SAR TOMOGRAPHY OF URBAN AREAS: 3D REGULARIZED INVERSION IN THE SCENE GEOMETRY

Clément Rambour, Loïc Denis, Florence Tupin, Jean-Marie Nicolas, Hélène Oriot

To cite this version:

Clément Rambour, Loïc Denis, Florence Tupin, Jean-Marie Nicolas, Hélène Oriot. SAR TOMOGRAPHY OF URBAN AREAS: 3D REGULARIZED INVERSION IN THE SCENE GEOMETRY. 2018 IEEE International Geoscience and Remote Sensing Symposium, Jul 2018, Valence, Spain. hal-01873659

HAL Id: hal-01873659
https://hal.archives-ouvertes.fr/hal-01873659
Submitted on 13 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SAR TOMOGRAPHY OF URBAN AREAS: 3D REGULARIZED INVERSION IN THE SCENE GEOMETRY

Clément Rambour¹, Loïc Denis², Florence Tupin¹, Jean-Marie Nicolas¹, Hélène Oriot³,

¹LTCI, Télécom ParisTech, Université Paris Saclay, Paris, France
²Univ Lyon, UJM- Télécom Saint-Etienne, CNRS, Institut d’Optique Graduate School, Laboratoire Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France
³ONERA, The French Aerospace Lab, F-91761 - Palaiseau, France

ABSTRACT

Starting from a stack of co-registered SAR images in interferometric configuration, SAR tomography performs a reconstruction of the reflectivity of scatterers in 3-D. Scatterers seen within the same resolution cell in each SAR image can be separated by jointly unmixing the SAR complex amplitude observed throughout the stack. In urban areas, Compress Sensing (CS) approaches have been applied to achieve super-resolution in the estimation of the position of the scatterers. However, even if all the local information coming from a stack at a given pixel is used, the structural information that is inherent to the image is not directly used to improve the rendering of the scene. This paper addresses the problem of adding structural constraints to sparse tomographic reconstructions of urban areas. We derive an algorithm allowing the inversion of tomographic data under structural constraints and illustrate its performances on a stack of Spotlight TerraSAR-X images.

Index Terms— SAR tomography, structural information, spatial regularization

1. INTRODUCTION

SAR tomography is the extension of the 2-D SAR imaging to three dimensions. As conventional 2-D SAR imaging uses a synthetic aperture in azimuth direction, 3-D SAR imaging is performed by a synthetic aperture in the elevation direction by collecting several images from parallel tracks. Using multi-baseline interferometry techniques on the well-calibrated SAR images stack, it is possible to retrieve the localization of the scatterers in the third dimension. This approach allows separating scatterers mapped in the same resolution cell, which is likely to happen on the dense urban area due to the layover phenomenon.

To perform 3-D SAR focusing, application of the inverse discrete Fourier transform gives a resolution inversely proportional to the synthetic baseline aperture in the cross-range direction. Depending on the baseline repartition this resolution is generally much worse compared to the resolution in azimuth or range. Several spectral super-resolution techniques have been used to overcome this limitation [1] but they all rely on the covariance matrix. This matrix has to be estimated which adds a strong limitation on the number of images that can be used and can be difficult when the observed scene is very heterogeneous. Compress Sensing (CS) also leads to super-resolution but by performing a direct inversion of the data under sparsity constraint. As it doesn’t require the estimation of the covariance matrix, this method is far more robust for unmixing multiple close point scatterers.

CS provides a sparse reconstruction of the 3-D scene [2] but is applied pixel by pixel without exploiting any structural knowledge of the scene. Different strategies have been developed to re-process the estimated signal in order to improve its spatial coherence [3], but until now the structural information has not been taken into account directly in the inversion step.

Here, we develop an algorithm that allows to inverse a tomographic stack to retrieve a sparse 3-D complex scene using structural geometric priors. To do so, we first write the transformation that allows us to express the scene in ground geometry and then we describe the inversion process. We present 3-D reconstructions obtained from a dataset of TerraSAR-X images over the city of Paris.

2. GROUND TO RADAR GEOMETRY

A SAR tomographic stack consists of a collection of N co-registered SAR images. The geometry of the objects and the sensors is illustrated Fig. 1. In the absence of moving objects, the value of the complex pixel in image n at position (x, r) is [4]

\[u_n(x, r) = \int_{(y,z) \in \Delta(x, r)} u(x, y, z) \exp(-j\kappa_n h(y, z)) dy dz + z \]

(1)
designed a linear operator that allows us to express the tomographic stack from the 3-D complex scene:

\[\mathbf{v} = \Phi \mathbf{u} + \mathbf{n} \]

(3)

3. TOMOGRAPHIC INVERSION

In this part we will derive the inversion of equation (3) using some basic priors on the urban topography. To achieve super resolution, we will have a number of unknowns variables far more important than the size of \(\mathbf{v} \). To be able to estimate \(\mathbf{u} \), we will add two constraints. First, we will assume that the 3-D scene is sparse which is the same hypothesis as in CS. Secondly, we will make the assumption that the objects are smooth in the \(x, y \) and \(z \) directions. Those hypothesis express the fact walls and roofs are seen as punctual objects in at least one direction and are smooth in the other two directions. We then want to solve the following minimization problem

\[
\mathbf{u} = \arg \min_\mathbf{u} \| \Phi \mathbf{u} - \mathbf{v} \|_2^2 + \mathcal{R}(\mathbf{u})
\]

with

\[
\mathcal{R}(\mathbf{u}) = \mu_x \cdot \| D_x \mathbf{u} \|_2^2 + \mu_y \cdot \| D_y \mathbf{u} \|_2^2 + \mu_z \cdot \| D_z \mathbf{u} \|_2^2 + \mu_\ell \cdot 1 \| \|_1
\]

(4)

\(\mu_x, \mu_y, \mu_z \) and \(\mu_\ell \) are the parameters allowing to tune the impact of each term in \(\mathcal{R} \). Here the regularization is applied to the modulus of the 3-D reflectivity. One big reason is that we don’t want to risk to converge to zero as we smooth two neighboring scatterers with opposite phase. The introduction of the modulus add a lot of complexity to this problem even with a relatively simple prior. To be able to solve (4), we introduce two more variables and chose an alternating minimization scheme. We now want to solve

\[
\mathbf{u} = \arg \min_\mathbf{u} \| \Phi \mathbf{u} - \mathbf{v} \|_2^2 + \mathcal{R}(\mathbf{w})
\]

s.t. \(\mathbf{u} = \mathbf{f} \)

\(|\mathbf{f}| = \mathbf{w} \)

(5)

The real image \(\mathbf{w} \) will converge to the modulus of the image \(\mathbf{u} \) and the complex image \(\mathbf{f} \) links them. We solve (5) using a modified ADMM [5] algorithm by jointly optimizing over \(\mathbf{u} \) and \(\mathbf{w} \) and updating the two Lagrange multipliers:

- \(\{ \hat{\mathbf{u}}, \hat{\mathbf{w}} \} \leftarrow \text{arg min}_{\mathbf{u}, \mathbf{w}} \left\{ \frac{1}{2} \| \Phi \mathbf{u} - \mathbf{v} \|_2^2 + \frac{\beta_1}{2} \| \mathbf{f} - \mathbf{u} + \hat{\mathbf{d}}_1 \|_2^2 + \frac{\beta_2}{2} \| \mathbf{w} - |\mathbf{f}| \|_2^2 + \mathcal{R}(\mathbf{w}) \right\} \)
- \(\hat{\mathbf{d}}_2 \leftarrow \hat{\mathbf{d}}_2 + \hat{\mathbf{w}} - |\mathbf{f}(\hat{\mathbf{u}}, \hat{\mathbf{w}})| \)
- \(\hat{\mathbf{d}}_1 \leftarrow \hat{\mathbf{d}}_1 + \mathbf{f}(\hat{\mathbf{u}}, \hat{\mathbf{w}}) - \hat{\mathbf{u}} \)
\(\beta_1 \) and \(\beta_2 \) are two parameters needed for the optimization and \(f(u, w) \) is given by

\[
f(u, w) = \left[\frac{\beta_1 \cdot |u - \hat{d}_1| + \beta_2 \cdot (w + \hat{d}_2)}{\beta_1 + \beta_2} \right]^+ \cdot \exp \left[i \cdot \arg(u - \hat{d}_1) \right]
\]

(7)

The first step in (6) is easy to optimize as it is a sum of quadratic and linear functions. As the modulus is positive, the \(\ell_1 \) norm can be seen as the sum of all the elements in the vector. The algorithm described in (6) gives a new tool capable to inverse a tomographic problem under structural priors. Even if the model we choose is still simple, it gives good results on urban areas as shown in the next section. As the framework is completely independent of the regularization chosen, the structure of the algorithm can be used to add even more sophisticated priors on the reconstructed data.

4. EXPERIMENTAL RESULT

The algorithm described in the previous section has been implemented and tested on a dataset of 40 TerraSAR-X images over the front de Seine in the south-west of Paris, France. The observed scene is presented Fig. 3. The spatial (orthogonal component) and temporal baseline are shown in Fig. 2. The total spatial baseline span is more than 775m and the total temporal baseline more than 5 years with a large gap of almost two years in it.

Fig. 4 we present the intensity of the 3-D inversion over the Mirabeau Tower and we also plot in Google Hearth the height of the discretized reconstruction obtained by thresholding the intensity. Fig. 5 we present the intensity of the 3-D inversion over the Ministry of Foreign Affairs and the height of the discretized reconstruction in Google Hearth.

5. CONCLUSION

In this paper, we have proposed a new algorithm for the inversion of a stack of tomographic images. In this approach, we add structural constraints on the modulus of the 3-D reflectivity in order to describe more accurately a dense urban scene. This algorithm has been implemented and gives good results on real images. Finally, as the priors we add can be changed, we introduce a framework capable of performing 3-D tomographic inversion under spatial constraint.

\(^1\)These data have been provided by the DLR in the framework of the project LAN1746
Fig. 4. (top) Intensity of the 3-D reconstruction of the Mirabeau Tower [6]. (bottom) height of the brightest points in the 3-D reconstruction plotted in Google Hearth.

6. REFERENCES

Fig. 5. (top) Intensity of the 3-D reconstruction of the Ministry of Foreign Affairs [6]. (bottom) height of the brightest points in the 3-D reconstruction plotted in Google Hearth.