H. Beinert and R. H. Sands, Biochem Biophys Res Commun, vol.7, pp.41-47, 1960.

H. Beinert, R. H. Holm, and E. Munck, Iron-sulfur clusters: nature's modular, multipurpose structures, Science, vol.277, pp.653-662, 1997.

A. S. Fleischhacker and P. J. Kiley, Iron-containing transcription factors and their roles as sensors, Curr Opin Chem Biol, vol.15, pp.335-376, 2011.

H. K. Miller and V. Auerbuch, Bacterial iron-sulfur cluster sensors in mammalian pathogens, Metallomics, vol.7, pp.943-56, 2015.

E. L. Mettert and P. J. Kiley, Fe-S proteins that regulate gene expression, Biochim Biophys Acta, vol.1853, pp.1284-93, 2015.

J. C. Crack, J. Green, M. I. Hutchings, A. J. Thomson, L. Brun et al., Bacterial iron-sulfur regulatory proteins as biological sensor-switches, Antioxid Redox Signal, vol.17, pp.1215-1246, 2012.

L. E. Mortenson, R. C. Valentine, and J. E. Carnahan, An electron transport factor from Clostridium pasteurianum, Biochem Biophys Res Commun, vol.7, pp.448-52, 1962.

D. C. Johnson, D. R. Dean, A. D. Smith, and M. K. Johnson, Structure, function, and formation of biological iron-sulfur clusters, Annu Rev Biochem, vol.74, pp.247-81, 2005.

J. Meyer, Iron-sulfur protein folds, iron-sulfur chemistry, and evolution, J Biol Inorg Chem, vol.13, pp.157-70, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01188668

H. Beinert, Iron-sulfur proteins: ancient structures, still full of surprises, J Biol Inorg Chem, vol.5, pp.2-15, 2000.

E. J. Leggate, E. Bill, T. Essigke, G. M. Ullmann, and J. Hirst, Formation and characterization of an all-ferrous Rieske cluster and stabilization of the, Proc Natl Acad Sci U S A, vol.101, pp.10913-10921, 2004.

H. Angove, . Yoo, . Sj, B. K. Burgess, and E. Münck, J Am Chem Soc, vol.119, pp.8730-9731, 1997.

M. E. Pandelia, N. D. Lanz, S. J. Booker, and C. Krebs, Mossbauer spectroscopy of Fe/S proteins, Biochim Biophys Acta, vol.1853, pp.1395-405, 2015.

H. Lauble and C. D. Stout, Steric and conformational features of the aconitase mechanism, Proteins, vol.22, pp.1-11, 1995.

K. A. Shisler and J. B. Broderick, Emerging themes in radical SAM chemistry, Curr Opin Struct Biol, vol.22, pp.701-711, 2012.

J. N. Reeve, G. S. Beckler, and D. S. Cram, A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin, Proc Natl Acad Sci U S A, vol.86, pp.3031-3036, 1989.

J. Lu and A. Holmgren, The thioredoxin superfamily in oxidative protein folding, Antioxid Redox Signal, vol.21, pp.457-70, 2014.

C. J. Fugate and J. T. Jarrett, Biotin synthase: insights into radical-mediated carbon-sulfur bond formation, Biochim Biophys Acta, vol.1824, pp.1213-1235, 2009.

L. K. Beilschmidt and H. M. Puccio, Mammalian Fe-S cluster biogenesis and its implication in disease, Biochimie, vol.100, pp.48-60, 2014.

I. Ferecatu, S. Gonçalves, and M. Golinelli-cohen, The drug diabetes MitoNEET governs a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic aconitase/Iron Regulatory Protein 1, J Biol Chem, vol.289, pp.28070-86, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01873509

O. A. Lukianova and S. S. David, A role for iron-sulfur clusters in DNA repair, Curr Opin Chem Biol, vol.9, pp.145-51, 2005.

A. K. Boal, E. Yavin, and J. K. Barton, DNA repair glycosylases with a [4Fe4S] cluster: a redox cofactor for DNA-mediated charge transport?, J Inorg Biochem, vol.101, pp.1913-1934, 2007.

J. O. Fuss, C. L. Tsai, J. P. Ishida, and J. A. Tainer, Emerging critical roles of Fe-S clusters in DNA replication and repair, Biochim Biophys Acta, vol.1853, pp.1253-71, 2015.

S. Kimura and T. Suzuki, Iron-sulfur proteins responsible for RNA modifications, Biochim Biophys Acta, vol.1853, pp.1272-83, 2015.

C. P. Anderson, M. Shen, R. S. Eisenstein, and E. A. Leibold, Mammalian iron metabolism and its control by iron regulatory proteins, Biochim Biophys Acta, vol.1823, pp.1468-83, 2012.

J. C. Crack, J. Green, A. J. Thomson, L. Brun, and N. E. , Iron-sulfur clusters as biological sensors: the chemistry of reactions with molecular oxygen and nitric oxide, Acc Chem Res, vol.47, pp.3196-205, 2014.

K. Kobayashi, M. Fujikawa, and T. Kozawa, Oxidative stress sensing by the iron-sulfur cluster in the transcription factor, SoxR, J Inorg Biochem, vol.133, pp.87-91, 2014.

J. Kim and D. C. Rees, Nitrogenase and biological nitrogen fixation, Biochemistry, vol.33, pp.389-97, 1994.

I. Goldberg, V. Nadler, and A. Hochman, Mechanism of nitrogenase switchoff by oxygen, J Bacteriol, vol.169, pp.874-883, 1987.

R. L. Robson, Characterization of an oxygen-stable nitrogenase complex isolated from Azotobacter chroococcum, Biochem J, vol.181, pp.569-75, 1979.

Y. I. Shethna, D. V. Dervartanian, and H. Beinert, Non heme (iron-sulfur) proteins of Azotobacter vinelandii, Biochem Biophys Res Commun, vol.31, pp.862-870, 1968.

W. A. Bulen and J. R. Lecomte, Nitrogenase complex and its components, Methods Enzymol, vol.24, pp.456-70, 1972.

F. Moshiri, J. W. Kim, C. Fu, and R. J. Maier, The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen-mediated inactivation of nitrogenase in vitro and in vivo, Mol Microbiol, vol.14, pp.101-115, 1994.

R. J. Maier and F. Moshiri, Role of the Azotobacter vinelandii nitrogenaseprotective shethna protein in preventing oxygen-mediated cell death, J Bacteriol, vol.182, pp.3854-3861, 2000.

G. Scherings, H. Haaker, H. Wassink, and C. Veeger, On the formation of an oxygen-tolerant three-component nitrogenase complex from Azotobacter vinelandii, Eur J Biochem, vol.135, pp.591-600, 1983.

Z. C. Wang, A. Burns, and G. D. Watt, Complex formation and O2 sensitivity of Azotobacter vinelandii nitrogenase and its component proteins, Biochemistry, vol.24, pp.214-235, 1985.

J. Schlesier, M. Rohde, S. Gerhardt, and O. Einsle, A Conformational Switch Triggers Nitrogenase Protection from Oxygen Damage by Shethna Protein II (FeSII), J Am Chem Soc, vol.138, pp.239-286, 2016.

A. Ureta and S. Nordlund, Evidence for conformational protection of nitrogenase against oxygen in Gluconacetobacter diazotrophicus by a putative FeSII protein, J Bacteriol, vol.184, pp.5805-5814, 2002.

J. Lin, L. Zhang, S. Lai, and K. Ye, Structure and molecular evolution of CDGSH iron-sulfur domains, PLoS One, vol.6, p.24790, 2011.

R. Nechushtai, A. R. Conlan, and Y. Harir, Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism, Plant Cell, vol.24, pp.2139-54, 2012.

S. E. Wiley, A. N. Murphy, S. A. Ross, P. Van-der-geer, and J. E. Dixon, MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity, Proc Natl Acad Sci U S A, vol.104, pp.5318-5341, 2007.

S. Tamir, M. L. Paddock, and M. Darash-yahana-baram, Structurefunction analysis of NEET proteins uncovers their role as key regulators of iron and ROS homeostasis in health and disease, Biochim Biophys Acta, vol.1853, pp.1294-315, 2015.

C. M. Kusminski, W. L. Holland, and K. Sun, MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity, Nat Med, vol.18, pp.1539-1588, 2012.

A. P. Landry and H. Ding, Redox control of human mitochondrial outer membrane protein MitoNEET [2Fe-2S] clusters by biological thiols and hydrogen peroxide, J Biol Chem, vol.289, pp.4307-4322, 2014.

Y. S. Sohn, S. Tamir, and L. Song, NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth, Proc Natl Acad Sci U S A, vol.110, pp.14676-81, 2013.

S. E. Wiley, A. Y. Andreyev, and A. S. Divakaruni, Wolfram Syndrome protein, Miner1, regulates sulphydryl redox status, the unfolded protein response, and Ca2+ homeostasis, EMBO Mol Med, vol.5, pp.904-922, 2013.

M. Boucquey, E. De-plaen, and M. Locker, Noxp20 and Noxp70, two new markers of early neuronal differentiation, detected in teratocarcinomaderived neuroectodermic precursor cells, J Neurochem, vol.99, pp.657-69, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00283602

N. C. Chang, M. Nguyen, M. Germain, and G. C. Shore, Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1, EMBO J, vol.29, pp.606-624, 2010.

S. H. Holt, M. Darash-yahana, and Y. S. Sohn, Activation of apoptosis in NAF-1-deficient human epithelial breast cancer cells, J Cell Sci, vol.129, pp.155-65, 2016.

C. H. Wang, Y. F. Chen, and C. Y. Wu, Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis, Hum Mol Genet, vol.23, pp.4770-85, 2014.

Y. F. Chen, C. H. Kao, and Y. T. Chen, Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice, Genes Dev, vol.23, pp.1183-94, 2009.

C. C. Lin, T. H. Chiang, W. J. Chen, Y. Y. Sun, Y. H. Lee et al., CISD2 serves a novel role as a suppressor of nitric oxide signalling and curcumin increases CISD2 expression in spinal cord injuries, Injury, vol.46, pp.2341-50, 2015.

S. Amr, C. Heisey, and M. Zhang, A homozygous mutation in a novel zinc-finger protein, ERIS, is responsible for Wolfram syndrome 2, Am J Hum Genet, vol.81, pp.673-83, 2007.

M. Rondinelli, F. Novara, V. Calcaterra, O. Zuffardi, and S. Genovese, Wolfram syndrome 2: a novel CISD2 mutation identified in Italian siblings, Acta Diabetol, vol.52, pp.175-183, 2014.

E. Mozzillo, M. Delvecchio, and M. Carella, A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2, BMC Med Genet, vol.15, p.88, 2014.

A. F. Salem, D. Whitaker-menezes, A. Howell, F. Sotgia, and M. P. Lisanti,

, Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance, Cell cycle, vol.11, pp.4174-80, 2012.

L. Wang, F. Ouyang, and X. Liu, Overexpressed CISD2 has prognostic value in human gastric cancer and promotes gastric cancer cell proliferation and tumorigenesis via AKT signaling pathway, Oncotarget, vol.7, pp.3791-805, 2016.

M. Perez-ramirez, A. J. Hernandez-jimenez, and A. Guerrero-guerrero, Genomics and epigenetics: A study of ependymomas in pediatric patients, Clin Neurol Neurosurg, vol.144, pp.53-61, 2016.

X. Hou, R. Liu, S. Ross, E. J. Smart, H. Zhu et al., Crystallographic studies of human MitoNEET, J Biol Chem, vol.282, pp.33242-33248, 2007.

J. Lin, T. Zhou, K. Ye, and J. Wang, Crystal structure of human mitoNEET reveals distinct groups of iron sulfur proteins, Proc Natl Acad Sci U S A, vol.104, pp.14640-14645, 2007.

M. L. Paddock, S. E. Wiley, and H. L. Axelrod, MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone, Proc Natl Acad Sci U S A, vol.104, pp.14342-14349, 2007.

S. E. Wiley, M. L. Paddock, and E. C. Abresch, The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster, J Biol Chem, vol.282, pp.23745-23754, 2007.

A. R. Conlan, M. L. Paddock, and H. L. Axelrod, The novel 2Fe-2S outer mitochondrial protein mitoNEET displays conformational flexibility in its N-terminal cytoplasmic tethering domain, Acta Crystallogr Sect F Struct Biol Cryst Commun, vol.65, pp.654-663, 2009.

D. W. Bak, J. A. Zuris, M. L. Paddock, P. A. Jennings, and S. J. Elliott, Redox characterization of the FeS protein MitoNEET and impact of thiazolidinedione drug binding, Biochemistry, vol.48, pp.10193-10198, 2009.

T. F. Tirrell, M. L. Paddock, and A. R. Conlan, Resonance Raman studies of the (His)(Cys)3 2Fe-2S cluster of MitoNEET: comparison to the (Cys)4 mutant and implications of the effects of pH on the labile metal center, Biochemistry, vol.48, pp.4747-52, 2009.

M. P. Golinelli-cohen, E. Lescop, and C. Mons, Redox Control of the Human Iron-Sulfur Repair Protein MitoNEET Activity via its Iron-Sulfur Cluster, J Biol Chem, vol.291, pp.7583-93, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01873511

A. P. Landry, Z. Cheng, and H. Ding, Reduction of mitochondrial protein mitoNEET [2Fe-2S] clusters by human glutathione reductase, Free Radic Biol Med, vol.81, pp.119-146, 2015.

C. H. Lipper, M. L. Paddock, J. N. Onuchic, R. Mittler, R. Nechushtai et al., Cancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis, PLoS One, vol.10, p.139699, 2016.

J. A. Zuris, Y. Harir, and A. R. Conlan, Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein, Proc Natl Acad Sci U S A, vol.108, pp.13047-52, 2011.

M. M. Dicus, A. Conlan, and R. Nechushtai, Binding of histidine in the (Cys)3(His)1-coordinated [2Fe-2S] cluster of human mitoNEET, J Am Chem Soc, vol.132, pp.2037-2086, 2010.

G. Tan, D. Liu, and F. Pan, His-87 ligand in mitoNEET is crucial for the transfer of iron sulfur clusters from mitochondria to cytosolic aconitase, Biochem Biophys Res Commun, vol.470, pp.226-258, 2016.

S. S. Wallace, Base excision repair: a critical player in many games, DNA Repair (Amst), vol.19, pp.14-26, 2014.

R. P. Cunningham, H. Asahara, and J. F. Bank, Endonuclease III is an iron-sulfur protein, Biochemistry, vol.28, pp.4450-4455, 1989.
DOI : 10.1021/bi00436a049

M. M. Thayer, H. Ahern, D. Xing, R. P. Cunningham, and J. A. Tainer, Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure, EMBO J, vol.14, pp.4108-4128, 1995.

Y. Guan, R. C. Manuel, and A. S. Arvai, MutY catalytic core, mutant and bound adenine structures define specificity for DNA repair enzyme superfamily, Nat Struct Biol, vol.5, pp.1058-64, 1998.

M. L. Michaels, L. Pham, Y. Nghiem, C. Cruz, and J. H. Miller, MutY, an adenine glycosylase active on G-A mispairs, has homology to endonuclease III, Nucleic Acids Res, vol.18, pp.3841-3846, 1990.

C. E. Piersen, M. A. Prince, M. L. Augustine, M. L. Dodson, and R. S. Lloyd, Purification and cloning of Micrococcus luteus ultraviolet endonuclease, an N-glycosylase/abasic lyase that proceeds via an imino enzyme-DNA intermediate, J Biol Chem, vol.270, pp.23475-84, 1995.

J. P. Horst and H. J. Fritz, Counteracting the mutagenic effect of hydrolytic deamination of DNA 5-methylcytosine residues at high temperature: DNA mismatch N-glycosylase Mig.Mth of the thermophilic archaeon Methanobacterium thermoautotrophicum THF, EMBO J, vol.15, pp.5459-69, 1996.

T. J. Begley, B. J. Haas, J. Noel, A. Shekhtman, W. A. Williams et al., A new member of the endonuclease III family of DNA repair enzymes that removes methylated purines from DNA, Curr Biol, vol.9, pp.653-659, 1999.

J. A. Hinks, M. C. Evans, D. Miguel, Y. Sartori, A. A. Jiricny et al., An iron-sulfur cluster in the family 4 uracil-DNA glycosylases, J Biol Chem, vol.277, pp.16936-16976, 2002.

M. A. Pope, N. H. Chmiel, and S. S. David, Insight into the functional consequences of hMYH variants associated with colorectal cancer: distinct differences in the adenine glycosylase activity and the response to AP endonucleases of Y150C and G365D murine MYH, DNA Repair (Amst), vol.4, pp.315-340, 2005.

L. M. Engstrom, M. K. Brinkmeyer, and Y. Ha, A zinc linchpin motif in the MUTYH glycosylase interdomain connector is required for efficient repair of DNA damage, J Am Chem Soc, vol.136, pp.7829-7861, 2014.

P. J. Luncsford, D. Y. Chang, and G. Shi, A structural hinge in eukaryotic MutY homologues mediates catalytic activity and Rad9-Rad1-Hus1 checkpoint complex interactions, J Mol Biol, vol.403, pp.351-70, 2010.

R. Aspinwall, D. G. Rothwell, and T. Roldan-arjona, Cloning and characterization of a functional human homolog of Escherichia coli endonuclease III, Proc Natl Acad Sci U S A, vol.94, pp.109-123, 1997.

S. L. Porello, M. J. Cannon, and S. S. David, A substrate recognition role for the [4Fe-4S]2+ cluster of the DNA repair glycosylase MutY, Biochemistry, vol.37, pp.6465-75, 1998.

M. P. Golinelli, N. H. Chmiel, and S. S. David, Site-directed mutagenesis of the cysteine ligands to the [4Fe-4S] cluster of Escherichia coli MutY, Biochemistry, vol.38, pp.6997-7007, 1999.

C. F. Kuo, D. E. Mcree, C. L. Fisher, O. Handley, S. F. Cunningham et al., Atomic structure of the DNA repair, enzyme endonuclease III. Science, vol.258, pp.434-474, 1992.

J. Hoseki, A. Okamoto, and R. Masui, Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8, J Mol Biol, vol.333, pp.515-541, 2003.

J. C. Fromme and G. L. Verdine, Structure of a trapped endonuclease IIIDNA covalent intermediate, EMBO J, vol.22, pp.3461-71, 2003.

J. C. Fromme, A. Banerjee, S. J. Huang, and G. L. Verdine, Structural basis for removal of adenine mispaired with 8-oxoguanine by MutY adenine DNA glycosylase, Nature, vol.427, pp.652-658, 2004.

H. Kosaka, J. Hoseki, N. Nakagawa, S. Kuramitsu, and R. Masui, Crystal structure of family 5 uracil-DNA glycosylase bound to DNA, J Mol Biol, vol.373, pp.839-50, 2007.

L. M. Engstrom, O. A. Partington, and S. S. David, An iron-sulfur cluster loop motif in the Archaeoglobus fulgidus uracil-DNA glycosylase mediates efficient uracil recognition and removal, Biochemistry, vol.51, pp.5187-97, 2012.

C. L. Chepanoske, M. P. Golinelli, S. D. Williams, and S. S. David, Positively charged residues within the iron-sulfur cluster loop of E. coli MutY participate in damage recognition and removal, Arch Biochem Biophys, vol.380, pp.11-20, 2000.

C. H. Trasvina-arenas, L. M. Lopez-castillo, E. Sanchez-sandoval, and L. G. Brieba, Dispensability of the [4Fe-4S] cluster in novel homologues of adenine glycosylase MutY, FEBS J, vol.283, pp.521-561, 2016.

E. M. Boon, A. L. Livingston, N. H. Chmiel, S. S. David, and J. K. Barton, DNAmediated charge transport for DNA repair, Proc Natl Acad Sci U S A, vol.100, pp.12543-12550, 2003.

A. K. Boal, E. Yavin, O. A. Lukianova, O. Shea, V. L. David et al., DNA-bound redox activity of DNA repair glycosylases containing, Biochemistry, vol.44, pp.8397-407, 2005.

E. Yavin, A. K. Boal, and E. D. Stemp, Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical, Proc Natl Acad Sci U S A, vol.102, pp.3546-51, 2005.

E. Yavin, E. D. Stemp, O. Shea, V. David, S. S. Barton et al., Electron trap for DNA-bound repair enzymes: a strategy for DNA-mediated signaling, Proc Natl Acad Sci, vol.103, pp.3610-3614, 2006.

A. W. Francis and S. S. David, Escherichia coli MutY and Fpg utilize a processive mechanism for target location, Biochemistry, vol.42, pp.801-811, 2003.

A. K. Boal, J. C. Genereux, P. A. Sontz, J. A. Gralnick, D. K. Newman et al., Redox signaling between DNA repair proteins for efficient lesion detection, Proc Natl Acad Sci U S A, vol.106, pp.15237-15279, 2009.

C. A. Romano, P. A. Sontz, and J. K. Barton, Mutants of the base excision repair glycosylase, endonuclease III: DNA charge transport as a first step in lesion detection, Biochemistry, vol.50, pp.6133-6178, 2011.

J. Rudolf, V. Makrantoni, W. J. Ingledew, M. J. Stark, and M. F. White, The DNA repair helicases XPD and FancJ have essential iron-sulfur domains, Mol Cell, vol.23, pp.801-809, 2006.

R. A. Pugh, M. Honda, and H. Leesley, The iron-containing domain is essential in Rad3 helicases for coupling of ATP hydrolysis to DNA translocation and for targeting the helicase to the single-stranded DNAdouble-stranded DNA junction, J Biol Chem, vol.283, pp.1732-1775, 2008.

B. Ren, X. Duan, and H. Ding, Redox control of the DNA damageinducible protein DinG helicase activity via its iron-sulfur cluster, J Biol Chem, vol.284, pp.4829-4864, 2009.

A. P. Landry and H. Ding, The N-terminal domain of human DNA helicase Rtel1 contains a redox active iron-sulfur cluster, Biomed Res Int, p.285791, 2014.

J. T. Yeeles, R. Cammack, and M. S. Dillingham, An iron-sulfur cluster is essential for the binding of broken DNA by AddAB-type helicasenucleases, J Biol Chem, vol.284, pp.7746-55, 2009.

S. Pokharel and J. L. Campbell, Cross talk between the nuclease and helicase activities of Dna2: role of an essential iron-sulfur cluster domain, Nucleic Acids Res, vol.40, pp.7821-7851, 2012.

H. Liu, J. Rudolf, and K. A. Johnson, Structure of the DNA repair helicase XPD, Cell, vol.133, pp.801-813, 2008.

S. C. Wolski, J. Kuper, and P. Hanzelmann, Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD, PLoS Biol, vol.6, p.149, 2008.

L. Fan, J. O. Fuss, and Q. J. Cheng, XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations, Cell, vol.133, pp.789-800, 2008.

D. Constantinescu-aruxandei, B. Petrovic-stojanovska, J. C. Penedo, M. F. White, and J. H. Naismith, Mechanism of DNA loading by the DNA repair helicase XPD, Nucleic Acids Res, vol.44, pp.2806-2821, 2016.

K. Saikrishnan, J. T. Yeeles, N. S. Gilhooly, W. W. Krajewski, M. S. Dillingham et al., Insights into Chi recognition from the structure of an AddAB-type helicase-nuclease complex, EMBO J, vol.31, pp.1568-78, 2012.

S. C. Wolski, J. Kuper, and C. Kisker, The XPD helicase: XPanDing archaeal XPD structures to get a grip on human DNA repair, Biol Chem, vol.391, pp.761-766, 2010.

T. P. Mui, J. O. Fuss, J. P. Ishida, J. A. Tainer, and J. K. Barton, ATP-stimulated, DNA-mediated redox signaling by XPD, a DNA repair and transcription helicase, J Am Chem Soc, vol.133, pp.16378-81, 2011.

P. A. Sontz, T. P. Mui, J. O. Fuss, J. A. Tainer, and J. K. Barton, DNA charge transport as a first step in coordinating the detection of lesions by repair proteins, Proc Natl Acad Sci U S A, vol.109, pp.1856-61, 2012.

M. A. Grodick, DNA-mediated charge transport signaling within the cell. Dissertation (Ph D) California Institute of Technology, 2016.

M. A. Grodick, H. M. Segal, T. J. Zwang, and J. K. Barton, DNA-mediated signaling by proteins with 4Fe-4S clusters is necessary for genomic integrity, J Am Chem Soc, vol.136, pp.6470-6478, 2014.

A. R. Arnold, M. A. Grodick, and J. K. Barton, DNA Charge Transport: from Chemical Principles to the Cell, Cell Chem Biol, vol.23, pp.183-97, 2016.

D. J. Netz, C. M. Stith, and M. Stumpfig, Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes, Nat Chem Biol, vol.8, pp.125-157, 2011.

B. E. Weiner, H. Huang, B. M. Dattilo, M. J. Nilges, E. Fanning et al., An iron-sulfur cluster in the C-terminal domain of the p58 subunit of human DNA primase, J Biol Chem, vol.282, pp.33444-51, 2007.

M. E. Holt, E. O'brien, and L. Salay, Cracking Open a Molecular Calculator: DNA Charge Transport and Primase, Biophysical Journal, vol.110, p.21, 2016.

E. Andujar, M. J. Hernaez, S. R. Kaschabek, W. Reineke, E. Santero et al., Identification and functional characterization of Sphingomonas macrogolitabida strain TFA genes involved in the first two steps of the tetralin catabolic pathway, J Bacteriol, vol.182, issue.123, pp.2026-2056, 2000.

O. Martinez-perez, E. Moreno-ruiz, B. Floriano, and E. Santero, Regulation of tetralin biodegradation and identification of genes essential for expression of thn operons, J Bacteriol, vol.186, pp.6101-6110, 2004.

L. Ledesma-garcia, E. Rivas-marin, and B. Floriano, ThnY is a ferredoxin reductase-like iron-sulfur flavoprotein that has evolved to function as a regulator of tetralin biodegradation gene expression, J Biol Chem, vol.286, pp.1709-1727, 2011.

A. Lopez-sanchez, B. Floriano, E. Andujar, M. J. Hernaez, and E. Santero, Tetralin-induced and ThnR-regulated aldehyde dehydrogenase and betaoxidation genes in Sphingomonas macrogolitabida strain TFA, Appl Environ Microbiol, vol.76, pp.110-118, 2010.

L. Ledesma-garcia, F. Reyes-ramirez, and E. Santero, The ferredoxin ThnA3 negatively regulates tetralin biodegradation gene expression via ThnY, a ferredoxin reductase that functions as a regulator of the catabolic pathway, PLoS One, vol.8, p.73910, 2013.

O. Martinez-perez, A. Lopez-sanchez, F. Reyes-ramirez, B. Floriano, and E. Santero, Integrated response to inducers by communication between a catabolic pathway and its regulatory system, J Bacteriol, vol.189, pp.3768-75, 2007.

L. Ledesma-garcia, A. Sanchez-azqueta, M. Medina, F. Reyes-ramirez, and E. Santero, Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes, Sci Rep, vol.6, p.23848, 2016.

M. E. Salazar and M. T. Laub, Temporal and evolutionary dynamics of twocomponent signaling pathways, Curr Opin Microbiol, vol.24, pp.7-14, 2015.

C. Y. Taabazuing, J. A. Hangasky, and M. J. Knapp, Oxygen sensing strategies in mammals and bacteria, J Inorg Biochem, vol.133, pp.63-72, 2014.

G. A. Somerville and R. A. Proctor, At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci, Microbiol Mol Biol Rev, vol.73, pp.233-281, 2009.

J. W. Hall and Y. Ji, Sensing and Adapting to Anaerobic Conditions by Staphylococcus aureus, Adv Appl Microbiol, vol.84, pp.1-25, 2013.

J. Sun, L. Zheng, C. Landwehr, J. Yang, and J. Y. , Identification of a novel essential two-component signal transduction system, YhcSR, in Staphylococcus aureus, J Bacteriol, vol.187, pp.7876-80, 2005.

J. W. Hall, J. Yang, H. Guo, and J. Y. , The AirSR two-component system contributes to Staphylococcus aureus survival in human blood and transcriptionally regulates sspABC operon, Front Microbiol, vol.6, p.682, 2015.

F. Sun, J. Q. Jones, and M. B. , AirSR, a [2Fe-2S] cluster-containing two-component system, mediates global oxygen sensing and redox signaling in Staphylococcus aureus, J Am Chem Soc, vol.134, pp.305-319, 2012.

M. Yan, C. Yu, J. Yang, and J. Y. , The essential two-component system YhcSR is involved in regulation of the nitrate respiratory pathway of Staphylococcus aureus, J Bacteriol, vol.193, pp.1799-805, 2011.

H. Sun, Y. Yang, T. Xue, and B. Sun, Modulation of cell wall synthesis and susceptibility to vancomycin by the two-component system AirSR in Staphylococcus aureus NCTC8325, BMC Microbiol, vol.13, p.286, 2013.

J. W. Hall, J. Yang, H. Guo, and J. Y. , The Staphylococcus aureus AirSR Two-Component System Mediates Reactive Oxygen Species Resistance via Transcriptional Regulation of Staphyloxanthin Production, Infect Immun, 2016.

J. Wu and B. Weiss, Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli, J Bacteriol, vol.173, pp.2864-71, 1991.

C. F. Amabile-cuevas and B. Demple, Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon, Nucleic Acids Res, vol.19, pp.4479-84, 1991.

P. J. Pomposiello and B. Demple, Identification of SoxS-regulated genes in Salmonella enterica serovar typhimurium, J Bacteriol, vol.182, pp.23-32, 2000.
DOI : 10.1128/jb.182.1.23-29.2000

URL : http://jb.asm.org/content/182/1/23.full.pdf

J. L. Blanchard, W. Y. Wholey, E. M. Conlon, and P. J. Pomposiello, Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks, PLoS One, vol.2, p.1186, 2007.

M. Gu and J. A. Imlay, The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide, Mol Microbiol, vol.79, pp.1136-50, 2011.

T. Nunoshiba, E. Hidalgo, A. Cuevas, C. F. Demple, and B. , Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene, J Bacteriol, vol.174, pp.6054-60, 1992.

J. Wu and B. Weiss, Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli, J Bacteriol, vol.174, pp.3915-3935, 1992.

M. Palma, J. Zurita, and J. A. Ferreras, Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response, Infect Immun, vol.73, pp.2958-66, 2005.

L. E. Dietrich, T. K. Teal, A. Price-whelan, and D. K. Newman, Redox-active antibiotics control gene expression and community behavior in divergent bacteria, Science, vol.321, pp.1203-1209, 2008.
DOI : 10.1126/science.1160619

URL : http://europepmc.org/articles/pmc2745639?pdf=render

A. Mahavihakanont, N. Charoenlap, and P. Namchaiw, Novel roles of SoxR, a transcriptional regulator from Xanthomonas campestris, in sensing redox-cycling drugs and regulating a protective gene that have overall implications for bacterial stress physiology and virulence on a host plant, J Bacteriol, vol.194, pp.209-226, 2012.

L. Burbank and M. C. Roper, OxyR and SoxR modulate the inducible oxidative stress response and are implicated during different stages of infection for the bacterial phytopathogen Pantoea stewartii subsp. stewartii, Mol Plant Microbe Interact, vol.27, pp.479-90

N. Naseer, J. A. Shapiro, and M. Chander, RNA-Seq analysis reveals a sixgene SoxR regulon in Streptomyces coelicolor, PLoS One, vol.9, p.106181, 2014.
DOI : 10.1371/journal.pone.0106181

URL : https://doi.org/10.1371/journal.pone.0106181

E. Hidalgo and B. Demple, An iron-sulfur center essential for transcriptional activation by the redox-sensing SoxR protein, EMBO J, vol.13, pp.138-184, 1994.
DOI : 10.1002/j.1460-2075.1994.tb06243.x

J. Wu, W. R. Dunham, and B. Weiss, Overproduction and physical characterization of SoxR, a [2Fe-2S] protein that governs an oxidative response regulon in Escherichia coli, J Biol Chem, vol.270, pp.10323-10330, 1995.

S. Watanabe, A. Kita, K. Kobayashi, and K. Miki, Crystal structure of the [2Fe-2S] oxidative-stress sensor SoxR bound to DNA, Proc Natl Acad Sci U S A, vol.105, pp.4121-4127, 2008.
DOI : 10.1073/pnas.0709188105

URL : http://www.pnas.org/content/105/11/4121.full.pdf

P. Gaudu and B. Weiss, SoxR, a [2Fe-2S] transcription factor, is active only in its oxidized form, Proc Natl Acad Sci U S A, vol.93, pp.10094-10102, 1996.
DOI : 10.1073/pnas.93.19.10094

URL : http://www.pnas.org/content/93/19/10094.full.pdf

H. Ding, E. Hidalgo, and B. Demple, The redox state of the [2Fe-2S] clusters in SoxR protein regulates its activity as a transcription factor, J Biol Chem, vol.271, pp.33173-33178, 1996.

H. Ding and B. Demple, In vivo kinetics of a redox-regulated transcriptional switch, Proc Natl Acad Sci U S A, vol.94, pp.8445-8454, 1997.

A. A. Gorodetsky, L. E. Dietrich, P. E. Lee, B. Demple, D. K. Newman et al., DNA binding shifts the redox potential of the transcription factor SoxR, Proc Natl Acad Sci U S A, vol.105, pp.3684-3693, 2008.

R. Sheplock, D. A. Recinos, N. Mackow, L. E. Dietrich, and M. Chander, Species-specific residues calibrate SoxR sensitivity to redox-active molecules, Mol Microbiol, vol.87, pp.368-81, 2013.
DOI : 10.1111/mmi.12101

URL : http://onlinelibrary.wiley.com/doi/10.1111/mmi.12101/pdf

P. E. Lee, B. Demple, and J. K. Barton, DNA-mediated redox signaling for transcriptional activation of SoxR, Proc Natl Acad Sci U S A, vol.106, pp.13164-13172, 2009.
DOI : 10.1073/pnas.0906429106

URL : http://www.pnas.org/content/106/32/13164.full.pdf

H. Ding and B. Demple, Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator, Proc Natl Acad Sci U S A, vol.97, pp.5146-50, 2000.

M. Fujikawa, K. Kobayashi, and T. Kozawa, Mechanistic studies on formation of the dinitrosyl iron complex of the [2Fe-2S] cluster of SoxR protein, J Biochem, vol.156, pp.163-72, 2014.

F. C. Lo, C. L. Chen, and C. M. Lee, A study of NO trafficking from dinitrosyl-iron complexes to the recombinant E. coli transcriptional factor SoxR, J Biol Inorg Chem, vol.13, pp.961-72, 2008.

K. Kobayashi, M. Mizuno, M. Fujikawa, and Y. Mizutani, Protein conformational changes of the oxidative stress sensor, SoxR, upon redox changes of the [2Fe-2S] cluster probed with ultraviolet resonance Raman spectroscopy, Biochemistry, vol.50, pp.9468-74, 2011.

M. Fujikawa, K. Kobayashi, and T. Kozawa, Redox-dependent DNA distortion in a SoxR protein-promoter complex studied using fluorescent probes, J Biochem, vol.157, pp.389-97, 2015.

E. Hidalgo, J. M. Bollinger, J. Bradley, T. M. Walsh, C. T. Demple et al., Binuclear [2Fe-2S] clusters in the Escherichia coli SoxR protein and role of the metal centers in transcription, J Biol Chem, vol.270, pp.20908-20922, 1995.

E. Hidalgo and B. Demple, Spacing of promoter elements regulates the basal expression of the soxS gene and converts SoxR from a transcriptional activator into a repressor, EMBO J, vol.16, pp.1056-65, 1997.

M. S. Koo, J. H. Lee, and S. Y. Rah, A reducing system of the superoxide sensor SoxR in Escherichia coli, EMBO J, vol.22, pp.2614-2636, 2003.

K. L. Griffith, I. M. Shah, and R. E. Wolf, Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons, Mol Microbiol, vol.51, pp.1801-1817, 2004.

J. T. Munnoch, M. T. Martinez, D. A. Svistunenko, J. C. Crack, L. Brun et al., Characterization of a putative NsrR homologue in Streptomyces venezuelae reveals a new member of the Rrf2 superfamily, Sci Rep, vol.6, p.31597, 2016.