A. Sheftel, O. Stehling, and R. Lill, Iron-sulfur proteins in health and disease, Trends Endocrinol. Metab, vol.21, pp.302-314, 2010.

G. C. Shaw, J. J. Cope, L. Li, K. Corson, C. Hersey et al., Mitoferrin is essential for erythroid iron assimilation, Nature, vol.440, pp.96-100, 2006.

H. Puccio, D. Simon, M. Cossée, P. Criqui-filipe, F. Tiziano et al., Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits, Nat. Genet, vol.27, pp.181-186, 2001.
DOI : 10.1038/84818

Y. Shi, M. Ghosh, G. Kovtunovych, D. R. Crooks, and T. A. Rouault, Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis, Biochim. Biophys. Acta, vol.1823, pp.484-492, 2012.
DOI : 10.1016/j.bbamcr.2011.11.002

URL : https://doi.org/10.1016/j.bbamcr.2011.11.002

H. Uhrigshardt, A. Singh, G. Kovtunovych, M. Ghosh, and T. A. Rouault, Characterization of the human HSC20, an unusual DnaJ type III protein, involved in iron-sulfur cluster biogenesis, Hum. Mol. Genet, vol.19, pp.3816-3834, 2010.

C. Camaschella, A. Campanella, L. De-falco, L. Boschetto, R. Merlini et al., The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload, Blood, vol.110, pp.1353-1358, 2007.
DOI : 10.1182/blood-2007-02-072520

URL : http://www.bloodjournal.org/content/bloodjournal/110/4/1353.full.pdf

A. K. Sharma, L. J. Pallesen, R. J. Spang, W. , and W. E. , Cytosolic iron-sulfur cluster assembly (CIA) system: factors, mechanism, and relevance to cellular iron regulation, J. Biol. Chem, vol.285, pp.26745-26751, 2010.
DOI : 10.1074/jbc.r110.122218

URL : http://www.jbc.org/content/285/35/26745.full.pdf

P. Cavadini, G. Biasiotto, M. Poli, S. Levi, R. Verardi et al., RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload, Blood, vol.109, pp.3552-3559, 2007.

H. Lange, T. Lisowsky, J. Gerber, U. Mühlenhoff, G. Kispal et al., An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins, EMBO Rep, vol.2, pp.715-720, 2001.

K. Sipos, H. Lange, Z. Fekete, P. Ullmann, R. Lill et al., Maturation of cytosolic iron-sulfur proteins requires glutathione, J. Biol. Chem, vol.277, pp.26944-26949, 2002.
DOI : 10.1074/jbc.m200677200

URL : http://www.jbc.org/content/277/30/26944.full.pdf

C. Kumar, A. Igbaria, B. D'autreaux, A. G. Planson, C. Junot et al., Glutathione revisited: a vital function in iron metabolism and ancillary role in thiol-redox control, EMBO J, vol.30, pp.2044-2056, 2011.
DOI : 10.1038/emboj.2011.105

URL : https://hal.archives-ouvertes.fr/hal-00606359

C. M. Kusminski, W. L. Holland, K. Sun, J. Park, S. B. Spurgin et al., , 2012.

, MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity, Nat. Med, vol.18, pp.1539-1549

J. R. Colca, W. G. Mcdonald, D. J. Waldon, J. W. Leone, J. M. Lull et al., Identification of a novel mitochondrial protein ("mitoNEET") cross-linked specifically by a thiazolidinedione photoprobe, Am. J. Physiol. Endocrinol. Metab, vol.286, pp.252-260, 2004.

J. R. Colca, W. G. Mcdonald, G. S. Cavey, S. L. Cole, D. D. Holewa et al., Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)-relationship to newly identified mitochondrial pyruvate carrier proteins, PLoS ONE, vol.8, p.61551, 2013.

X. Hou, R. Liu, S. Ross, E. J. Smart, H. Zhu et al., Crystallographic studies of human MitoNEET, J. Biol. Chem, vol.282, pp.33242-33246, 2007.

J. Lin, T. Zhou, K. Ye, W. , and J. , Crystal structure of human mitoNEET reveals distinct groups of iron sulfur proteins, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.14640-14645, 2007.

M. L. Paddock, S. E. Wiley, H. L. Axelrod, A. E. Cohen, M. Roy et al., MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.14342-14347, 2007.

S. E. Wiley, M. L. Paddock, E. C. Abresch, L. Gross, P. Van-der-geer et al., The outer mitochondrial membrane protein mitoNEET contains a novel redox-active 2Fe-2S cluster, J. Biol. Chem, vol.282, pp.23745-23749, 2007.

S. E. Wiley, A. N. Murphy, S. A. Ross, P. Van-der-geer, and J. E. Dixon, MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.5318-5323, 2007.

J. A. Zuris, Y. Harir, A. R. Conlan, M. Shvartsman, D. Michaeli et al., Facile transfer of [2Fe-2S] clusters from the diabetes drug target mitoNEET to an apo-acceptor protein, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.13047-13052, 2011.

R. Thierbach, T. J. Schulz, F. Isken, A. Voigt, B. Mietzner et al., Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice, Hum. Mol. Genet, vol.14, pp.3857-3864, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00187779

C. Pondarré, B. B. Antiochos, D. R. Campagna, S. L. Clarke, E. L. Greer et al., The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis, Hum. Mol. Genet, vol.15, pp.953-964, 2006.

A. Martelli, M. Wattenhofer-donzé, S. Schmucker, S. Bouvet, L. Reutenauer et al., Frataxin is essential for extramitochondrial Fe-S cluster proteins in mammalian tissues, Hum. Mol. Genet, vol.16, pp.2651-2658, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00187819

B. Guillon, A. L. Bulteau, M. Wattenhofer-donzé, S. Schmucker, B. Friguet et al., Frataxin deficiency causes upregulation of mitochondrial Lon and ClpP proteases and severe loss of mitochondrial Fe-S proteins, FEBS J, vol.276, pp.1036-1047, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00365808

I. Ferecatu, M. Bergeaud, A. Rodríguez-enfedaque, N. Le-floch, L. Oliver et al., Mitochondrial localization of the low level p53 protein in proliferative cells, Biochem. Biophys. Res. Commun, vol.387, pp.772-777, 2009.

J. C. Drapier, J. B. Hibbs, and . Jr, Aconitases: a class of metalloproteins highly sensitive to nitric oxide synthesis, Methods Enzymol, vol.269, pp.26-36, 1996.

D. T. Ta and L. E. Vickery, Cloning, sequencing, and overexpression of a [2Fe-2S] ferredoxin gene from Escherichia coli, J. Biol. Chem, vol.267, pp.11120-11125, 1992.

M. Carboni, M. Clémancey, F. Molton, J. Pécaut, C. Lebrun et al., Biologically relevant heterodinuclear iron-manganese complexes, Inorg. Chem, vol.51, pp.10447-10460, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01069682

C. P. Anderson, M. Shen, R. S. Eisenstein, and E. A. Leibold, Mammalian iron metabolism and its control by iron regulatory proteins, Biochim. Biophys. Acta, vol.1823, pp.1468-1483, 2012.

S. J. Ciesielski, B. A. Schilke, J. Osipiuk, L. Bigelow, R. Mulligan et al., Interaction of J-protein co-chaperone Jac1 with Fe-S scaffold Isu is indispensable in vivo and conserved in evolution, J. Mol. Biol, vol.417, pp.1-12, 2012.

Y. Shan, C. , and G. , HSC20 interacts with frataxin and is involved in iron-sulfur cluster biogenesis and iron homeostasis, Hum. Mol. Genet, vol.21, pp.1457-1469, 2012.

J. Balk, A. J. Pierik, D. J. Netz, U. Mühlenhoff, and R. Lill, The hydrogenase-like Nar1p is essential for maturation of cytosolic and nuclear iron-sulphur proteins, EMBO J, vol.23, pp.2105-2115, 2004.

M. Fischer and J. Riemer, The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond, Int. J. Cell Biol, p.742923, 2013.

U. Mühlenhoff, S. Molik, J. R. Godoy, M. A. Uzarska, N. Richter et al., Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster, Cell Metab, vol.12, pp.373-385, 2010.

D. J. Netz, M. Stümpfig, C. Doré, U. Mühlenhoff, A. J. Pierik et al., Tah18 transfers electrons to Dre2 in cytosolic iron-sulfur protein biogenesis, Nat. Chem. Biol, vol.6, pp.758-765, 2010.

L. Banci, I. Bertini, S. Ciofi-baffoni, F. Boscaro, A. Chatzi et al., Anamorsin is a [2Fe-2S] cluster-containing substrate of the Mia40-dependent mitochondrial protein trapping machinery, Chem. Biol, vol.18, pp.794-804, 2011.

Y. Zhang, E. R. Lyver, E. Nakamaru-ogiso, H. Yoon, B. Amutha et al., Dre2, a conserved eukaryotic Fe/S cluster protein, functions in cytosolic Fe/S protein biogenesis, Mol. Cell Biol, vol.28, pp.5569-5582, 2008.

J. S. Gabrielsen, Y. Gao, J. A. Simcox, J. Huang, D. Thorup et al., Adipocyte iron regulates adiponectin and insulin sensitivity, J. Clin. Invest, vol.122, pp.3529-3540, 2012.

C. Fosset, M. J. Chauveau, B. Guillon, F. Canal, J. C. Drapier et al., RNA silencing of mitochondrial m-Nfs1 reduces Fe-S enzyme activity both in mitochondria and cytosol of mammalian cells, J. Biol. Chem, vol.281, pp.25398-25406, 2006.

A. Biederbick, O. Stehling, R. Rösser, B. Niggemeyer, Y. Nakai et al., Role of human mitochondrial Nfs1 in cytosolic iron-sulfur protein biogenesis and iron regulation, Mol. Cell Biol, vol.26, pp.5675-5687, 2006.

O. Stehling, D. J. Netz, B. Niggemeyer, R. Rösser, R. S. Eisenstein et al., Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis, Mol. Cell Biol, vol.28, pp.5517-5528, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00321882

K. Chandramouli, M. C. Unciuleac, S. Naik, D. R. Dean, B. H. Huynh et al., Formation and properties of, Biochemistry, vol.46, pp.6804-6811, 2007.

K. Chandramouli, J. , and M. K. , HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction, Biochemistry, vol.45, pp.11087-11095, 2006.
DOI : 10.1021/bi061237w

URL : http://europepmc.org/articles/pmc2518968?pdf=render

C. Bouton and J. C. Drapier, Iron regulatory proteins as NO signal transducers, Sci. STKE, p.17, 2003.
DOI : 10.1126/scisignal.1822003pe17

E. Soum, X. Brazzolotto, C. Goussias, C. Bouton, J. M. Moulis et al., Peroxynitrite and nitric oxide differently target the iron-sulfur cluster and amino acid residues of human iron regulatory protein 1, Biochemistry, vol.42, pp.7648-7654, 2003.

K. Pantopoulos and M. W. Hentze, Rapid responses to oxidative stress mediated by iron regulatory protein, EMBO J, vol.14, pp.2917-2924, 1995.
DOI : 10.1002/j.1460-2075.1995.tb07291.x

URL : http://europepmc.org/articles/pmc398411?pdf=render

C. Bouton, M. J. Chauveau, S. Lazereg, and J. C. Drapier, Recycling of RNA binding iron regulatory protein 1 into an aconitase after nitric oxide removal depends on mitochondrial ATP, J. Biol. Chem, vol.277, pp.31220-31227, 2002.
DOI : 10.1074/jbc.m203276200

URL : http://www.jbc.org/content/277/34/31220.full.pdf

K. Pantopoulos, G. Weiss, and M. W. Hentze, Nitric oxide and oxidative stress (H 2 O 2 ) control mammalian iron metabolism by different pathways, Mol. Cell Biol, vol.16, pp.3781-3788, 1996.
DOI : 10.1128/mcb.16.7.3781

URL : http://mcb.asm.org/content/16/7/3781.full.pdf

W. H. Tong and T. A. Rouault, Functions of mitochondrial ISCU and cytosolic ISCU in mammalian iron-sulfur cluster biogenesis and iron homeostasis, Cell Metab, vol.3, pp.199-210, 2006.

J. L. Markley, J. H. Kim, Z. Dai, J. R. Bothe, K. Cai et al., Metamorphic protein IscU alternates conformations in the course of its role as the scaffold protein for iron-sulfur cluster biosynthesis and delivery, FEBS Lett, vol.587, pp.1172-1179, 2013.

J. Y. Song, J. Marszalek, C. , and E. A. , Cysteine desulfurase Nfs1 and Pim1 protease control levels of Isu, the Fe-S cluster biogenesis scaffold, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.10370-10375, 2012.
DOI : 10.1073/pnas.1206945109

URL : http://www.pnas.org/content/109/26/10370.full.pdf

V. Peleh, J. Riemer, A. Dancis, H. , and J. M. , Protein oxidation in the intermembrane space of mitochondria is substrate-specific rather than general, Microb. Cell, vol.1, pp.81-93, 2014.

L. Vernis, C. Facca, E. Delagoutte, N. Soler, R. Chanet et al., A newly identified essential complex, Dre2Tah18, controls mitochondria integrity and cell death after oxidative stress in yeast, PLoS ONE, vol.4, p.4376, 2009.
DOI : 10.1371/journal.pone.0004376

URL : https://hal.archives-ouvertes.fr/hal-01625408

W. Qi, J. Li, C. Y. Chain, G. A. Pasquevich, A. F. Pasquevich et al., Glutathione complexed Fe-S centers, J. Am. Chem. Soc, vol.134, pp.10745-10748, 2012.
DOI : 10.1021/ja302186j

URL : http://europepmc.org/articles/pmc3401418?pdf=render

W. Qi, J. Li, and J. A. Cowan, A structural model for glutathionecomplexed iron-sulfur cluster as a substrate for ABCB7-type transporters, Chem. Commun. (Camb.), vol.50, pp.3795-3798, 2014.
DOI : 10.1039/c3cc48239a

URL : http://europepmc.org/articles/pmc4052440?pdf=render

Y. Aniya and N. Imaizumi, Mitochondrial glutathione transferases involving a new function for membrane permeability transition pore regulation, Drug Metab. Rev, vol.43, pp.292-299, 2011.
DOI : 10.3109/03602532.2011.552913

D. A. Wink, H. B. Hines, R. Y. Cheng, C. H. Switzer, W. Flores-santana et al., Nitric oxide and redox mechanisms in the immune response, J. Leukocyte Biol, vol.89, pp.873-891, 2011.
DOI : 10.1189/jlb.1010550

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3100761/pdf

C. Fillebeen, P. , and K. , Redox control of iron regulatory proteins, Redox Rep, vol.7, pp.15-22, 2002.
DOI : 10.1179/135100002125000136

X. Brazzolotto, J. Gaillard, K. Pantopoulos, M. W. Hentze, and J. M. Moulis, Human cytoplasmic aconitase (Iron regulatory protein 1) is converted into its [3Fe-4S] form by hydrogen peroxide in vitro but is not activated for iron-responsive element binding, J. Biol. Chem, vol.274, pp.21625-21630, 1999.
DOI : 10.1074/jbc.274.31.21625

M. C. Unciuleac, K. Chandramouli, S. Naik, S. Mayer, B. H. Huynh et al., In vitro activation of apo-aconitase using a, Biochemistry, vol.46, pp.6812-6821, 2007.

V. Gupta, M. Sendra, S. G. Naik, H. K. Chahal, B. H. Huynh et al., Native Escherichia coli SufA, coexpressed with SufBCDSE, purifies as a [2Fe-2S] protein and acts as an Fe-S transporter to Fe-S target enzymes, J. Am. Chem. Soc, vol.131, pp.6149-6153, 2009.
DOI : 10.1021/ja807551e

URL : http://europepmc.org/articles/pmc2677299?pdf=render

G. Tan, J. Lu, J. P. Bitoun, H. Huang, and H. Ding, IscA/SufA paralogues are required for the [4Fe-4S] cluster assembly in enzymes of multiple physiological pathways in Escherichia coli under aerobic growth conditions, Biochem. J, vol.420, pp.463-472, 2009.

U. Mühlenhoff, N. Richter, O. Pines, A. J. Pierik, and R. Lill, Specialized function of yeast Isa1 and Isa2 proteins in the maturation of mitochondrial, J. Biol. Chem, vol.286, pp.41205-41216, 2011.

A. D. Sheftel, C. Wilbrecht, O. Stehling, B. Niggemeyer, H. P. Elsässer et al., The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for, Mol. Biol. Cell, vol.23, pp.1157-1166, 2012.
DOI : 10.1091/mbc.e11-09-0772

URL : http://www.molbiolcell.org/content/23/7/1157.full.pdf

D. T. Mapolelo, B. Zhang, S. G. Naik, B. H. Huynh, J. et al., Spectroscopic and functional characterization of iron-bound forms of Azotobacter vinelandii (Nif)IscA, Biochemistry, vol.51, pp.8056-8070, 2012.
DOI : 10.1021/bi300664j

URL : http://europepmc.org/articles/pmc3546131?pdf=render

D. T. Mapolelo, B. Zhang, S. G. Naik, B. H. Huynh, J. et al., Spectroscopic and functional characterization of iron-sulfur cluster-bound forms of Azotobacter vinelandii (Nif)IscA, Biochemistry, vol.51, pp.8071-8084, 2012.

M. C. Kennedy and H. Beinert, The state of cluster SH and S2-of aconitase during cluster interconversions and removal: a convenient preparation of apoenzyme, J. Biol. Chem, vol.263, pp.8194-8198, 1988.

B. Zhang, J. C. Crack, S. Subramanian, J. Green, A. J. Thomson et al., Reversible cycling between cysteine persulfide-ligated, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.15734-15739, 2012.
DOI : 10.1073/pnas.1208787109

URL : http://www.pnas.org/content/109/39/15734.full.pdf

Y. Nicolet, R. Rohac, L. Martin, and J. C. Fontecilla-camps, X-ray snapshots of possible intermediates in the time course of synthesis and degradation of protein-bound Fe4S4 clusters, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.7188-7192, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01664850

A. S. Fleischhacker, A. Stubna, K. L. Hsueh, Y. Guo, S. J. Teter et al., Characterization of the, Biochemistry, vol.51, pp.4453-4462, 2012.

H. Li, D. T. Mapolelo, N. N. Dingra, S. G. Naik, N. S. Lees et al., The yeast iron regulatory proteins Grx3/4 and Fra2 form heterodimeric complexes containing a [2Fe-2S] cluster with cysteinyl and histidyl ligation, Biochemistry, vol.48, pp.9569-9581, 2009.
DOI : 10.1021/bi901182w

URL : http://europepmc.org/articles/pmc2796373?pdf=render

S. A. Anderson, C. P. Nizzi, Y. I. Chang, K. M. Deck, P. J. Schmidt et al., The IRP1-HIF-2 axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption, Cell Metab, vol.17, pp.282-290, 2013.
DOI : 10.1016/j.cmet.2013.01.007

URL : https://doi.org/10.1016/j.cmet.2013.01.007

N. Wilkinson, P. , and K. , IRP1 regulates erythropoiesis and systemic iron homeostasis by controlling HIF2 mRNA translation, Blood, vol.122, pp.1658-1668, 2013.
DOI : 10.1182/blood-2013-03-492454

URL : http://www.bloodjournal.org/content/bloodjournal/122/9/1658.full.pdf

B. Galy, D. Ferring-appel, S. W. Sauer, S. Kaden, S. Lyoumi et al., Iron regulatory proteins secure mitochondrial iron sufficiency and function, Cell Metab, vol.12, pp.194-201, 2010.
DOI : 10.1016/j.cmet.2010.06.007

URL : https://doi.org/10.1016/j.cmet.2010.06.007

S. Stys´, A. Galy, B. Starzyn´skistarzyn´ski, R. R. Smuda, E. Drapier et al., Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide, J. Biol. Chem, vol.286, pp.22846-22854, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00606348