditivity of
Kodaira dimensions for algebraic �ber spaces (IitakaCn,m-conjecture) whose geometric gen-
eric �ber admits a good minimal model. For such algebraic �ber spaces f : X → Y ,
in [Kaw85, �eorem 1.1.(i)] he further showed that there exists a certain positive integer
ℓ such that the Kodaira dimension

κ
(
det f∗(ℓKX/Y )

)
> Var(f ).(1.3.9)

By [BCHM10] we know the existence of good minimal models for varieties of general type.
Hence (1.3.9) holds for algebraic �ber spaces whose general �bers are of general type. In par-
ticular, when κ

(
det f∗(ℓKX/Y )

)
6 0 for the positive integer ℓ in (1.3.9), f must be birationally

isotrivial. �eorem 1.13 can therefore be seen as a further re�nement of Kawamata’s result.

1.4. m-Bergman metric and pluricanonical extension techniques. Before we prove
�eorem D, we need some technical results. �e �rst one is a pluricanonical extension the-
orem which is a re�nement of [Den17, �eorem 2.11] and [Cao16, �eorem 2.10]. Its proof
is a combination of the Ohsawa-Takegoshi-Manivel L2-extension theorem, with the semi-
positivity ofm-relative Bergmanmetric studied by Berndtsson-Păun [BP08,BP10] and Păun-
Takayama [PT18].

�eorem 1.15 (Pluricanonical L2-extension). Let f : X → Y be an algebraic �ber space so
that the Kodaira dimension of the general �ber is non-negative. Assume that f is smooth over
a dense Zariski open set of Y0 ⊂ Y so that both B := Y \ Y0 and f ∗B are normal crossing. Let
L be any pseudo-e�ective line bundle L on X equipped with a positively curved singular metric
hL with algebraic singularities satisfying the following property

(i) �ere exists some regular value z ∈ Y of f , such that for some m ∈ N, all the sections
H0

(
Xz, (mKX + L)↾Xz

)
extends locally near z.

(ii) H0
(
Xz, (mKXz

+ L↾Xz
) ⊗ J (h

1
m

L↾Xz
)
)
, ∅.

�en for any regular value y of f satisfying that

(i) all sections H0
(
Xy,mKXy

+ L↾Xy

)
extends locally near y,

(ii) the metric hL↾Xy
is not identically equal to +∞,

both the restriction maps in the diagram

H0(X ,mKX/Y + L + f ∗AY ) H0
(
Xy, (mKXy

+ L↾Xy
) ⊗ J (h

1
m

L↾Xy
)
)

H0
(
X ,mKX/Y −m∆f + L + f

∗AY
)
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are both surjective. Here AY is a universal ample line bundle on Y which does not depend on L,
f andm.

Proof. �anks to [BP10, A.2.1], the assumptions in the theorem imply that there exists am-
relative Bergman type metric hm,B onmKX/Y + L with respect to hL such that the curvature

current iΘhm,B
(mKX/Y + L) > 0. �us h := h

m−1
m

m,B · h
1
m

L de�nes a possible singular metric on

L̃ :=
m − 1

m
(mKX/Y + L) +

1

m
L = (m − 1)KX/Y + L,

with iΘh(L̃) > 0.

Take any s ∈ H0
(
Xy, (mKXy

+ L↾Xy
) ⊗ J (h

1
m

L↾Xy
)
)
. It follows from the construction of the

m-relative Bergman kernel metric that |s |2
hm,B

is C 0-bounded. �en we see that

∫

Xy

|s |2ω,hdVXy ,ω =

∫

Xy

|s |
2(m−1)

m

hm,B
|s |

2
m

ω,h
1
m
L

dVXy ,ω

6 C

∫

Xy

|s |
2
m

ω,h
1
m
L

dVXy ,ω < +∞,

which implies that s ∈ H0
(
Xy, (KX + L̃ + f ∗(AY − KY ))↾Xy

⊗ J (h↾Xy
)
)
. Take AY su�ciently

ample such that AY −KY −B separates (2n + 1)-jets everywhere, where n := dimY . We then
can apply the Ohsawa-Takegoshi-Manivel L2-extension theorem (see [CDM17,Dem16]) for

KX + L̃ + f
∗(AY − KY − B), to extend s to a section S in H0

(
X , (KX/Y + L̃ + f ∗AY ) ⊗ J (h)

)
.

In conclusion, the restriction

H0 (X ,mKX/Y + L + f ∗(AY − B)
)
։ H0 (Xy, (mKXy

+ L↾Xy
) ⊗ J (h

1
m

L↾Xy
)
)

is surjective.
On the other hand, as in (1.1.5), them-Bergman metric hm,B ofmKX/Y + L also has certain

singularities along the multiplicity divisor ∆f of the �bration f , which forces the extended
section of s vanishes on ∆f . More concretely, the curvature of them-relative Bergmanmetric

iΘhm,B
(mKX/Y + L) >m[∆f ]

where [∆f ] is the positive (1,1)-current associated to the e�ective divisor ∆f . One thus has

iΘh(L̃) >
m − 1

m
iΘhm,B

(mKX/Y + L) +
1

m
iΘhL > (m − 1)[∆f ].

By the assumption the support |∆f | is simple normal crossing, which in turn implies that
the multiplier ideal

J (h) ⊆ OX

(
− (m − 1)∆f

)
.

Recall that

S ∈ H0 (X , (KX/Y + L̃ + f ∗AY ) ⊗ J (h)
)
,

then one can divide S by (m − 1)∆f to obtain a holomorphic section

S′ ∈ H0 (X ,mKX/Y + L − (m − 1)∆f + f
∗(AY − B)

)
.

By de�nition f ∗B > ∆f . �e theorem immediately follows from that ∆f ∩ Xy = ∅. �

We will apply a technical lemma in [CP17, Claim 3.5] to prove �eorem 1.21.(i). Let us
�rst recall some de�nitions of singularities of divisors in [Vie95, Chapter 5.3] in a slightly
di�erent language.
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De�nition 1.16. Let X be a smooth projective variety, and let L be a line bundle such that
H0(X ,L ) , ∅. One de�nes

e(L ) = sup
{ 1

c(D) | D ∈ |L | is an e�ective divisor
}

(1.4.1)

where
c(D) := sup{c > 0 | (X , c · D) is a klt divisor}

is the log canonical threshold of D.

Viehweg showed that one can control the lower bound of e(L ).
Lemma 1.17 ([Vie95, Corollary 5.11]). Let X be a smooth projective variety equipped with a
very ample line bundle H , and let L be a line bundle such that H0(X ,L ) , ∅.

(i) �en there is a uniform estimate

e(L ) 6 c1(H )dimX−1 · c1(L ) + 1.(1.4.2)

(ii) Let Z := X × · · · × X be the r -fold product. �en for M :=
⊗r

i=1 pr
∗
i L , one has e(M ) =

e(L ).
Lemma 1.18 (Cao-Păun). Let f : X → Y be an algebraic �ber space so that the Kodaira
dimension of the general �ber is non-negative. Assume that f is smooth over a dense Zariski
open set of Y0 ⊂ Y so that both B := Y \Y0 and f ∗B are normal crossing. �en there exists some
positive integerC > 2 so that for anym >m0 and a ∈ N, any y ∈ Y0 and any section

σ ∈ H0(Xy,amCKXy
),

there exists a section

Σ ∈ H0 (X , f ∗AY − af ∗ det f∗(mKX/Y ) + amrmCKX/Y + a(Pm + Fm)
)

(1.4.3)

whose restriction to the �ber Xy is equal to σ⊗rm . Here Fm and Pm are e�ective divisors on X
(independent of a) such that Fm is f -exceptional with f (Fm) ⊂ Supp(B), Supp(Pm) ⊂ Supp(∆f ),
rm := rankf∗(mKX/Y ), and AY is the universal ample line bundle on Y de�ned in �eorem 1.15.

Since [CP17, Claim 3.5] does not provide an e�ective estimate for the coe�cients in (1.4.3),
we will give a sketch proof of Lemma 1.18 to show how to apply Lemma 1.17 to achieve that.
�is proof is exactly the same as [CP17, Claim 3.5].

Sketch proof of Lemma 1.18. To make the proof less technical, we may assume that X → Y
is a smooth �bration. Write r = rankf∗(mKX/Y ) for short. Consider the r -fold �ber product
X r := X ×Y X ×Y · · · ×Y X of f . Let f r : X r → Y be the natural induced �bration, and let
pri : X

r → X be the projection on the i-th factor. �en

KX r /Y =
r⊗

i=1

pr∗i (KX/Y ), and f r∗ (K⊗m
X r /Y ) =

r⊗

i=1

f∗(mKX/Y ).

We see that there exists a natural morphism

det f∗(mKX/Y ) →
r⊗

i=1

f∗(mKX/Y ),

which induces a zero divisor Γ of the section

H0 (X r ,mKX r /Y − f r∗ det f∗(mKX/Y )
)

such that Γ does not contain any �ber of f r . �en there exists for εm ∈ Q+ small enough,
such that for each �ber X r

y of f
r : X r → Y , (X r

y , εmΓ↾X r
y
) is a klt pair.
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Indeed, one can apply Lemma 1.17 to control the lower bound of εm . Take a very ample
line bundle A over X and �x a point z ∈ Y . Write d := dimXy . Since f : X → Y is a �at
family,

e(mKXy
) 6 c1(A )d−1 · c1(mKXy

) + 1 =m · c1(A )d−1 · c1(KXz
) + 1,

by (1.4.2) for any y ∈ Y . Note that X r
y = Xy × · · · × Xy is the r -fold product of Xy . Since Γ↾X r

y

is a zero divisor of a non-zero global section in

H0(X r
y ,mKX r

y
) = H0 (X r

y ,

r⊗

i=1

pr∗i (K⊗m
Xy

)
)
.

By Lemma 1.17 for anym ≫ 0 and any y ∈ Y , the log canonical threshold

c(Γ↾X r
y
) > 1

e
(⊗r

i=1 pr
∗
i (K⊗m

Xy
)
) = 1

e(mKXy
) >

1

m · c1(A )d−1 · c1(KXz
) + 1

>
2

(C − 1)m(1.4.4)

for some C ∈ N which does not depend onm. We thus can take εm =
1

(C−1)m .
Write Lr := mKX r /Y − f r∗ det f∗(mKX/Y ), which is equipped with a singular hermitian

metric h induced by Γ. �en by our choice of C, for any y ∈ Y

J (h⊗εm
↾X r

y
) = OX r

y
.

By Siu’s invariance of plurigenera, for anyk ∈ Nwith kεm ∈ N, all the sectionsH0(X r
y ,kKX r

y
+

kεmLr↾X r
y
) extends locally near y for any y ∈ Y . Applying �eorem 1.15 to X (r ) with L = Lr ,

there exists an ample line bundle AY over Y such that, the following surjection holds

H0 (X r ,kKX r /Y + kεmLr + f
r∗AY

)
։ H0(X r

y ,kKX r
y
+ kεmLr↾X r

y
).(1.4.5)

Let iy : Xy ֒→ X r
y be the diagonal embedding. For any σ ∈ H0

(
Xy,k(1 + εmm)KXy

)
, there is

a natural section s ∈ H0(X r
y ,kKX r

y
+ kεmLr↾X r

y
) such that i∗ys = σ

⊗r . By (1.4.5), s extends to a

section S ∈ H0
(
X r ,kKX r /Y +kεmLr + f

r∗AY
)
. Denote by Σ ∈ H0

(
X , f ∗AY +rk(1+εmm)KX/Y −

kεm f
∗ det f∗(mKX/Y ) the restriction of S to the diagonalX ֒→ X r . By the following commut-

ative diagram

S ∈ H0
(
X r ,kKX r /Y + kεmLr + f

r∗AY
)

��

// // H0(X r
y ,kKX r

y
+ kεmLr↾X r

y
)

��

H0
(
X , f ∗AY + rk(1 + εmm)KX/Y − kεm f ∗ det f∗(mKX/Y )

)
// H0(Xy, rk(1 + εmm)KXy

),

Σ extends σ r . �e lemma is obtained by se�ing εm =
1

(C−1)m , k =
a
εm
. �

1.5. Positivity of the direct images. �is section is devoted to the proof of �eorem D,
which re�nes results by Viehweg-Zuo [VZ02, Proposition 3.4] and [VZ03, Proposition 4.3],
and a theorem by Kollár [Kol87]. We �rst recall the de�nition of Kollár family of varieties
with semi-log canonical singularities (slc family for short).

De�nition 1.19 (slc family). An slc family is a �at proper morphism f : X → B such that:

(i) each �ber Xb := f −1(b) is a projective variety with slc singularities.

(ii) ω
[m]
X/B is �at.

(iii) �e family f : X → B satis�es the Kollár condition, which means that, for anym ∈ N,
the re�exive power ω[m]

X/B commutes with arbitrary base change.
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To make De�nition 1.19.(iii) precise, for every base change τ : B′ → B, given the induced

morphism ρ : X ′
= X ×B B′ → X we have that the natural homomorphism ρ∗ω[m]

X/B → ω
[m]
X ′/B ′

is an isomorphism. Let us collect the basic properties of slc families, as is well-known to the
experts.

Lemma 1.20. Let д : Z → W be a surjective morphism between quasi-projective manifolds
with connected �bers, which is birational to an slc family д′ : Z ′ →W whose generic �ber has
at most Gorenstein canonical singularities. �en

(i) the total space Z ′ is normal and has only canonical singularities at worst.
(ii) If ν : W ′ → W is a dominant morphism withW ′ smooth quasi-projective, then Z ′ ×W

W ′ → W ′ is still an slc family whose generic �ber has at most Gorenstein canonical

singularities, and is birational to (Z ×W W ′)˜ →W ′.
(iii) Denote by Z ′r the r -fold �ber product Z ′ ×W · · · ×W Z ′. �en д′r : Z ′r →W is also an slc

family whose generic �ber has at most Gorenstein canonical singularities. Moreover, Z ′r is
birational to the main component (Z r )˜ of Z r dominatingW .

(iv) Let Z (r ) be a desingularization of (Z r )˜. �en (д(r ))∗(ℓKZ (r )/W ) ≃ (д′r )∗(ℓKZ ′r /W ) is re�exive
for every su�ciently divisible ℓ > 0.

Now let us state and prove our main result on the positivity of direct images.

�eorem 1.21 (=�eorem D). Let f0 : X0 → Y0 be a smooth family of projective manifolds of

general type. Assume that for any y ∈ Y0, the set of z ∈ Y0 with Xz bir∼ Xy is �nite.

(i) For any smooth projective compacti�cation f : X → Y of f0 : X0 → Y0 and any su�ciently
ample line bundleAY overY , f∗(ℓKX/Y )⋆⋆⊗A−1

Y is globally generated overY0 for any ℓ ≫ 0.
In particular, f∗(ℓKX/Y ) is ample with respect to Y0.

(ii) In the same se�ing as (i), det f∗(ℓKX/Y ) ⊗ A
−rℓ
Y

is also globally generated over Y0 for any

ℓ ≫ 0, where rℓ = rankf∗(ℓKX/Y ). In particular, B+
(
det f∗(ℓKX/Y )

)
⊂ Y \ Y0.

(iii) For some r ≫ 0, there exists an algebraic �ber space f : X → Y compactifying X r
0 → Y0,

so that f∗(ℓKX/Y )⊗A−ℓ
Y is globally generated over Y0 for ℓ large and divisible enough. Here

X r
0 denotes to be the r -fold �ber product of X0 → Y0, and AY is some su�ciently ample

line bundle over Y .

Proof. Let us �rst show that, to prove Claims (i) and (ii), one can assume that both B := Y \Y0
and f ∗B are normal crossing.

For the arbitrary smooth projective compacti�cation f ′ : X ′ → Y ′ of f0 : X0 → Y0, we
take a log resolution ν : Y → Y ′ with centers supported on Y ′ \ Y0 so that B := ν−1(Y ′ \ Y0)
is a simple normal crossing divisor. De�ne X to be strong desingularization of the main
component (X ′ ×Y ′ Y )̃ dominant over Y

X //

f $$❍
❍❍

❍❍
❍❍

❍❍
❍❍

X ′ ×Y ′ Y

��

// X ′

f ′

��
Y

ν // Y ′

(1.5.1)

so that f ∗B is normal crossing. By [Vie90, Lemma 2.5.a], there is the inclusion

ν∗ f∗(mKX/Y ) ֒→ f ′∗ (mKX ′/Y ′)(1.5.2)

which is an isomorphism over Y0 for eachm ∈ N. Hence for any ample line bundle A over
Y ′, once f∗(mKX/Y )⋆⋆ ⊗ (ν∗A)−1 is globally generated over ν−1(Y0) ≃ Y0 for some m > 0,
f ′∗ (mKX ′/Y ′)⋆⋆ ⊗ A−1 will be also globally generated over Y0. As we will see, Claim (ii) is a
direct consequence of Claim (i). �is proves the above statement.
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(i) Let us �x a su�ciently ample line bundle AY on Y . Assume that both B := Y \ Y0 and
f ∗B are normal crossing. It follows from Proposition 1.9 that one can take some b ≫ a ≫ 0,
µ ≫ m ≫ 0 and s ≫ 0 such thatL := det f∗(µmKX/Y )⊗a ⊗det f∗(mKX/Y )⊗b is ample over Y0.
In other words, B+(L ) ⊂ Supp(B). By the de�nition of augmented base locus, one can even
arrange a,b ≫ 0 such that there exists a singular hermitian metric h1 of L − 4AY which is

smooth over Y0, and the curvature current
√
−1ΘhL

(L ) > ω for some Kähler form ω in Y .
Denote by r1 := rankf∗(µmKX/Y ) and r2 := rankf∗(mKX/Y ). It follows from Lemma 1.18 that
for any sections

σ1 ∈ H0(Xy,aµmCKXy
), σ2 ∈ H0(Xy,bmCKXy

),
there exists e�ective divisors Σ1 and Σ2 such that

Σ1 + af
∗ det f∗(mµKX/Y ) − f ∗AY

linear∼ amµr1CKX/Y + P1 + F1

Σ2 + b f
∗ det f∗(mKX/Y ) − f ∗AY

linear∼ bmr2CKX/Y + P2 + F2

and

Σ1↾Xy
= σ

⊗r1
1 , Σ2↾Xy

= σ
⊗r2
2 .

Here Fi is f -exceptional with f (Fi) ⊂ Supp(B), Supp(Pi) ⊂ Supp(∆f ) for i = 1, 2.
Write N := amµr1C + bmr2C, P := P1 + P2 and F := F1 + F2. Fix any y ∈ Y0. �en the

e�ective divisor Σ1 + Σ2 induces a singular hermitian metric h2 for the line bundle L2 :=
NKX/Y − f ∗L + 2f ∗AY + P + F such that h |Xy

is not identically equal to +∞, and so is the
singular hermitianmetrich := f ∗h1 ·h2 over L0 := L2+ f ∗L −4f ∗AY = NKX/Y−2f ∗AY+P+F .
In particular, when ℓ su�ciently large, the multiplier ideal sheaf J (h

1
ℓ

↾Xy
) = OXy

. By Siu’s

invariance of plurigenera, all the global sectionsH0
(
Xy, (ℓKX +L0)↾Xy

)
≃ H0

(
Xy, (ℓ+N )KXy

)

extends locally, and we thus can apply �eorem 1.15 to obtain the desired surjectivity

H0 (X , ℓKX/Y + L0 − ℓ∆f + f
∗AY

)
։ H0 (Xy, (ℓ + N )KXy

)
,(1.5.3)

Recall that Supp(P) ⊂ Supp(∆f ). �en ℓ∆f > P for ℓ ≫ 0, and one has the inclusion of
sheaves

ℓKX/Y + L0 − (ℓ − 1)∆f + f
∗AY ֒→ (N + ℓ)KX/Y − f ∗AY + F .

which is an isomorphism over X0 . By (1.5.3) this implies that the direct image sheaves
f∗(ℓKX/Y − f ∗AY + F ) are globally generated over some Zariski open setUy ⊂ Y0 containing
y for ℓ ≫ 0. Since y is an arbitrary point in Y0, the direct image f∗(ℓKX/Y + F ) ⊗ A−1

Y is
globally generated over Y0 for ℓ ≫ 0 by noetherianity. Recall that F is f -exceptional with
f (F ) ⊂ Supp(B). �en there is an injection

f∗(ℓKX/Y + F ) ⊗ A−1
Y ֒→ f∗(ℓKX/Y )⋆⋆ ⊗ A−1

Y

which is an isomorphism over Y0. Hence f∗(ℓKX/Y )⋆⋆ ⊗ A−1
Y is also globally generated over

Y0. By De�nition 1.1.(iii), f∗(ℓKX/Y ) is ample with respect to Y0 for ℓ ≫ 0. �e �rst claim
follows.

(ii) �e trick to prove the second claim has already appeared in [Den17] in proving a con-
jecture by Demailly-Peternell-Schneider. We �rst recall that f∗(ℓKX/Y ) is locally free out-
side a codimension 2 analytic subset of Y . By the proof of �eorem 1.21.(i), for ℓ su�-
ciently large and divisible, f∗(ℓKX/Y + F ) ⊗ A−1

Y
is locally free and generated by global sec-

tions over Y0, where F is some f -exceptional e�ective divisor. �erefore, its determinant
det f∗(ℓKX/Y + F ) ⊗A−rℓ

Y
is also globally generated over Y0, where rℓ := rankf∗(ℓKX/Y ). Since

F is f -exceptional and e�ective, one has

det f∗(ℓKX/Y + F ) ⊗ A
−rℓ
Y
= det f∗(ℓKX/Y ) ⊗ A−rℓ

Y
,
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and therefore, det f∗(ℓKX/Y ) ⊗A−rℓ
Y is also globally generated over Y0. By the very de�nition

of the augmented base locus B+(•) we conclude that
B+

(
det f∗(ℓKX/Y )

)
⊂ Supp(B).

�e second claim is proved.

(iii) We combine the ideas in [VZ03, Proposition 4.1] as well as the pluricanonical extension
techniques in �eorem 1.15 to prove the result. By Corollary A.2, there exists a smooth
projective compacti�cation Y of Y0 with B := Y \ Y0 simple normal crossing, a non-singular
�nite covering ψ : W → Y , and an slc family д′ : Z ′ → W , which extends the family
X0 ×Y0 W . By Lemma 1.20.(iii) for any r ∈ Z>0, the r -fold �ber product д′r : Z ′r →W is still
an slc family, which compacti�es the smooth family X r

0 ×Y0 W →W0, whereW0 := ψ
−1(Y0).

Note that Z ′r has canonical singularities.
Take a smooth projective compacti�cation f : X → Y of X r

0 → Y0 so that f ∗B is normal
crossing. LetZ → Z ′r be a strong desingularization ofZ ′r , which also resolves this birational
map Z ′r

d (X ×Y W )̃. �en д : Z →W is smooth overW0 := ψ
−1(Y0).

Z Z ′r X (X ×Y W )̃

W W Y W

д д′r f

ψ ψ

Let Z̃ be a strong desingularization of Z ′, which is thus smooth overW0 := ψ−1(Y0). For
the new family д̃ : Z̃ → W , we denote by Z̃0 := д̃−1(W0). �en Z̃0 → W0 is also a smooth
family, and any �ber of Zw with w ∈ W0 is a projective manifold of general type. By our

assumption in the theorem, for any w ∈ W0, the set of w
′ ∈ W0 with Z̃w ′

bir∼ Z̃w is �nite as
ψ : W → Y is a �nite morphism. We thus can apply �eorems 1.21.(i) and 1.21.(ii) to our
new family д̃ : Z̃ →W .

From now on, we will always assume that ℓ ≫ 0 is su�ciently divisible so that ℓKZ ′

is Cartier. Let AY be a su�ciently ample line bundle over Y , so that AW := ψ ∗AY is also
su�ciently ample. Since Z ′ has canonical singularity, д̃∗(ℓKZ̃/W ) = д′∗(ℓKZ ′/W ). It follows
from �eorem 1.21.(ii) that, for any ℓ ≫ 0, the line bundle

det д̃∗(ℓKZ̃/W ) ⊗ A−r
W = detд′∗(ℓKZ ′/W ) ⊗ A−r

W(1.5.4)

is globally generated overW0, where r := rank д′∗(ℓKZ ′/W ) depending on ℓ. �en there exists
a positively-curved singular hermitian metric hdet on the line bundle detд′∗(ℓKZ ′/W ) ⊗ A−r

W
such that hdet is smooth overW0.

By the base change properties of slc families (see [BHPS13, Proposition 2.12] and [KP17,
Lemma 2.6]), one has

ω
[ℓ]
Z ′r /W ≃

r⊗

i=1

pr∗i ω
[ℓ]
Z ′/W , д′r∗ (ℓKZ ′r /W ) ≃

r⊗
д′∗(ℓKZ ′/W ),

where pri : Z
′r → Z ′ is the i-th directional projection map. Hence ℓKZ ′r is Cartier as well,

and we have
r⊗
д′∗(ℓKZ ′/W ) ≃ д′r∗ (ℓKZ ′r /W ) = д∗(ℓKZ/W ).

By Lemma 1.20.(iv), д∗(ℓKZ/W ) is re�exive, and we thus have

detд′∗(ℓKZ ′/W ) →
r⊗
д′∗(ℓKZ ′/W ) ≃ д∗(ℓKZ/W ),
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which induces a natural e�ective divisor

Γ ∈ |ℓKZ/W − д∗ detд′∗(ℓKZ ′/W )|
such that Γ↾Zw , 0 for any (smooth) �ber Zw with w ∈W0. By (1.4.4), there exists a positive
integerC which does not depend on ℓ, so that the log canonical threshold

c(Γ↾Zw ) >
2

(C − 1)ℓ(1.5.5)

for any ℓ ≫ 0. Denote by h the singular hermitian metric on

ℓKZ/W − д∗ detд′∗(ℓKZ ′/W )

induced by Γ. By (1.5.5) the multiplier ideal sheaf J
(
h

1
(C−1)ℓ
↾Zw

)
= OZw for any �ber Zw with

w ∈ W0. Let us de�ne a positively-curved singular metric hF for the line bundle F :=

ℓKZ/W − rд∗AW by se�ing hF := h · д∗hdet. �en J
(
h

1
(C−1)ℓ
F ↾Zw

)
= OZw for anyw ∈W0.

For any n ∈ N∗, applying �eorem 1.15 to nF we obtain the surjectivity

H0 (Z , (C − 1)nℓKZ/W + nF + д∗AW
)
։ H0 (Zw ,CnℓKZw

)
(1.5.6)

for allw ∈W0. In other words,

д∗
(
CℓnKZ/W ) ⊗ A−(nr−1)

W

is globally generated overW0 for any ℓ ≫ 0 and any n > 1.
Since KXy

is big, one thus has

r = rℓ ∼ ℓd as ℓ→ +∞
where d := dimZw > 2 (if the �bers of f are curves, one can take a �ber product to replace
the original family). Recall that C is a constant which does not depend on ℓ. One thus can
take an a priori ℓ ≫ 0 so that r ≫ Cℓ. In conclusion, for su�ciently large and divisiblem,

д∗
(
mKZ/W ) ⊗ A−2m

W = д∗
(
mKZ/W ) ⊗ψ ∗A−2m

Y

is globally generated overW0. �erefore, we have a morphism

N⊕

i=1

ψ ∗AmY → д∗
(
mKZ/W

)
⊗ψ ∗A−m

Y ,(1.5.7)

which is surjective overW0. On the other hand, by [Vie90, Lemma 2.5.b], one has the inclu-
sion

д∗
(
mKZ/W

)
֒→ ψ ∗ f∗(mKX/Y ),

which is an isomorphism overW0. (1.5.7) thus induces a morphism

N⊕

i=1

ψ∗OW ⊗ AmY → ψ∗д∗
(
mKZ/W

)
⊗ A−m

Y → ψ∗ψ
∗ ( f∗(mKX/Y )

)
⊗ A−m

Y ,(1.5.8)

which is surjective over Y0. Note that that even if f∗(mKX/Y ) is merely a coherent sheaf,
the projection formula ψ∗ψ ∗ ( f∗(mKX/Y )

)
= f∗(mKX/Y )

)
⊗ ψ∗OW still holds for ψ is �nite

(see [Ara04, Lemma 5.7]). �e trace map

ψ∗OW → OY

splits the natural inclusion OY → ψ∗OW , and is thus surjective. Hence (1.5.8) gives rise to a
morphism

N⊕

i=1

ψ∗OW ⊗ AmY → ψ∗д∗
(
mKZ/W

)
⊗ A−m

Y

Φ−→ f∗(mKX/Y ) ⊗ A−m
Y ,(1.5.9)
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which is surjective over Y0. By takingm su�ciently large, we may assume thatψ∗OW ⊗ AmY
is generated by its global sections. �en f∗(mKX/Y ) ⊗ A−m

Y
is globally generated over Y0. We

complete the proof. �

Remark 1.22. In a recent paper [PX17], Xu-Patakfalvi proved that for an n-dimensional
KSBA-stable family f : (Z ,∆) → T with �nite �ber isomorphism equivalence classes over a
normal varietyT , f∗

(
(KZ/T +∆)n+1

)
is ample onT . �eir proof relies on some kind of Nakai-

Moishezon criterion by Kollár in [Kol90]. In the case of �eorem 1.21, we cannot apply their
result to show�eorems 1.21.(i) or 1.21.(ii) directly, as Y0 might be non-compact.

Since the Q-mild reduction in Corollary A.2 holds for any smooth surjective projective
morphismwith connected�bers and smooth base, it follows from our proof in�eorem 1.21.(iii)
and Kawamata’s theorem (1.3.9), one still has the generic global generation as follows.

�eorem 1.23. Let fU : U → V be a smooth projective morphism between quasi-projective
varieties with connected �bers. Assume that the general �ber F of fU has semi-ample canonical
bundle, and fU is of maximal variation. �en there exists a positive integer r ≫ 0 and a smooth
projective compacti�cation f : X → Y of U r → V so that f∗(mKX/Y ) ⊗ A −m is globally
generated over some Zariski open subset of V . Here U r → V is the r -fold �ber product of
U → V , and A is some ample line bundle on Y . �

1.6. Su�ciently many “moving” hypersurfaces. As we will see in the construction of
VZ Higgs bundles in �eorem 3.1, one has to require the following: for the algebraic �ber
space f : X → Y de�ned in�eorem 1.21.(iii), the positivity ofKX/Y must be almost fonctorial
under base changes (see �eorem 1.24 for a precise statement). Since f : X → Y is not �at,
we are forced to perform the base changes on its Q-mild reductions to study the positivity of
relative canonical bundles. Let us state and prove our main result in this subsection, which
will be our basic setup in constructing re�ned VZ Higgs bundles in § 3. �e proof we present
here follows from [PTW18, Proposition 4.4].

�eorem 1.24. Let X0 → Y0 be a smooth family of minimal projective manifolds of general
type over a quasi-projective manifold Y0. Suppose that for any y ∈ Y0, the set of z ∈ Y0 with

Xz
bir∼ Xy is �nite. Let Y ⊃ Y0 be the smooth compacti�cation in Corollary A.2. Fix any

y0 ∈ Y0 and some su�ciently ample line bundleAY onY . �en there exist a birational morphism
ν : Y ′ → Y and a new algebraic �ber space f ′ : X ′ → Y ′ which is smooth over ν−1(Y0), so that
for any su�ciently large and divisible ℓ, one can �nd a hypersurface

H ∈ |ℓKX ′/Y ′ − ℓ(ν ◦ f ′)∗AY + ℓE |(1.6.1)

satisfying that

• the divisor D := ν−1(Y \ Y0) is simple normal crossing.
• �ere exists a reduced divisor S in Y ′, so that D + S is simple normal crossing, and H → Y ′

is smooth over Y ′ \ D ∪ S .
• �e exceptional locus Ex(ν) ⊂ Supp(D + S), and y0 < ν(D ∪ S).
• �e divisor E is e�ective and f ′-exceptional with f ′(E) ⊂ Supp(D + S).

Moreover, whenX0 → Y0 is e�ectively parametrized over some open set containingy0, so is the
new family X ′ → Y ′.

Proof. �e proof is a continuation of that of �eorem 1.21.(iii), and we adopt the same nota-
tions therein. By (1.5.9) and the isomorphism

H0(Z , ℓKZ/W − ℓд∗AW ) ≃ H0 (Z ′r , ℓKZ ′r /W − ℓ(д′r )∗AW
)
,
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the morphism Φ : ψ∗д∗
(
ℓKZ/W

)
⊗ A−ℓ

Y
→ f∗(ℓKX/Y ) ⊗ A−ℓ

Y
in (1.5.9) gives rise to a natural

map

ϒ : H0(Z ′r , ℓKZ ′r /W − ℓ(д′r )∗AW ) → H0 (Y , f∗(ℓKX/Y ) ⊗ A−ℓ
Y

)
(1.6.2)

whose image I generates f∗(ℓKX/Y ) ⊗ A−ℓ
Y

over Y0. Note that ϒ is fonctorial in the sense that
it does not depend on the choice of the birational model Z → Z ′r . By the base point free
theorem, for any y ∈ Y0, KXy

is semi-ample, and we can assume that ℓ ≫ 0 is su�ciently
large and divisible so that ℓKX/Y is relatively semi-ample overY0. Hencewe can take a section

σ ∈ H0 (Z ′r , ℓKZ ′r /W − ℓ(д′r )∗AW
)

(1.6.3)

so that the zero divisor of

ϒ(σ ) ∈ H0 (X , ℓKX/Y − ℓ f ∗AY
)
= H0 (Y , f∗(ℓKX/Y ) ⊗ A−ℓ

Y

)
,

denoted by H1 ∈ |ℓKX (r )/Y − ℓ(f (r ))∗AY |, is transverse to the �ber Xy0 . Denote by T the
discriminant locus of H1 → Y , and B := Y \ Y0. �en y0 < T ∪ B. Take a log-resolution
ν : Y ′ → Y with centers inT ∪B so that both D := ν−1(B) and D +S := ν−1(T ∪B) are simple
normal crossing. Let X ′ be a strong desingularization of (X ×Y Y ′)̃, and write f ′ : X ′ → Y ′,
which is smooth over Y ′

0 := ν
−1(Y0). SetX ′

0 := f ′−1(Y ′
0). It su�ces to show that, there exists a

hypersurface H in (1.6.1) with H↾(ν◦f ′)−1(V ) = H1↾(f (r ))−1(V ), where V := Y \ S′ ∪ B ⊂ Y0. Since

the birational morphism ν is isomorphic at y0, we can write y0 as ν
−1(y0) abusively.

Now we follow the similar arguments in [PTW18, Proposition 4.4] to prove the existence
of H (in which they apply their methods for mild morphisms). LetW ′ be a strong desingu-
larization ofW ×Y Y ′ which is �nite at y0 ∈ Y ′. WriteW ′

0 := ν ′−1(W0). By Lemma 1.20.(ii),
the new family Z ′′ := Z ′r ×W W ′ →W ′ is still an slc family, which compacti�es the smooth
family X ′

0 ×Y ′
0
W ′ →W ′

0 . LetM
′ be a desingularization of Z ′′ so that it resolves the rational

maps to X ′ as well as Z .

X

f

��

Z //oo

д

��

Z ′r

д′r

��
X ′

µ
✎✎✎✎

GG
✎✎✎✎

f ′

��

M′oo

GG
✎
✎
✎
✎
✎
✎
✎
✎

h′

��

// Z ′′

д′′

��

µ ′
✎✎✎

GG
✎
✎
✎

Y Wψoo W

Y ′

ν
✎
✎
✎

GG
✎✎✎✎

W ′ψ ′oo

ν ′
✎✎✎

GG
✎✎✎✎

W ′

ν ′
✎✎✎

GG
✎✎✎✎

By the properties of slc families, µ′∗ω[ℓ]
Z ′r /W = ω

[ℓ]
Z ′′/W ′ , which induces a natural map

µ∗ : H0 (Z ′r , ℓKZ ′r /W − ℓ(д′r )∗AW
)
→ H0 (Z ′′, ℓKZ ′′/W ′ − ℓ(ν ′ ◦ д′′)∗AW

)
.(1.6.4)

Since both Z ′r andZ ′′ have canonical singularities, one has the following natural morphisms

д∗(ℓKZ/W ) ≃ (д′r )∗(ℓKZ ′r /W ), h′∗(ℓKM ′/W ′) = д′′∗ (ℓKZ ′′/W ′).
We can leave out a subvariety of codimension at least two in Y ′ supported on D + S (which
thus avoids y0 by our construction) so thatψ ′ :W ′ → Y ′ becomes a �at �nite morphism. As
discussed at the beginning of the proof, there is also a natural map

ϒ
′ : H0(Z ′′, ℓKZ ′′/W ′ − ℓ(ν ′ ◦ д′′)∗AW ) → H0 (X ′, ℓKX ′/Y ′ − ℓ(ν ◦ f ′)∗AY

)
(1.6.5)

as (1.6.2) by factorizing through M′.

Note that for V := Y \ T ∪ B, ν : ν−1(V ) ≃−→ V is also an isomorphism, and thus the
restriction of X → Y to V is isomorphic to that of X ′ → Y ′ to ν−1(V ). Hence by our
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construction,the restriction of Z ′r → W to ψ−1(V ) is isomorphic to that of Z ′′ → W ′ to
(ν ◦ ψ ′)−1(V ) = (ν ′ ◦ ψ )−1(V ). In particular, under the above isomorphism, for the section
σ ∈ H0

(
Z ′r , ℓKZ ′r /W − ℓ(д′r )∗AW

)
in (1.6.3) with ϒ(σ ) de�ning H1, one has

ϒ(σ )↾f −1(V ) ≃ ϒ
′(µ∗σ )↾(ν◦f ′)−1(V ).

where µ∗ and ϒ′ are de�ned in (1.6.4) and (1.6.5). Denote by H̃ the zero divisor de�ned by

ϒ
′(µ∗σ ) ∈ H0 (X ′, ℓKX ′/Y ′ − ℓ(ν ◦ f ′)∗AY

)
.

Recall that H1 is smooth over V , then H̃ is also smooth over ν−1(V ).
Note that ϒ′(µ∗σ ) ∈ H0

(
Y ′, f ′∗ (ℓKX ′/Y ′) ⊗ ν∗A−ℓ

Y

)
is only de�ned over a big open set of Y ′

containing ν−1(V ). Hence it extends to a global section

s ∈ H0(X ′
, ℓKX ′/Y ′ − ℓ(ν ◦ f ′)∗AY + ℓE),

where E is an f ′-exceptional e�ective divisor with f ′(E) ⊂ Supp(D + S). Denote by H the
hypersurface in X ′ de�ned by s. Hence H↾(ν◦f ′)−1(V ) = H̃↾(ν◦f ′)−1(V ), which is smooth over

ν−1(V ) = Y ′\D∪S ≃ V ∋ y0. Note that the property of e�ective parametrization is invariant
under �ber product. �e theorem follows. �

Based on �eorem 1.23, one can apply the same methods in �eorem 1.24 to obtain the
following result.

�eorem 1.25. Let fU : U → V be the smooth projective morphism as in �eorem 1.23. �en
there exists a positive integer r ≫ 0, a birational morphism from a smooth quasi-projective

variety ν : Ṽ → V , a smooth projective compacti�cation f : X → Y ofU r ×V Ṽ → Ṽ

U r U r ×V Ṽ X

V Ṽ Y

fU f

ν

and a big and nef line bundle L over Y so that there is a hypersurfaceH ∈ |mKX/Y −mf ∗L +
mE | satisfying the following conditions.
(i) �e boundary D := Y \ Ṽ is a simple normal crossing divisor.

(ii) �e hypersurface H is smooth over some Zariski open set V0 ⊂ Ṽ , and D + S := Y \V0 is a
simple normal crossing divisor.

(iii) �e divisor E is e�ective and f -exceptional divisor with f (E) ∩V0 = ∅.
(iv) �e augmented base locus B+(L ) ∩V0 = ∅.

Here U r → V is the r -fold �ber product of fU : U → V . �

2. Construction of negatively curved Finsler metric

To begin with, let us introduce the de�nition of Viehweg-Zuo Higgs bundles over quasi-
projective manifolds in an abstract way following [VZ03,PTW18]. �en we prove a generic
local Torelli for VZ Higgs bundles. Next we establish an algorithm to construct Finsler met-
rics whose holomorphic sectional curvatures are bounded above by a negative constant via
VZ Higgs bundles. By our construction and generic local Torelli, those Finsler metrics are
positively de�nite over a Zariski open set, and by the Ahlfors-Schwarz lemma, we prove that
a quasi-projective manifold is pseudo Kobayashi hyperbolic once it is equipped with a VZ
Higgs bundle.
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2.1. AbstractViehweg-ZuoHiggs bundles. �ede�nitionwe present below follows from
the formulation in [PTW18, Proposition 2.7], which relaxes the monodromy condition in
[VZ03] and is thus less restrictive.

De�nition 2.1 (Abstract Viehweg-ZuoHiggs bundles). LetV be a quasi-projectivemanifold,
and let Y ⊃ V be a projective compacti�cation of V with the boundary D := Y \ V simple

normal crossing. A Viehweg-Zuo Higgs bundle onV is a logarithmic Higgs bundle (Ẽ , θ̃) over
Y consisting of the following data:

(i) a divisor S on Y so that D + S is simple normal crossing,
(ii) a big and nef line bundle L over Y with B+(L ) ⊂ D ∪ S ,
(iii) a Higgs bundle (E ,θ ) :=

(⊕n
q=0 E

n−q,q,
⊕n

q=0 θn−q,q
)
induced by the lower canonical

extension of a polarized VHS de�ned over Y \ (D ∪ S),
(iv) a sub-Higgs sheaf (F ,η) ⊂ (Ẽ , θ̃ ),
which satisfy the following properties.

(1) �e Higgs bundle (Ẽ , θ̃) := (L −1 ⊗ E , 1 ⊗ θ ). In particular, θ̃ : Ẽ → Ẽ ⊗ ΩY

(
log(D + S)

)
,

and θ̃ ∧ θ̃ = 0.
(2) �e sub-Higgs sheaf (F ,η) has log poles only on the boundary D, that is, η : F →

F ⊗ ΩY (logD).
(3) Write Ẽk := L −1 ⊗ En−k ,k , and denote by Fk := Ẽk ∩ F . �en the �rst stage F0 of F is

an e�ective line bundle. In other words, there exists a non-trivial morphism OY → F0.

As shown in [VZ02], by iterating η for k-times, we obtain

F0

k times︷      ︸︸      ︷
η ◦ · · · ◦ η
−−−−−−−−−→ Fk ⊗

(
ΩY (logD)

)⊗k
.

Since η ∧ η = 0, the above morphism factors through Fk ⊗ Symk
ΩY (logD), and by (3) one

thus obtains

OY → F0 → Fk ⊗ Symk
ΩY (logD) → L −1 ⊗ En−k ,k ⊗ Symk

ΩY (logD).
Equivalently, we have a morphism

τk : Sym
kTY (− logD) → L −1 ⊗ En−k ,k .(2.1.1)

It was proven in [VZ02, Corollary 4.5] that τ1 is always non-trivial. We say that a VZ Higgs
bundle satis�es the generic local Torelli if τ1 : TY (− logD) → L −1 ⊗ En−1,1 in (2.1.1) is
generically injective. As we will see in § 2.3, in �eorem F we prove that the generic local
Torelli holds for any VZ Higgs bundles.

2.2. Proper metrics for logarithmic Higgs bundles. We adopt the same notations as
De�nition 2.1 in the rest of § 2. As is well-known, E can be endowed with the Hodge met-
ric h induced by the polarization, which may blow-up around the simple normal crossing
boundary D + S . However, according to the work of Schmid and Ca�ani-Schmid-Kaplan
[Sch73, CKS86], h has mild singularities (at most logarithmic singularities), and as proved
in [VZ03, §7] (for unipotent monodromies) and [PTW18, §3] (for quasi-unipotent mono-
dromies), one can take a proper singular metric дα on L such that the induced singular

hermitian metric д−1α ⊗ h on Ẽ := L −1 ⊗ E is locally bounded from above. Before we sum-
marize the above-mentioned results in [PTW18, §3], we introduce some notations in loc.
cit.

Write the simple normal crossing divisor D = D1 + · · · + Dk and S = S1 + · · · + Sℓ. Let
fDi

∈ H0
(
Y ,OY (Di)

)
and fSi ∈ H0

(
Y ,OY (Si)

)
be the canonical section de�ning Di and Si . We



ANALYTIC SHAFAREVICH HYPERBOLICITY CONJECTURE 29

�x smooth hermitian metrics дDi
and дSi on OY (Di) and OY (Si). Set

rDi
:= − log‖ fDi

‖2дDi , rSi := − log‖ fSi ‖2дSi ,
and de�ne

rD :=
k∏

i=1

rDi
, rS :=

ℓ∏

i=1

rSi .

Let д be a singular hermitian metric with analytic singularities of the big and nef line bundle

L such thatд is smooth onY \B+(L ) ⊃ Y \D∪S , and the curvature current
√
−1Θд(L ) > ω

for some smooth Kähler form ω on Y . For α ∈ N, de�ne
дα := д · (rD · rS)α

�e following proposition is a slight variant of [PTW18, Lemma 3.1, Corollary 3.4].

Proposition2.2 ([PTW18]). Whenα ≫ 0, a�er rescaling fDi
and fSi , there exists a continuous,

positively de�nite hermitian form ωα on TY (− logD) such that

(i) over V0 := Y \ D ∪ S , the curvature form
√
−1Θдα (L )↾V0 > r−2D · ωα↾V0 .

(ii) �e singular hermitian metric hαд := д−1α ⊗ h on L −1 ⊗ E is locally bounded on Y , and

smooth outside (D + S). Moreover, hαд is degenerate on D + S .

(iii) �e singular hermitian metric r 2Dh
α
д on L −1 ⊗ E is also locally bounded on Y . �

Remark 2.3. It follows from Proposition 2.2 that both hαд and r 2Dh
α
д can be seen as Finsler

metrics on L −1 ⊗ E which are degenerate on Supp(D + S), and positively de�nite on V0.

Although the last statement of Proposition 2.2.(ii) is not explicitly stated in [PTW18], it
can be easily seen from the proof of [PTW18, Corollary 3.4]. Proposition 2.2 mainly relies on
the asymptotic behavior of the Hodge metric for lower canonical extension of a variation of
Hodge structure (cf. �eorem 2.4 below) when the monodromy around the boundaries are
only quasi-unipotent.

�eorem 2.4 ( [PTW18, Lemma 3.2]). Let H = F 0 ⊃ F 1 ⊃ · · · ⊃ F N ⊃ 0 be a variation of
Hodge structures de�ned over (∆∗)p × ∆

q , where ∆ (resp. ∆∗) is the (resp. punctured) unit disk.
Consider the lower canonical extension lF • over ∆p+q ⊃ (∆∗)p × ∆

q , and denote by (E ,θ ) the
associated Higgs bundle. �en for any holomorphic section s ∈ Γ(U , E ), where U ( ∆

p+q is a
relatively compact open set containing the origin, one has the following norm estimate

|s |hod 6 C
(
(− log |t1 |) · (− log |t2 |) · · · (− log |tp |)

)α
,(2.2.1)

where α is some positive constant independent of s, and t = (t1, . . . , tp+q) denotes to be the
coordinates of ∆p+q .

Let us mention that the estimates of Hodge metric for upper canonical extension were ob-
tained by Peters [Pet84] in one variable, and by Catanese-Kawamata [CK17] in several vari-
ables, based on the work [Sch73,CKS86]. We provide a slightly di�erent proof of�eorem 2.4
for completeness sake, following closely the approaches in [Pet84,CK17].

Proof of �eorem 2.4. �e fundamental groupπ1
(
(∆∗)p×∆q

)
is generated by elementsγ1, . . . ,γp ,

where γj may be identi�ed with the counter-clockwise generator of the fundamental group
of the j-th copy of ∆∗ in (∆∗)p . SetTj to be the monodromy transformation with respect to γj ,
which pairwise commute and are known to be quasi-unipotent; that is, for any multivalued
section v(t1, . . . , tp+q) of H , one has

v(t1, . . . , e2πitj, . . . , tp+q) = Tj · v(t1, . . . , tp+q)
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and [Tj ,Tk ] = 0 for any j,k = 1, . . . ,p. Set Tj = Dj · Uj to be the (unique) Jordan-Chevally
decomposition, so that Dj diagonalizable and Uj is unipotent with [Dj ,Uj] = 0. Since Tj
is quasi-unipotent by the theorem of Borel, all the eigenvalues of Dj are thus the roots of

unity. Set Nj := 1
2πi

∑
k>0(I − Uj)k/k . If Dj = diag.(djℓ) then we set Sj = diag.(λjℓ) with

λjℓ ∈ (−2πi, 0] and exp(λjℓ) = djℓ. Since [Tj ,Tk ] = 0, Jordan-Chevally decomposition implies
that

[Sj , Sk] = [Sj ,Nk ] = [Nj ,Nk ] = 0.(2.2.2)

Fix a point t0 ∈ (∆∗)p × ∆
q , and take a basis v1, . . . ,vr ∈ Vt0 so that S1, . . . , Sp are simultan-

eously diagonal, that is, one has

Sj(vℓ) = λjℓ .(2.2.3)

Let us de�ne v1(t), . . . ,vr (t) to be the induced multivalued �at sections. �en

ej(t) := exp
(
− 1

2πi

p∑

i=1

(Si + Ni) · log ti
)
v j(t)

is single-valued and forms a basis of holomorphic sections for the lower canonical extension
lH .

Recall that djℓ are all roots of unity. One thus can take a positive integerm so thatmjℓ :=
−mλjℓ/2πi are all non-negative integers. Equivalently, eachTmj is unipotent. De�ne a rami�ed
cover

π : ∆p+q → ∆
p+q

(w1, . . . ,wp+q) 7→ (wm
1 , . . . ,w

m
p ,wp+1, . . . ,wp+q)

and set π ′ to be the restriction of π to (∆∗)p×∆q . �en π ′∗F • is a variation of Hodge structure
on (∆∗)p × ∆

q with unipotent monodromy, and we de�ne cπ ′∗H the canonical extension of
π ′∗H . Set u j(w) = π ′∗v j which are multivalued sections for the local system π ′∗H . �en

u j(w1, . . . , e
2πiwj , . . . ,wp+q) = Tmj · u j(w1, . . . ,wp+q).

De�ne

ẽj(w) := exp
(
− 1

2πi

p∑

i=1

mNi · logwi

)
u j(w)(2.2.4)

which forms a basis of cπ ′∗H . Based on the work of [Sch73,CKS86], it was shown in [VZ03,
Claim 7.8] that one has the upper bound of norms

|ẽj(w)|hod 6 C0

(
(− log |w1 |) · (− log |w2 |) · · · (− log |wp |)

)α
(2.2.5)
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for some positive constants C0 and α . One the other hand, we have

π ′∗ej(w) = exp
(
− 1

2πi

p∑

i=1

(Si + Ni ) · logwm
i

)
π ′∗v j(w)

(2.2.2)
= exp

(
− 1

2πi

p∑

i=1

mNi · logwi

)
· exp

(
− 1

2πi

p∑

i=1

mSi logwi

)
π ′∗v j(w)

(2.2.3)
= exp

(
− 1

2πi

p∑

i=1

mNi · logwi

)
· exp

(
− 1

2πi

p∑

i=1

mλij logwi

)
π ′∗v j(w)

=

p∏

i=1

w
mi j

i · exp
(
− 1

2πi

p∑

i=1

mNi · logwi

)
· u j(w)

(2.2.4)
=

p∏

i=1

w
mi j

i · ẽj(w).

By the de�nition of lower canonical extension,mij are all non-negative integers, and thus

π ′∗ |ej |hod(w) = |π ′∗ej(w)|hod =
p∏

i=1

|wi |mi j |ẽj(w)|hod

(2.2.5)
6 C0

(
(− log |w1 |) · (− log |w2 |) · · · (− log |wp |)

)α
.

Hence

|ej |hod(t) 6
C0

mp

(
(− log |t1 |) · (− log |t2 |) · · · (− log |tp |)

)α
.

Note that lH C∞
≃ E . �erefore, for any holomorphic section s ∈ Γ(U , E ), there exist smooth

functions f1, . . . , fr ∈ O(U ) so that s =
∑r
j=1 fjej . �is shows the estimate (2.2.1). �

Remark 2.5. For the Hodge metric of upper canonical extension, one makes the choice that
λjℓ ∈ [0, 2πi) instead of λjℓ ∈ (−2πi, 0] in the proof of �eorem 2.4. �en the same computa-
tion as above can easily show that

|ej |hod(t) 6
p∏

i=1

|ti |−
λi j
2πi

C

mp

(
(− log |t1 |) · (− log |t2 |) · · · (− log |tp |)

)α
,

which were obtained in [CK17].

2.3. A generic local Torelli for VZ Higgs bundle. In this section we prove that the gen-
eric local Torelli holds for any VZ Higgs bundle, which is a crucial step in the proofs of
�eorems A and B.

�eorem F (Generic local Torelli). For the abstract Viehweg-Zuo Higgs bundles de�ned in
De�nition 2.1, the morphism τ1 : TY (− logD) → L −1 ⊗ En−1,1 de�ned in (2.1.1) is generically
injective.

Proof of �eorem F. By De�nition 2.1, the non-zero morphism OY → F0 → L −1 ⊗ En,0

induces a global section s ∈ H0(Y ,L −1 ⊗ En,0), which is generically non-vanishing over
V0 := Y \ D ∪ S . Set

V1 := {y ∈ V0 | s(y) , 0}(2.3.1)

which is a non-empty Zariski open set ofV0. For the �rst stage of VZHiggs bundleL −1⊗En,0,
we equip it with a singular metric hαд := д−1α ⊗ h as in Proposition 2.2, so that Proposi-
tions 2.2.(i) and 2.2.(ii) are satis�ed. Note that hαд is smooth over V0. Let us denote D

′ to be
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the (1, 0)-part of its Chern connection over V0, and Θ0 to be its curvature form. �en by the
Gri�ths curvature formula of Hodge bundles (see [GT84]), over V0 we have

Θ0 = −ΘL ,дα ⊗ 1 + 1 ⊗ Θh(En,0)
= −ΘL ,дα ⊗ 1 − 1 ⊗ (θ ∗n,0 ∧ θn,0)
= −ΘL ,дα ⊗ 1 − θ̃ ∗n,0 ∧ θ̃n,0,(2.3.2)

where we set θ̃n−k ,k := 1 ⊗ θn−k ,k : L −1 ⊗ En−k ,k → L −1 ⊗ En−k−1,k+1 ⊗ ΩY

(
log(D + S)

)
, and

de�ne θ̃ ∗n,0 to be the adjoint of θ̃n,0 with respect to the metric hαд . Hence over V1 one has

−
√
−1∂∂̄ log |s |2hαд =

{√
−1Θ0(s), s

}
hαд

|s |2
hαд

+

√
−1{D′s, s}hαд ∧ {s,D′s}hαд

|s |4
hαд

−
√
−1{D′s,D′s}hαд

|s |2
hαд

6

{√
−1Θ0(s), s

}
hαд

|s |2
hαд

(2.3.3)

thanks to the Lagrange’s inequality
√
−1|s |2hαд · {D′s,D′s}hαд >

√
−1{D′s, s}hαд ∧ {s,D′s}hαд .

Pu�ing (2.3.2) to (2.3.3), over V1 one has

√
−1ΘL ,дα −

√
−1∂∂̄ log |s |2hαд 6 −

{√
−1θ̃ ∗n,0 ∧ θ̃n,0(s), s

}
hαд

|s |2
hαд

=

√
−1

{
θ̃n,0(s), θ̃n,0(s)

}
hαд

|s |2
hαд

(2.3.4)

where θ̃n,0(s) ∈ H0
(
Y ,L −1 ⊗ En−1,1 ⊗ ΩY

(
log(D + S)

) )
. By Proposition 2.2.(ii), for any

y ∈ D ∪ S , one has
lim

y′∈V0,y′→y
|s |2hαд (y

′) = 0.

�erefore, it follows from the compactness of Y that there exists y0 ∈ V0 so that |s |2
hαд
(y0) >

|s |2
hαд
(y) for any y ∈ V0. Hence |s |2hαд (y0) > 0, and by (2.3.1), y0 ∈ V1. Since |s |2hαд is smooth over

V0,
√
−1∂∂̄ log |s |2

hαд
(y0) is semi-negative. By Proposition 2.2.(i),

√
−1ΘL ,дα is strictly positive

at y0. By (2.3.4) and |s |2
h
(y0) > 0, we conclude that

√
−1

{
θ̃n,0(s), θ̃n,0(s)

}
hαд

is strictly positive

at y0. In particular, for any non-zero ξ ∈ TY ,y0 , θ̃n,0(s)(ξ ) , 0. For

τ1 : TY (− logD) → L −1 ⊗ En−1,1

in (2.1.1), over V0 it is de�ned by τ1(ξ ) := θ̃n,0(s)(ξ ), which is thus injective at y0 ∈ V1. Hence
τ1 is generically injective. �e theorem is thus proved. �

Remark 2.6. Let us stress here that, we cannot give a precise description of the loci where τ1 is
injective, for our method in proving �eorem F relies on the global aspects of the VZ Higgs
bundles. Roughly speaking, the bigness of L forces τ1 to be injective at least one point,
which is analogous to Demailly’s (weak) holomorphic Morse inequality [Dem12, §8.2(a)].

2.4. Finsler metric and (pseudo) Kobayashi hyperbolicity. �roughout this subsection
X will denoted to be a complex manifold of dimension n.



ANALYTIC SHAFAREVICH HYPERBOLICITY CONJECTURE 33

De�nition 2.7 (Finslermetric). LetE be a holomorphic vector bundle onX . A Finslermetric3

on E is a real non-negative continuous function F : E →[0,+∞[ such that

F (av) = |a |F (v)
for any a ∈ C and v ∈ E . �e Finsler metricF is positively de�nite at some subset S ⊂ X if
for any x ∈ S and any non-zero vector v ∈ Ex , F (v) > 0.

When F is a Finsler metric on TX , we also say that F is a Finsler metric on X .
Let E and G be two locally free sheaves on X , and suppose that there is a morphism

φ : SymmE → G

�en for any Finsler metric F on G , φ induces a pseudo metric (φ∗F ) 1
m on E de�ned by

(φ∗F ) 1
m (e) := F

(
φ(e⊗m)

) 1
m(2.4.1)

for any e ∈ E . It is easy to verify that (φ∗F ) 1
m is also a Finsler metric on E . Moreover, if over

some open setU , φ is an injection as a morphism between vector bundles, and F is positively

de�nite overU , then (φ∗F ) 1
m is also positively de�nite overU .

De�nition 2.8. (i) �eKobayashi-Royden in�nitesimal pseudo-metric ofX is a length func-
tion κX : TX → [0,+∞[, de�ned by

κX (ξ ) = inf
γ

{
λ > 0 | ∃γ : D→ X ,γ (0) = x, λ · γ ′(0) = ξ

}
(2.4.2)

for any x ∈ X and ξ ∈ TX , where D denotes the unit disk in C.
(ii) �e Kobayashi pseudo distance of X , denoted by dX : X × X → [0,+∞[, is

dX (p,q) = inf
ℓ

∫ 1

0
κX

(
ℓ′(τ )

)
dτ

for every pair of points p,q ∈ X , where the in�mum is taken over all di�erentiable
curves ℓ : [0, 1] → X joining p to q.

(iii) Let ∆ ( X be a closed subset. A complex manifold X is Kobayashi hyperbolic modulo ∆
if dX (p,q) > 0 for every pair of distinct points p,q ∈ X not both contained in ∆. When
∆ is an empty set, the manifoldX is Kobayashi hyperbolic; when ∆ is proper and Zariski
closed, the manifold X is pseudo Kobayashi hyperbolic.

By de�nition it is easy to show that if X is Kobayashi hyperbolic (resp. pseudo Kobayashi
hyperbolic), then X is Brody hyperbolic (resp. algebraically degenerate). Brody’s theorem
says that when X is compact, X is Kobayashi hyperbolic if it is Brody hyperbolic. How-
ever unlike the case of Kobayashi hyperbolicity, no criteria is known for pseudo Kobayashi
hyperbolicity of a compact complex space in terms of entire curves. Moreover, there are
many examples of complex (quasi-projective) manifolds which are Brody hyperbolic but not
Kobayashi hyperbolic.

For any holomorphicmapγ : D→ X , the Finsler metric F induces a continuous Hermitian
pseudo-metric on D

γ ∗F 2 =
√
−1λ(t)dt ∧ dt̄ ,

where λ(t) is a non-negative continuous function on D. �e Gaussian curvature Kγ ∗F 2 of the

pseudo-metric γ ∗F 2 is de�ned to be

Kγ ∗F 2 := −1

λ

∂2 log λ

∂t∂t̄
.(2.4.3)

3�is de�nition is a bit di�erent from the de�nition in [Kob98], which requires convexity or triangle inequal-
ity, and the Finsler metric there can be upper-semi continuous.
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De�nition 2.9. Let X be a complex manifold endowed with a Finsler metric F .

(i) For any x ∈ X , and v ∈ TX ,x , let [v] denote the complex line spanned by v . We de�ne
the holomorphic sectional curvature KF ,[v] in the direction of [v] by

KF ,[v] := supKγ ∗F 2(0)
where the supremum is taken over all γ : D→ X such that γ (0) = x and [v] is tangent
to γ ′(0).

(ii) We say that F is negatively curved if there is a positive constant c such that KF ,[v] 6 −c
for all v ∈ TX ,x for which F (v) > 0.

(iii) A point x ∈ X is a degeneracy point of F if F (v) = 0 for some nonzero v ∈ TX ,x , and the
set of such points is denoted by ∆F .

As mentioned in § 0, our negatively curved Finsler metrics are only constructed on bira-
tional models of the base spaces in �eorems A and C, we thus have to establish bimero-
morphic criteria for (pseudo) Kobayashi hyperbolicity to prove the main theorems.

Lemma 2.10 (Bimeromorphic criteria for pseudo Kobayashi hyperbolicity). Let µ : X → Y

be a bimeromorphic morphism between complex manifolds. If there exists a Finsler metric F on
X which is negatively curved in the sense of De�nition 2.9.(ii), then X is Kobayashi hyperbolic
modulo∆F , andY is Kobayashi hyperbolicmodulo µ

(
Ex(µ)∪∆F

)
, where Ex(µ) is the exceptional

locus of µ. In particular, when ∆F is a proper analytic subvariety ofX , bothX and Y are pseudo
Kobayashi hyperbolic.

Proof. �e �rst statement is a slight variant of [Kob98, �eorem 3.7.4]. By normalizing F
we may assume that KF 6 −1. By the Ahlfors-Schwarz lemma, one has F 6 κX . Let δF :
X × X → [0,+∞[ be the distance function on X de�ned by F in a similar way as dX :

δF (p,q) := inf
ℓ

∫ 1

0
F
(
ℓ′(τ )

)
dτ

for every pair of points p,q ∈ X , where the in�mum is taken over all di�erentiable curves
ℓ : [0, 1] → X joiningp to q. Since F is continuous and positively de�nite overX \∆F , for any
p ∈ X \ ∆F , one has dX (p,q) > δF (p,q) > 0 for any q , p, which proves the �rst statement.

Let us denote by Hol(Y ,y) to be the set of holomorphic maps γ : D → Y with γ (0) = y.
Pick any point y ∈ U := Y \ µ

(
Ex(µ)

)
, then there is a unique point x ∈ X with µ(x) = y.

Hence µ induces a bijection between the sets

Hol(X ,x) ≃→ Hol(Y ,y)
de�ned by γ̃ 7→ µ ◦ γ̃ . Indeed, observe that µ−1 : Y d X is a meromorphic map, so is µ−1 ◦γ
for any γ ∈ Hol(Y ,y). Since dimD = 1, the map µ−1 ◦γ is moreover holomorphic. It follows
from (2.4.2) that

κX (ξ ) = κY
(
µ∗(ξ )

)

for any ξ ∈ TX ,x . Hence one has

µ∗κY |µ−1(U ) = κX |µ−1(U ) > F |µ−1(U ).

LetG : TU → [0,+∞[ be the Finsler metric onU so that µ∗G = F |µ−1(U ). �enG is continuous
and positively de�nite overU \ µ(∆F ), and one has

κY |U > G .

�erefore, for any y ∈ Y \ µ
(
∆F ∪ Ex(µ)

)
, one has dY (y, z) > 0 for any z , y, which proves

the second statement. �

�e above criteria can be re�ned further to show the Kobayashi hyperbolicity of the com-
plex manifold.
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Lemma 2.11 (Bimeromorphic criteria for Kobayashi hyperbolicity). LetX be a complexman-

ifold. Assume that for each point p ∈ X , there is a bimeromorphic morphism µ : X̃ → X with

X̃ equipped with a negatively curved Finsler metric F such that p < µ
(
∆F ∪ Ex(µ)

)
. �en X is

Kobayashi hyperbolic.

Proof. It su�ces to show that dX (p,q) > 0 for every pair of distinct points p,q ∈ X . We take
the bimeromorphic morphism µ : X̃ → X in the lemma with respect to p. By Lemma 2.10, X
is Kobayashi hyperbolic modulo µ

(
∆F ∪Ex(µ)

)
, which shows that dX (p,q) > 0 for any q , p.

�e lemma follows. �

2.5. Curvature formula. Let (Ẽ , θ̃ ) be theVZHiggs bundles on a quasi-projectivemanifold
V de�ned in § 2.1. In the next two subsections, we will construct a negatively curved Finsler

metric on V via (Ẽ , θ̃ ). Our main result is the following.

�eorem 2.12 (Existence of negatively curved Finsler metrics). Same notations as De�ni-
tion 2.1. Assume that τ1 is injective over a non-empty Zariski open set V1 ⊆ Y \ D ∪ S . �en
there exists a Finsler metric F (see (2.6.6) below) on TY (− logD) such that

(i) it is positively de�nite over V1.
(ii) When F is seen as a Finsler metric on V = Y \ D, it is negatively curved in the sense of

De�nition 2.9.(ii).

Let us �rst construct the desired Finsler metric F , and we then proved the curvature prop-
erty. By (2.1.1), for each k = 1, . . . ,n, there exists

τk : Sym
kTY (− logD) → L −1 ⊗ En−k ,k .(2.5.1)

�en it follows from Proposition 2.2.(ii) that the Finsler metric hαд on L −1 ⊗ En−k ,k induces
a Finsler metric Fk on TY (− logD) de�ned as follows: for any e ∈ TY (− logD)y ,

Fk(e) := (τ ∗kh
α
д )

1
k (e) = hαд

(
τk(e⊗k )

) 1
k(2.5.2)

For any γ : D→ V , one has

dγ : TD → γ ∗TV ֒→ γ ∗TY (− logD)
and thus the Finsler metric Fk induces a continuous Hermitian pseudo-metric on D, denoted
by

γ ∗F 2k :=
√
−1Gk (t)dt ∧ dt̄ .(2.5.3)

In general, Gk (t) may be identically equal to zero for all k . However, if we further assume
that γ (D) ∩ V1 , ∅, by the assumption in �eorem 2.12 that the restriction of τ1 to V1 is
injective, one hasG1(t) . 0. Denote by ∂t :=

∂
∂t
the canonical vector �elds in D, and ∂̄t :=

∂
∂t̄

its conjugate. Set C := γ−1(V1), and note that D \C is a discrete set in D.

Lemma 2.13. Assume that Gk (t) . 0 for some k > 1. �en the Gaussian curvature Kk of the
continuous pseudo-hermitian metric γ ∗F 2

k
onC satis�es that

Kk := −∂
2 logGk
∂t∂t̄

/Gk 6
1

k

(
−

( Gk
Gk−1

)k−1
+

(Gk+1
Gk

)k+1)
(2.5.4)

over C ⊂ D.

Proof. For i = 1, . . . ,n, let us write ei := τi
(
dγ (∂t )⊗i

)
, which can be seen as a section of

γ ∗(L −1 ⊗ En−i,i). �en by (2.5.2) one observes that

Gi(t) = ‖ei ‖2/ihαд
.(2.5.5)
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Let Rk = Θhαд (L −1 ⊗ En−k ,k) be the curvature form of L −1 ⊗ En−k ,k on V0 := Y \ D ∪ S

induced by the metric hαд = д
−1
α · h de�ned in Proposition 2.2.(ii), and let D′ be the (1, 0)-part

of the Chern connection D of (L −1 ⊗ En−k ,k ,hαд ). �en for k = 1, . . . ,n, one has

−
√
−1∂∂̄ logGk =

1

k

(
{√

−1Rk(ek ), ek
}
hαд

‖ek ‖2hαд
+

√
−1{D′ek , ek}hαд ∧ {ek ,D′ek}hαд

‖ek ‖4hαд
−
√
−1{D′ek ,D′ek}hαд

‖ek ‖2hαд

)

6
1

k

{√
−1Rk(ek), ek

}
hαд

‖ek ‖2hαд

thanks to the Lagrange’s inequality

√
−1‖ek ‖2hαд · {D

′ek ,D
′ek}hαд >

√
−1{D′ek , ek}hαд ∧ {ek ,D′ek}hαд .

Hence

−∂
2 logGk
∂t∂t̄

6
1

k
·

〈
Rk(ek)(∂t , ∂̄t ), ek

〉
hαд

‖ek ‖2hαд
.(2.5.6)

Recall that for the logarithmic Higgs bundle (
⊕n

k=0 E
n−k ,k ,

⊕n
k=0 θn−k ,k), the curvature Θk

on En−k ,k
↾V0

induced by the Hodge metric h is given by

Θk = −θ ∗n−k ,k ∧ θn−k ,k − θn−k+1,k−1 ∧ θ
∗
n−k+1,k−1,

where we recall that θn−k ,k : En−k ,k → En−k−1,k+1 ⊗ ΩY

(
log(D + S)

)
. Set θ̃n−k ,k := 1 ⊗ θn−k ,k :

L −1 ⊗ En−k ,k → L −1 ⊗ En−k−1,k+1 ⊗ ΩY

(
log(D + S)

)
, and one has

L −1 ⊗ En−k+1,k−1

θ̃n−k+1,k−1(∂t )
,,
L −1 ⊗ En−k ,k

θ̃∗
n−k+1,k−1(∂̄t )

ll

θ̃n−k,k (∂t )
--

L −1 ⊗ En−k−1,k+1

θ̃∗
n−k,k (∂̄t )

ll

where θ̃ ∗
n−k ,k is the adjoint of θ̃n−k ,k with respect to the metric hαд over Y \ D ∪ S . Here we

also write ∂t (resp. ∂̄t ) for dγ (∂t ) (resp. dγ (∂̄t ) ) abusively. �en over V0, we have

Rk = −ΘL ,дα ⊗ 1 + 1 ⊗ Θk = −ΘL ,дα ⊗ 1 − θ̃ ∗n−k ,k ∧ θ̃n−k ,k − θ̃n−k+1,k−1 ∧ θ̃
∗
n−k+1,k−1.

(2.5.7)

By the de�nition of τk in (2.1.1), for any k = 2, . . . ,n one has

ek = θ̃n−k+1,k−1(∂t )(ek−1),(2.5.8)
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and we can derive the following curvature formula

〈Rk(ek)(∂t , ∂̄t ), ek
〉
hαд
= −ΘL ,дα (∂t , ∂̄t )‖ek ‖2hαд+〈
θ̃ ∗n−k ,k(∂̄t ) ◦ θ̃n−k ,k(∂t )(ek ) − θ̃n−k+1,k−1(∂t ) ◦ θ̃

∗
n−k+1,k−1(∂̄t )(ek ), ek

〉
hαд

6
〈
θ̃ ∗n−k ,k(∂̄t ) ◦ θ̃n−k ,k(∂t )(ek ), ek

〉
hαд

−
〈
θ̃n−k+1,k−1(∂t ) ◦ θ̃ ∗n−k+1,k−1(∂̄t )(ek), ek

〉
hαд

(2.5.8)
= ‖ek+1‖2hαд − ‖θ̃ ∗n−k+1,k−1(∂̄t )(ek )‖

2
hαд

6 ‖ek+1‖2hαд −
|
〈
θ̃ ∗
n−k+1,k−1(∂̄t )(ek ), ek−1

〉
hαд
|2

‖ek−1‖2hαд
(Cauchy-Schwarz inequality)

= ‖ek+1‖2hαд −
|
〈
ek , θ̃n−k+1,k−1(∂t )(ek−1)

〉
hαд
|2

‖ek−1‖2hαд
(2.5.8)
= ‖ek+1‖2hαд −

‖ek ‖4hαд
‖ek−1‖2hαд

(2.5.5)
= Gk+1

k+1 −
G2k
k

Gk−1
k−1

Pu�ing this into (2.5.6), we obtain (2.5.4). �

Remark 2.14. For the �nal stage E0,n of the Higgs bundle (
⊕n

q=0 E
n−q,q,

⊕n
q=0 θn−q,q). We

make the convention that Gn+1 ≡ 0. �en the Gaussian curvature for Gn in (2.5.6) is al-
ways semi-negative, which is similar as the Gri�ths curvature formula for Hodge bundles
in [GT84].

When k = 1, by (2.5.6) one has

−∂
2 logG1

∂t∂t̄
/G1 6

〈
R1(e1)(∂t , ∂̄t ), e1

〉
hαд

‖e1‖4hαд
(2.5.7)
=

−ΘL ,дα (∂t , ∂̄t )
‖e1‖2hαд

+

〈
θ̃ ∗n−1,1(∂̄t ) ◦ θ̃n−1,1(∂t )(e1) − θ̃n,0(∂t ) ◦ θ̃ ∗n,0(∂̄t )(e1), e1

〉
hαд

‖e1‖4hαд
(2.5.8)
6

−ΘL ,дα (∂t , ∂̄t )‖e1‖2hαд + ‖e2‖2hαд
‖e1‖4hαд

=

−ΘL ,дα (∂t , ∂̄t )
‖e1‖2hαд

+

(G2

G1

)2

We need the following lemma to control the negative term in the above inequality.
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Lemma 2.15. When α ≫ 0, there exists a universal constant c > 0, such that for any γ : D→
V with γ (D) ∩V0 , ∅, one has

ΘL ,дα (∂t , ∂̄t )
‖e1‖2hαд

> c .

In particular,

−∂
2 logG1

∂t∂t̄
/G1 6 −c +

(G2

G1

)2

Proof. By Proposition 2.2.(ii), it su�ces to prove that

γ ∗
(
r−2D · ωα

)
(∂t , ∂̄t )

‖e1‖2hαд
> c .(2.5.9)

Note that
γ ∗

(
r−2D · ωα

)
(∂t , ∂̄t )

‖e1‖2hαд
=

γ ∗
(
ωα

)
(∂t , ∂̄t )

γ ∗(r 2
D
) · ‖e1‖2hαд

=

γ ∗ωα (∂t , ∂̄t )
γ ∗τ ∗1 (r 2D · hαд )(∂t , ∂̄t )

,

where τ ∗1 (r 2D ·hαд ) is the Finslermetric onTY (− logD) de�ned by (2.4.1). By Proposition 2.2.(iii),
ωα is a positively de�nite Hermitian metric on TY (− logD). Since Y is compact, there exists
a uniform constant c > 0 such that

ωα > cτ ∗1 (r 2D · hαд ).

We thus obtained the desired inequality (2.5.9). �

In summary, we have the following curvature estimate for the Finsler metrics F1, . . . , Fn
de�ned in (2.5.2), which is similar as [Sch17b, Lemma 9] for the Weil-Petersson metric.

Proposition 2.16. For any γ : D → V such that γ (D) ∩ V1 , ∅. Assume that Gk . 0 for
k = 1, . . . ,q, and Gq+1 ≡ 0 (thus Gj ≡ 0 for all j > q + 1). �en q > 1, and over C := γ−1(V1),
which is a complement of a discrete set in D, one has

−∂
2 logG1

∂t∂t̄
/G1 6 −c +

(G2

G1

)2
(2.5.10)

−∂
2 logGk
∂t∂t̄

/Gk 6
1

k

(
−

( Gk
Gk−1

)k−1
+

(Gk+1
Gk

)k+1)
∀1 < k 6 q.(2.5.11)

Here the constant c > 0 does not depend on the choice of γ .

2.6. Construction of the Finsler metric. By Proposition 2.16, we observe that none of
the Finsler metrics F1, . . . , Fn de�ned in (2.5.2) is negatively curved. Following the similar
strategies in [TY15,Sch17b,BPW17], we construct a new Finsler metric F (see (2.6.6) below)
by de�ning a convex sum of all F1, . . . , Fn, to cancel the positive terms in (2.5.10) and (2.5.11)
by negative terms in the next stage. By Remark 2.14, we observe that the highest last order
term is always semi-negative. We mainly follow the computations in [Sch17b], and try to
make this subsection as self-contained as possible. Let us �rst recall the following basic
inequalities by Schumacher.

Lemma 2.17 ( [Sch12, Lemma 8]). Let V be a complex manifold, and let G1, . . . ,Gn be non-
negative C 2 functions on V . �en

√
−1∂∂̄ log(

n∑

i=1

Gi) >
∑n
j=1Gj

√
−1∂∂̄ logGj∑n
i=1Gi

(2.6.1)
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Lemma 2.18 ([Sch17b, Lemma 17]). Let αj > 0 for j = 1, . . . ,n. �en for all xj > 0
n∑

j=2

(αjx j+1j − αj−1x jj )x
2
j−1 · . . . · x21

>
1

2

(
−
α3
1

α2
2

x21 +
αn−1n−1
αn−2n

x2n · . . . · x21 +
n−1∑

j=2

(
α
j−1
j−1

α
j−2
j

−
α
j+2
j

α
j+1
j+1

)
x2j · . . . · x21

)
(2.6.2)

Set xj =
G j

G j−1
for j = 2, . . . ,n and x1 := G1 where Gj > 0 for j = 1, . . . ,n. Put them into

(2.6.2) and we obtain

n∑

j=2

(
αj
G
j+1
j

G
j−1
j−1

− αj−1
G
j
j

G
j−2
j−1

)

>
1

2

(
−
α3
1

α2
2

G2
1 +

αn−1n−1
αn−2n

G2
n +

n−1∑

j=2

(
α
j−1
j−1

α
j−2
j

−
α
j+2
j

α
j+1
j+1

)
G2
j

)
(2.6.3)

�e following technical lemma is crucial in constructing our negatively curved Finsler
metric F .

Lemma 2.19 ( [Sch17b, Lemma 10]). Let F1, . . . , Fn be Finsler metrics on a complex space X ,
with the holomorphic sectional curvatures denoted by K1, . . . ,Kn . �en for the Finsler metric

F := (F 21 + . . . + F 2n )1/2, its holomorphic sectional curvature

KF 6

∑n
j=1KjF

4
j

F 4
.(2.6.4)

Proof. For any holomorphic map γ : D → X , we denote by G1, . . . ,Gn the semi-positive
functions on D such that

γ ∗F 2i =
√
−1Gidt ∧ dt̄

for i = 1, . . . ,n. �en

γ ∗F 2 =
√
−1(

n∑

i=1

Gi)dt ∧ dt̄ ,

and it follows from (2.4.3) that the Gaussian curvature of γ ∗F 2

Kγ ∗F 2 = − 1∑n
i=1Gi

∂2 log(∑n
i=1Gi)

∂t∂t̄

(2.6.1)
6 − 1

(∑n
i=1Gi)2

n∑

j=1

Gj

∂2 logGj

∂t∂t̄

6

∑n
j=1KjG

2
j

(∑n
i=1Gi)2

.

�e lemma follows from De�nition 2.9.(i). �

For any γ : D → V with C := γ−1(V1) , ∅, we de�ne a Hermitian pseudo-metric σ :=√
−1H(t)dt ∧ dt̄ on D by taking convex sum in the following form

H(t) :=
n∑

k=1

kαkGk (t),

whereGk is de�ned in (2.5.3), and α1, . . . ,αn ∈ R+ are some universal constantswhich will be
�xed later. Following the similar estimate in [Sch17b, Proposition 11], one can choose those
constants properly such that the Gaussian curvature Kσ of σ is uniformly bounded.
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Proposition2.20. �ere exists universal constants 0 < α1 6 . . . 6 αn andK > 0 (independent
of γ : D→ V ) such that the Gaussian curvature

Kσ 6 −K .
onC.

Proof. It follows from (2.6.4) that

Kσ 6
1

H2

n∑

j=1

jαjKjG
2
j

and

Kj := −
∂2 logGj

∂t∂t̄
/Gj .

By Proposition 2.16, one has

Kσ 6
α1G

2
1

H2

(
− c +

(G2

G1

)2)
+

1

H2

n∑

j=2

αjG
2
j

(
−

( Gj

Gj−1

) j−1
+

(Gj+1

Gj

) j+1)

6
1

H2

(
− cα1G2

1 −
n∑

j=2

(
αj
G
j+1
j

G
j−1
j−1

− αj−1
G
j
j

G
j−2
j−1

))

(2.6.3)
6

1

H2

((
− c + 1

2

α2
1

α2
2

)
α1G

2
1 +

1

2

n−1∑

j=2

(α j+2j

α
j+1
j+1

−
α
j−1
j−1

α
j−2
j

)
G2
j −

1

2

αn−1n−1
αn−2n

G2
n

)

=: − 1

H2

n∑

j=1

βjG
2
j

One can take α1 = 1, and choose the further αj > αj−1 inductively such that minj βj > 0. Set

β0 := minj
βj

(jα j )2 . �en

Kσ 6 − 1

H2
β0

n∑

j=1

(jαjGj )2

6 − β0

nH2
(
n∑

j=1

jαjGj )2

= −β0
n
=: −K .

Note that α1, . . . ,αn and K is universal. �e lemma is thus proved. �

It follows from Proposition 2.20 and (2.4.3) that one has the following estimate

∂2 logH(t)
∂t∂t̄

> KH(t) > 0(2.6.5)

over the Zariski dense open set C ⊆ D, and in particular logH(t) is a subharmonic function
over C. Since H(t) ∈[0,+∞[ is continuous (in particular locally bounded from above) over
D, logH(t) is a subharmonic function over D, and the estimate (2.6.5) holds over the whole
D.

In summary, we construct a negatively curved Finsler metric F on Y \ D, de�ned by

F := (
n∑

k=1

kαkF
2
k )

1/2,(2.6.6)
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where Fk is de�ned in (2.5.2), such that γ ∗F 2 =
√
−1H(t)dt ∧ dt̄ for any γ : D → V . Since

we assume that τ1 is injective over V0, the Finsler metric F1 is positively de�nite on V0, and
a fortiori F . �erefore, we �nish the proof of �eorem 2.12.

2.7. Existence of Viehweg-Zuo Higgs bundles. For the smooth family U → V in �e-
orem A, it was shown in [PTW18, Proposition 2.7] that there is a VZ Higgs bundle over
some birational model Ṽ of V . Indeed, using the deep theory of mixed Hodge modules, they
can even construct VZ Higgs bundles over the bases of maximal variational smooth families
whose geometric generic �ber admits a good minimal model. In this subsection we provide
a construction of VZ Higgs bundles over the base space V (up to a birational model and a
projective compacti�cation) in �eorem A combining the methods in [PTW18] and [VZ02]
without using the tools of mixed Hodge modules for completeness sake. In § 3, we show
how to re�ne this construction to prove �eorem C.

�eorem 2.21 (Popa-Taji-Wu). Let U → V be the smooth family in �eorem A. �en a�er

replacingV by a birational model Ṽ , there is a smooth compacti�cation Y ⊃ Ṽ and a VZ Higgs

bundle over Ṽ .

Proof. By �eorem 1.25, one can take a birational morphism ν : Ṽ → V and a smooth
compacti�cation f : X → Y of U r ×V Ṽ → Ṽ so that there exists a hypersurface

H ∈ |ℓΩn
X/Y (log∆) − ℓ f

∗L + ℓE |, n := dimX − dimY(2.7.1)

with L a big and nef line bundle over Y satisfying that

(1) the complement D := Y \ Ṽ is simple normal crossing.
(2) �e hypersurface H is smooth over some Zariski open set V0 ⊂ Ṽ with D + S := Y \ V0

simple normal crossing.
(3) �e divisor E is e�ective and f -exceptional divisor with f (E) ∩V0 = ∅.
(4) �e augmented base locus B+(L ) ∩V0 = ∅.

Here we denote by ∆ := f −1(D) so that (X ,∆) → (Y ,D) is a log morphism. Within this basic
setup, let us �rst introduce two Higgs bundles in the theorem following [VZ02, §4]. Leaving
out a codimension two subvariety of Y supported on D + S , we assume that

• the morphism f is �at, and E in (2.7.1) disappears.
• �e divisorD+S is smooth. Moreover, both ∆ and Σ = f −1S are relative normal crossing.

Set L := Ω
n
X/Y (log ∆). Let δ : W → X be a blow-up of X with centers in ∆ + Σ such that

δ ∗(H + ∆ + Σ) is a normal crossing divisor. One thus obtains a cyclic covering of δ ∗H , by
taking the ℓ-th root out of δ ∗H . LetZ to be a strong desingularization of this covering, which
is smooth over V0 by (2). We denote the compositions by h :W → Y and д : Z → Y , whose
restrictions toV0 are both smooth. Write Π := д−1(S∪D)which can be assumed to be normal
crossing. Leaving out codimension two subvariety supported D + S further, we assume that
h and д are also �at, and both δ ∗(H + ∆ + Σ) and Π are relative normal crossing. Set

Fn−q,q := Rqh∗
(
δ ∗

(
Ω
n−q
X/Y (log∆)

)
⊗ δ ∗L−1 ⊗ OW

(
⌊δ

∗H

ℓ
⌋
) )
/torsion.

It was shown in [VZ02, §4] that there exists a natural edge morphism

τn−q,q : F
n−q,q → Fn−q−1,q+1 ⊗ ΩY (logD),(2.7.2)

which gives rise to the �rst Higgs bundle
(⊕n

q=0 F
n−q,q,

⊕n
q=0 τn−q,q

)
de�ned over a big open

set of Y containing V0.
Write Z0 := Z \ Π. �en the local system Rnд∗C↾Z0 extends to a locally free sheafV on Y

(hereY is projective rather than the big open set!) equippedwith the logarithmic connection

∇ : V → V ⊗ ΩY

(
log(D + S)

)
,
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whose eigenvalues of the residues lie in [0, 1) (the so-called lower canonical extension). By
[Sch73, CKS86, Kol86], the Hodge �ltration of Rnд∗C↾Z0 extends to a �ltration V := F 0 ⊃
F 1 ⊃ · · · ⊃ F n of subbundles so that their graded sheaves En−q,q := F n−q/F n−q+1 are also
locally free, and there exists

θn−q,q : E
n−q,q → En−q−1,q+1 ⊗ ΩY (logD + S).

�is de�nes the second Higgs bundle
(⊕n

q=0 E
n−q,q,θn−q,q

)
. As observed in [VZ02, VZ03],

En−q,q = Rqд∗Ω
n−q
Z/Y (logΠ) over a big open set of Y by the theorem of Steenbrink [Ste77,

Zuc84]. By the construction of the cyclic cover Z , this in turn implies the following com-
mutative diagram over a big open set of Y :

L −1 ⊗ En−q,q
1⊗θn−q,q // L −1 ⊗ En−q−1,q+1 ⊗ ΩY

(
log(D + S)

)

Fn−q,q

ρn−q,q

OO

τn−q,q // Fn−q−1,q+1 ⊗ ΩY (logD)

ρn−q−1,q+1⊗ι
OO

(2.7.3)

as shown in [VZ03, Lemma 6.2] (cf. also [VZ02, Lemma 4.4]).
Note that all the objects are de�ned on a big open set ofY except for

(⊕n
q=0 E

n−q,q,θn−q,q
)
,

which are de�ned on the whole Y . Following [VZ03, §6], for every q = 0, . . . ,n, we de�ne
Fn−q,q to be the re�exive hull, and the morphisms τn−q,q and ρn−q,q extend naturally.

To conclude that
(⊕n

q=0 L −1 ⊗ En−q,q,
⊕n

q=0 1⊗ θn−q,q
)
is a VZ Higgs bundle as in De�n-

ition 2.1, we have to introduce a sub-Higgs sheaf with log poles supported on D. Write

θ̃n−q,q := 1 ⊗ θn−q,q for short. Following [VZ02, Corollary 4.5] (cf. also [PTW18]), for each
q = 0, . . . ,n, we de�ne a coherent torsion-free sheaf Fq := ρn−q,q(Fn−q,q) ⊂ En−q,q . By
Fn,0 ⊃ OY , F0 ⊃ OY . By (2.7.2) and (2.7.3), one has

θ̃n−q,q : Fq → Fq+1 ⊗ ΩY (logD),
and let us by ηq the restriction of θ̃n−q,q to Fq . �en (F ,η) :=

(⊕n
q=0 Fq,

⊕n
q=0 ηq

)
is a

sub-Higgs bundle of (Ẽ , θ̃ ) :=
(⊕n

q=0 L −1 ⊗ En−q,q,
⊕n

q=0 θ̃n−q,q
)
. �

Remark 2.22. �e methods we presented in the above proof were originally established in
[VZ02] for the construction of Viehweg-Zuo sheaf.

2.8. Proofs of �eorems A and B.

Proof of �eorem A. By�eorem 2.21, there is a VZ Higgs bundle over some birational model
Ṽ of V . By �eorem F and �eorem 2.12, we can associate this VZ Higgs bundle with a
negatively curved Finsler metric which is positively de�nite over some Zariski dense open
set of Ṽ . �e theorem follows directly from the bimeromorphic criteria for pseudo Kobayashi
hyperbolicity in Lemma 2.10. �

A standard inductive arguments in [VZ03,PTW18] can easily show that�eoremA implies
�eorem B.

Proof of �eorem B. Wewill proceed by contradiction. Suppose that there exists a non-constant

holomorphic map γ : C → V . By �eorem A, γ cannot be Zariski dense. Let Z := γ (C)Zar

be its Zariski closure, which is an irreducible quasi-projective variety. Take a desingular-
ization π : Z ′ → Z , and the entire curve γ can be li�ed to a Zariski dense curve in Z ′,
denoted by γ ′ : C → Z ′. Note that the moduli map φW ′ : Z ′ → Ph associated with
(W ′ := U ×V Z ′ → Z ′,H ) ∈ Ph(Z ′) is the composition of the morphism Z ′ → V and the
quasi-�nite moduli map φU : V → Ph associated with (f : U → V ,H ) ∈ Ph(V ). �erefore,
the morphism φW ′ is generically �nite, which implies that the smooth familyU ×V Z ′ → Z ′
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is of maximal variation. By �eorem A again, Z ′ must be algebraically degenerate. �is is a
contradiction. �

3. Kobayashi hyperbolicity of the moduli spaces

In this section, for e�ectively parametrized smooth family of minimal projective mani-
folds of general type, we re�ne the Viehweg-Zuo Higgs bundles in �eorem 2.21 so that
we can apply �eorem 2.12 and the bimeromorphic criteria for Kobayashi hyperbolicity in
Lemma 2.11 to prove �eorem C.

�eorem 3.1. LetU → V be an e�ectively parametrized smooth family of minimal projective
manifolds of general type over the quasi-projective manifoldV . �en for any given pointy ∈ V ,
there exists a smooth projective compacti�cation Y for a birational model ν : Ṽ → V , and a VZ

Higgs bundle (Ẽ , θ̃ ) ⊃ (F ,η) over Y satisfying the following properties:

(i) there is a Zariski open setV0 ofV containingy so that ν : ν−1(V0) → V0 is an isomorphism.

(ii) Both D := Y \ Ṽ and D + S := Y \ ν−1(V0) are simple normal crossing divisors in Y .

(iii) �e Higgs bundle (Ẽ, θ̃) has log poles supported onD∪S , that is, θ̃ : Ẽ → Ẽ ⊗
(
log(D+S)

)
.

(iv) �e morphism

τ1 : TY (− logD) → L −1 ⊗ En−1,1(3.0.1)

induced by the sub-Higgs sheaf (F ,η) is injective over V0.
Proof. �e proof is a continuation of that of �eorem 2.21, and we will adopt the same nota-
tions.

We �rst prove that for any y ∈ V , the set of z ∈ V with Xz
bir∼ Xy is �nite. Take a

polarization H forU → V with the Hilbert polynomial h. Denote by Ph(V ) the set of such
pairs (U → V ,H ), up to isomorphisms and up to �berwise numerical equivalence for H .
By [Vie95, Section 7.6], there exists a coarse quasi-projective moduli scheme Ph for Ph, and
thus the family induces a morphism V → Ph. By the assumption that the family U → V is
e�ectively parametrized, the induced morphismV → Ph is quasi-�nite, which in turn shows
that the set of z ∈ V with Xz isomorphic to Xy is �nite. Note that a projective manifold of

general type has �nitely many minimal models. Hence the set of z ∈ V ′ with Xz
bir∼ Xy is

�nite as well.
Now we will choose the hypersurface in (2.7.1) carefully so that the cyclic cover construc-

tion in �eorem 2.21 can provide the desired re�ned VZ Higgs bundle. Let Y ′ ⊃ V be the
smooth compacti�cation in Corollary A.2. By �eorem 1.24, for any given point y ∈ V and
any su�ciently ample line bundle A on Y ′, there exists a birational morphism ν : Y → Y ′

and a new algebraic �ber space f : X → Y so that one can �nd a hypersurface

H ∈ |ℓΩn
X/Y (log∆) − ℓ(ν ◦ f )

∗A + ℓE |, n := dimX − dimY(3.0.2)

satisfying that

• the inverse image D := ν−1(Y ′ \V ) is a simple normal crossing divisor.
• �ere exists a reduced divisor S so that D + S is simple normal crossing, and H → Y is
smooth over V0 := Y \ (D ∪ S).

• �e restriction ν : ν−1(V0) → V0 is an isomorphism.
• �e given point y is contained in V0.
• �e divisor E is e�ective and f -exceptional with f (E) ⊂ Supp(D + S).
• For any z ∈ V := ν−1(V ′), the canonical bundle of the �ber Xz := f −1(z) is big and nef.
• �e restricted family f −1(V0) → V0 is smooth and e�ectively parametrized.

Here we set ∆ := f ∗D and Σ := f ∗S . Write L := ν∗A . Now we take the cyclic cover with
respect to H in (3.0.2) instead of that in (2.7.1), and perform the same construction of VZ
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Higgs (Ẽ , θ̃ ) ⊃ (F , τ ) bundle as in �eorem 2.21. �eorems 3.1.(i) to 3.1.(iii) can be seen
directly from the properties of H and the cyclic construction.

�eorem 3.1.(iv) has already appeared in [PTW18, Proposition 2.11] implicitly, and we
give a proof here for the sake of completeness. Recall that both Z andH are smooth overV0.
Denote by H0 := H ∩ f −1(V0), f0 : X0 = f −1(V0) → V0, and д0 : Z0 = д

−1(V0) → V0. We have

Fn,0
↾V0
= f∗

(
Ω
n
X/Y (log∆) ⊗ L−1)

↾V0
= OV0

En−1,1
↾V0

= R1(д0)∗(Ωn−1
Z0/V0) = R

1(f0)∗
(
Ω
n−1
X0/V0 ⊕

ℓ−1⊕

i=1

Ω
n−1
X0/V0(logH0) ⊗ (KX0/V0 ⊗ f ∗0 L −1)−i

)

Fn−1,1
↾V0

= R1 f∗
(
Ω
n−1
X/Y (log∆) ⊗ L−1)

↾V0
= R1(f0)∗

(
Ω
n−1
X0/V0 ⊗ K−1

X0/V0
)
≃ R1(f0)∗(TX0/V0).

(3.0.3)

Hence τ1↾V0 factors through

τ1↾V0 :TV0

ρ
−→ R1(f0)∗(TX0/V0)

≃−→ R1(f0)∗
(
Ω
n−1
X0/V0 ⊗ K−1

X0/V0
)
→

R1(f0)∗
(
Ω
n−1
X0/V0(logH0) ⊗ K−1

X0/V0
)
→ R1(д0)∗(Ωn−1

Z0/V0) ⊗ L −1,

where ρ is the Kodaira-Spencer map. Although the intermediate objects in the above factor-
ization might not be locally free, the induced C-linear map by the sheaf morphism τ1↾V0 at
the z ∈ V0

τ1,z : TY ,z → (L −1 ⊗ En−1,1)z
coincides with the following composition of C-linear maps between �nite dimensional com-
plex vector spaces

τ1,z : TY ,z

ρz−−→ H1(Xz ,TXz
) ≃−→ H1(Xz,Ωn−1

Xz
⊗ K−1

Xz
) jz−→(3.0.4)

H1 (Xz,Ωn−1
Xz

(logHz) ⊗ K−1
Xz

)
→ H1 (Zz ,Ωn−1

Zz

)
.

To prove �eorem 3.1.(iv), it then su�ces to prove that each linear map in (3.0.4) is injective
for any z ∈ V0.

By the e�ective parametrization assumption, ρz is injective. �e map jz in (3.0.4) is the
same as the H1-cohomology map of the short exact sequence

0 → K−1
Xz

⊗ Ω
n−1
Xz

→ K−1
Xz

⊗ Ω
n−1
Xz

(logHz) → K−1
Xz ↾Hz

⊗ Ω
n−2
Hz

→ 0.

Observe that KXz ↾Hz
is big. Indeed, this follows from that

vol(KXz ↾Hz
) = c1(KXz ↾Hz

)n−1 = c1(KXz
)n−1 · Hz = ℓc1(KXz

)n = ℓ vol(KXz
) > 0.

Hence jz injective by the Bogomolov-Sommese vanishing theorem

H0 (Hz ,K−1
Xz↾Hz

⊗ Ω
d−2
Hz

)
= 0,

as observed in [PTW18]. Since ψz : Zz → Xz is the cyclic cover obtained by taking the ℓ-th
roots out of the smooth hypersurface Hz ∈ |ℓKXz

|, the morphismψ is �nite. It follows from
the degeneration of the Leray spectral sequence that

H1(Zz,Ωn−1
Zz

) ≃ H1 (Xz, (ψz)∗Ωn−1
Zz

)
= H1 (Xz ,Ωn−1

Xz

)
⊕
ℓ−1⊕

i=1

H1 (Xz,Ωn−1
Xz

(logHz) ⊗ K−i
Xz

)
.

(3.0.5)

�e last map in (3.0.4) is therefore injective, for the cohomology groupH1
(
Xz,Ω

n−1
Xz

(logHz)⊗
K−1
Xz

)
is a direct summand of H1(Zz,Ωn−1

Zz
) by (3.0.5). As a consequence, the composition τ1,z

in (3.0.4) is injective at each point z ∈ V0. �eorem 3.1.(iv) is thus proved. �
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Remark 3.2. When the condition of e�ective parametrization in �eorem 3.1 is replaced by
the quasi-�niteness of the morphism from the base to coarse moduli space V → Ph as in
[VZ03,PTW18], all the statements in �eorem 3.1 hold true except�eorem 3.1.(iv). Indeed,
it is easy to construct an example of smooth family U → V so that V → Ph is quasi-�nite
but the Kodaira-Spencer map is degenerate somewhere.

Pick a smooth family of projective manifolds U → V so that V → Ph is quasi-�nite. Fix
any smooth hypersurface S ⊂ V which is su�ciently ample, so that we can take a cyclic
cover of degree ℓ ≥ 2 along S to obtain V ′. �en φ : V ′ → V is a �nite covering rami�ed
over S . Perform the base change to obtain another smooth family

f ′ : U ′
= U ×V V ′ → V ′.

Hence V ′ → Ph is still quasi-�nite. We will show that the Kodaira-Spencer map ρV ′ : V ′ →
R1 f ′∗ (TU ′/V ′) degenerates at the rami�ed locus φ−1(S).

Pick any point y′ ∈ φ−1(S), and set y := φ(y′). �en there exists non-zero ξ ∈ TV ′,y′ such
that φ∗(ξ ) = 0. As is well-known, the Kodaira-Spencer map is invariant under base change
(see [Man05, �eorem I.34]). One thus has

ρy′(ξ ) = ρy
(
φ∗(ξ )

)
= 0,

where ρy and ρy′ are the Kodaira-Spencer maps de�ned in (0.1.1) at y ∈ V and y′ ∈ V ′.

Let us explain how Lemma 2.11 and �eorems 2.12 and 3.1 imply our main theorem.

Proof of �eorem C. We �rst take a smooth compacti�cation Y ⊃ V as in Corollary A.2,. By
�eorem 3.1, for any given point y ∈ V , there exists a birational morphism ν : Y ′ → Y
which is isomorphic at y, so that D := Y ′ \ ν−1(V ) is a simple normal crossing divisor, and

there exists a VZ Higgs bundle (Ẽ , θ̃)whose log pole D+S avoidsy′ := ν−1(y). Moreover, by

�eorem 3.1.(iv), τ1 is injective aty
′. Applying�eorem 2.12, we can associate (Ẽ , θ̃ ) a Finsler

metric F on TY ′(−D) which is positively de�nite at y′. Moreover, if we think of F as a Finsler
metric on ν−1(V ), it is negatively curved in the sense of De�nition 2.9.(ii). Hence the baseV
satis�es the conditions in Lemma 2.11, and we conclude thatV is Kobayashi hyperbolic. �

Appendix A. Q-mild reductions (by Dan Abramovich)

Let us work over complex number �eld C.
�e main result in this appendix is the following:

�eorem A.1. Let f0 : S0 → T0 be a projective family of smooth varieties with T0 quasi-
projective.

(i) �ere are compacti�cations S0 ⊂ S and T0 ⊂ T , with S and T Deligne-Mumford stacks
with projective coarse moduli spaces, and a projective morphism f : S → T extending f0
which is a Kollár family of slc varieties.

(ii) Given a �nite subset Z ⊂ T0 there is a projective varietyW and �nite surjective lci morph-
ism ρ :W → T , unrami�ed over Z , such that ρ−1T sm

=W sm.

Here the notion of Kollár family refers to the condition that the sheaf ω
[m]
S/T is �at and its

formation commutes with arbitrary base change for eachm. We refer the readers to [AH11,
De�nition 5.2.1] for further details.

Note that the pullback familyS×TW →W is a Kollár family of slc varieties compactifying
the pullback S0 ×T0 W0 →W0 of the original family toW0 :=W ×T T0.

�is is applied in the present paper, where some mild regularity assumption onT0 andW
is required:

Corollary A.2 (Q-mild reduction). Assume further T0 is smooth. For any given �nite subset
Z ⊂ T0, there exist
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(i) a compacti�cationT0 ⊂ T with T a regular projective scheme,
(ii) a simple normal crossings divisor D ⊂ T containing T rT0 and disjoint from Z ,
(iii) a �nite morphismW → T unrami�ed outside D, and
(iv) A Kollár family SW →W of slc varieties extending the given family S0 ×T W .

�e signi�cance of these extended families is through their Q-mildness property. Recall
from [AK00] that a family S → T is Q-mild if whenever T1 → T is a dominant morphism
with T1 having at most Gorenstein canonical singularities, then the total space S1 = T1 ×S T
has canonical singularities. It was shown by Kollár–Shepherd-Barron [KSB88, �eorem 5.1]
and Karu [Kar00, �eorem 2.5] that Kollár families of slc varieties whose generic �ber has at
most Gorenstein canonical singularities are Q-mild.

�e main result is proved using moduli of Alexeev stable maps.
LetV be a projective variety. A morphism ϕ : U → V is a stable map if U is slc and KU is

ϕ-ample. More generally, given π : U → T , a morphism ϕ : U → V is a stable map over T
or a family of stable maps parametrized by T if π is a Kollár family of slc varieties and KU /T
is ϕ × π -ample. Note that this condition is very �exible and does not require the �bers to
be of general type, although key applications in �eorems 1.24 and 1.21.(iii) require some
positivity of the �bers.

�eorem A.3 ( [DR18, �eorem 1.5]). Stable maps form an algebraic stack M(V ) locally of
�nite type over C, each of whose connected components is a proper global quotient stack with
projective coarse moduli space.

�e existence of an algebraic stack satisfying the valuative criterion for properness was
known to Alexeev, and can also be deduced directly from the results of [AH11], which
presents it as a global quotient stack. �e work [DR18] shows that the stack has bounded,
hence proper components, admi�ing projective course moduli spaces. An algebraic ap-
proach for these statements is provided in [Kar00, Corollary 1.2].

Proof of �eorem A.1. (i) Let T0 ⊂ T and S0 ⊂ S be projective compacti�cations with π :
S → T extending f0. �e family S0 → T0 with the injective morphism ϕ : S0 → S is a family
of stable maps into S , providing a morphism T0 → M(S) which is in fact injective. Let T be
the closure of T0. Since M(S) is proper, T is proper. Let S be the pullback of the universal
family along T → M(S/T ). �en S ⊃ S0 is a compacti�cation as needed.

(ii) �e existence ofW follows from the main result of [KV04]. �

Proof of Corollary A.2. Consider the coarse moduli space T of the stack T provided by the
�rst part of the main result. �is might be singular, but by Hironaka’s theorem we may
replace it by a resolution of singularities such thatD∞ := T rT0 is a simple normal crossings
divisor. �us condition (i) is satis�ed.

For each componentDi ⊂ D∞ denote bymi the rami�cation index ofT → T . In particular
any coveringW → T whose rami�cation indices over Di are divisible bymi li�s along the
generic point of Di to T .

Choosing aKawamata covering package [AK00] disjoint fromZ we obtain a simple normal
crossings divisor D as required by (ii), and �nite coveringW → T as required by (iii), such
thatW → T factors through T at every generic point of Di .

By the Purity Lemma [AV02, Lemma 2.4.1] the morphismW → T extends over all ofW ,
hence we obtain a family SW →W as required by (iv). �
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[BD18] Sébastien Boucksom and Simone Diverio, A note on Lang’s conjecture for quotients of bounded do-

mains, arXiv e-prints (2018), arXiv:1809.02398. ↑ 3
[BD19] Damian Brotbek and Ya Deng, Kobayashi hyperbolicity of the complements of

general hypersurfaces of high degree, Geometric and Functional Analysis (2019),
https://doi.org/10.1007/s00039-019-00496-2 . ↑ 3
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