
HAL Id: hal-01872239
https://hal.science/hal-01872239

Submitted on 11 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Recovering Three-Level Architectures from the Code of
Open-Source Java Spring Projects

Alexandre Le Borgne, David Delahaye, Marianne Huchard, Christelle Urtado,
Sylvain Vauttier

To cite this version:
Alexandre Le Borgne, David Delahaye, Marianne Huchard, Christelle Urtado, Sylvain Vauttier. Re-
covering Three-Level Architectures from the Code of Open-Source Java Spring Projects. SEKE: Soft-
ware Engineering and Knowledge Engineering, Jul 2018, San Francisco, United States. pp.199-202,
�10.18293/SEKE2018-140�. �hal-01872239�

https://hal.science/hal-01872239
https://hal.archives-ouvertes.fr


Recovering Three-Level Architectures
from the Code of Open-Source Java Spring Projects

Alexandre Le Borgne1, David Delahaye2, Marianne Huchard2,
Christelle Urtado1, and Sylvain Vauttier1

1LGI2P, IMT Mines Ales & Montpellier University, Ales, France
{Alexandre.Le-Borgne, Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

2Montpellier University, CNRS, LIRMM, Montpellier, France
{David.Delahaye, Marianne.Huchard}@lirmm.fr

Abstract

Despite the well-admitted benefits of keeping design
decisions as a documentation all along the lifecycle of
software, many software projects have lost this informa-
tion. In order to use design information to guide software
maintenance and evolution, this paper proposes to retro-
engineer architecture descriptions from source code. The
originality of this work is to target a three-leveled architec-
ture description language which represents software spec-
ification, configuration and deployment. Retro-engineering
these three levels will provide a more precise source
of guidance for the maintenance of software. Targeted
projects are open-source Java projects that use Spring to
describe the implemented ”architecture”.

Keywords: Component-Based Software Engineering,
Model-driven engineering, Architecture retro-engineering
from code, Architecture evolution, Component reuse, Ar-
chitecture reuse.

I. Introduction

As software systems constantly become more complex,
retrieving design decisions has become an increasingly
important problematics when conceptual documentation
is missing. However, despite numerous researches in the
field of software architecture reconstruction, few work was
dedicated to extract raw (”as implemented”) component-
based description. It is important, in the first place, to
understand design decisions to recover architectures as

they are implemented and to not perform any improvement
(re-engineering tasks) altogether. Moreover, it is important
to represent the software at three abstraction levels in order
to trace design decisions through the whole development
process. To do so, we use the Dedal [12], [8] architecture
description language (ADL) developed by our team. This
paper proposes to reconstruct component-based architec-
tures from Java Spring [6] projects.

The remainder of this paper is organized as follows.
Section II presents the background of our approach. The
core of the paper is developed in Section III where
component-based architecture reconstruction from Java
Spring projects is explained. Section IV details the existing
work in software architecture reconstruction and Section V
concludes on perspectives.

II. Background

A. Dedal, a Three-Level Architecture Description
Language

Dedal [12], [8] is a three-level architecture description
language (ADL) designed to give a representation of the
entire life cycle of architectures and a support to manage
their evolution. Design is represented by the Specification
level which is composed of abstract component types.
Those types are called roles which means that they define
the functionalities present in the components of the future
software. Implementation choices are captured by the
Configuration level. This architecture level is composed
of concrete component classes which are realizations of

DOI reference number: 10.18293/SEKE2018-140



the roles. Deployment is described in the Assembly level.
This level is composed of a set of component instances
that define how to tailor software for specific execution
contexts.

B. Spring

Java Spring framework [6] is widely used in industry
to manage the deployment of software architectures. It
provides standardized architecture deployment capabilities
thanks to a container that is able to handle explicit archi-
tecture descriptors. Architecture descriptors are defined as
XML files or directly embedded in the code as annotations.
They are based on the concept of beans, which define the
objects that the container must instantiate and connect in
order to set the initial architecture up. For instance, the
deployment descriptor of Figure 1a is composed of four
beans: lampDesk, lampSitting, clock1 and orchestrator1.

Connections between beans are handled by the con-
tainer using dependency injection to preserve decoupling.
Beans only declare reference attributes corresponding to
their dependencies with other beans. These dependencies
are then resolved at runtime thanks to the connections
defined in the deployment descriptor. For instance, the
deployement descriptor in Figure 1a defines three connec-
tions between the orchestrator, the lamps and the clock
beans. Those connections are defined by the property
tag which corresponds to the injection of dependencies.
For instance, < property name = ”clock” ref =
”clock1”/ > sets the clock1 bean as the clock property
of the orchestrator1 bean.

As compared to raw code, Spring projects provide some

explicit architectural descriptions. However, these descrip-
tions do not capture design decisions and thus cannot be
considered as abstractions of the software architecture.

III. Extracting Component-Based Software
Architectures

In order to ease the extraction of information from
the Spring descriptor, using a model-driven approach, a
small domain specific language named SpringDSL has
been developed. It consists of an implementation of the
Spring XML descriptor grammar in EMF1. XText2 has
been used to automatically generate the corresponding
EMF metamodel since we could not find an already
developed metamodel. This metamodel enables thus to
parse Spring XML descriptors and get all their content
as concept instances.

This section discusses how each concept of Dedal is
extracted from the source code and a Spring deployment
description.

A. Extracting Components

Considering component extraction as a model trans-
formation between SpringDSL and Dedal, only a simple
mapping is required to extract the assembly and also a
small part of the configuration models. To do so, the
eclipse QVTo3 language is used since it defines model to

1https://www.eclipse.org/modeling/emf/[Last seen 03-14-2018].
2https://www.eclipse.org/Xtext/ [Last seen 03-14-2018].
3https://projects.eclipse.org/projects/modeling.mmt.qvt-oml [Last seen

03-14-2018].

<bean class="AdjustableLamp" id="lampDesk" />
<bean class="AdjustableLamp" id="lampSitting" />
<bean class="Clock" id="clock1" />
<bean class="Orchestrator" id="orchestrator1" >

<property name="lamps">
<set><ref bean="lampDesk" />

<ref bean="lampSitting" /></set></property>
<property name="clock" ref="clock1" />

</bean>

(a) HAS Spring description
public class Clock implements Time {

public void run() {...}
}
public class AdjustableLamp extends Light {

...
public void switchState(State s) {...}
public void adjustInensity(int value) {...}

}
public class Orchestrator extends HomeOrchestratorImpl {

protected void run(){...}
}

(b) HAS classes instantiated in Figure 1a

public interface Time {
public void run();

}
public abstract class Light {

...
public abstract void switchState(State s);

}
public abstract class HomeOrchestrator {

Light[] lights;
Time clock;
public abstract void run();

}
public class HomeOrchestratorImpl

extends HomeOrchestrator {
protected void run(){...}
public HomeOrchestratorImpl (Light[] lights,

Time clock) {...}
public Light[] getLights() {...}
public void setLights(Light[] lights) {...}
public Time getClock() {...}
public void setClock(Time clock) {...}

}

(c) HAS most abstract classes

Figure 1: HAS implementation



Figure 2: Extracted component class: Orchestrator

model transformations through the concept of mapping.
As a first step, beans are mapped to the component
instances of the architecture Assembly, using the id of
the beans as the name of the components and the class
attribute as the instantiated component class. Thus the bean
tag describing the Orchestrator instance orchestrator1
in Figure 1a is mapped as the component instance of
Figure 3 named orchestrator1 that is an instance of the
primitive component class Orchestrator. If the compo-
nent class does not exist in the Configuration yet, then it
is created.

Figures 1b and 1c present an extract from the Java code
of the Home Automation Software (HAS) example. Code
introspection enables to extract complementary informa-
tion required to build higher level architecture models and
more detailed component definitions.

For generating the component roles of the architecture
Specification, the type hierarchy of the beans classes is an-
alyzed, in order to extract the most generic, thus reusable,
architecture model as possible. The main idea is to retrieve
the abstract superclasses that are realized by the bean
class corresponding to a component class. To extract the
component role, the type hierarchy is traversed and the role
which is picked is the most generic component role which
still holds all the required interfaces that are present in the
corresponding component class and which preserves the
connections which exist in the Configuration. Figure 2 is
the component role HomeOrchestrator role that is re-
alized by the primitive component class Orchestrator.

B. Extracting Interfaces

Two types of interfaces are distinguished: (i) provided
and (ii) required interfaces. All the methods that are pro-
vided by the beans classes must be provided into respective
component interfaces. However, in order to not provide
only one large interface per component, the interfaces are
cut according the type hierarchy of classes. In other words,
each implemented interface is mapped as a component
interface and if a class does not implement an interface,
a ”conceptual” interface is extracted, which is composed
of the public methods of the beans class, except for get-
ters / setters that are used whether to initialize properties or
to manage connections. For extracting required interfaces,

Figure 3: HAS generated Dedal three-level architecture

Figure 4: Extracted class connection

the reference attributes declared in the Spring descriptor
are used to manage the binding of the beans. The type and
the name of the attribute are used to generate the type and
the name of the corresponding interface.

The HomeOrchestrator role extracted interfaces are
described in Figure 2 with their names, direction and
implemented types.

C. Extracting Connections

The XML description (Figure 1a) makes it possible to
start the extraction of connections between components.
Indeed, thanks to the dependency injection, clients and
servers of connections are identifiable. For instance, in
the current example, the orchestrator1 bean contains a
property which refers to clock1, so it is possible to map
a new connection between orchestrator1 and clock1. This
connection is propagated to the Configuration level by
creating a connection between the two instantiated compo-
nent classes. Following the same principle, the connection
between the realized component roles is created.

Then the interfaces that are implied in connections must
be set. To do so, we search among two connected com-
ponents which are their matching interfaces. For matching
two interfaces, their types must be equal and their direc-
tion complementary (provided with required). Thus, for
instance in our case, Clock provides the IT ime interface
of type Time and, Orchestrator requires an interface of



the same type (Figure 3). Then those two interfaces match
and the connection presented in Figure 4 can be set. Then
it is propagated following the instantiate relation between
component class interfaces and component instance inter-
face (Figure 3). Finally, connection between roles are set
in the same way as the connections between component
classes.

Figure 3 is the visual representation of the three-level
Dedal architecture which is composed of four component
instances into the Assembly (that correspond to the beans
of the Spring description), the component classes of the
Configuration that are instantiated by the component in-
stances and also the component roles into the Specification
which are realized by component classes. The connections
between components are also represented.

IV. Related Work

This section narrows the studied approaches to the ones
which extract component-based architecture descriptions
and, if possible, from object-oriented code. Moreover,
retro-engineering approaches which consist in simply ab-
stracting the software artifacts for retrieving raw design de-
cisions are differentiated from re-engineering ones which
intend to re-organize the extracted information and / or the
software artifacts.

In their work, Ducasse et al. [3] defined a taxonomy
for categorizing software architecture reconstruction ap-
proaches. Following this taxonomy, the goals of the dis-
cussed approach are twofold. The first goal is to improve
component reuse, by extracting component-based architec-
ture descriptions, such as MAP [10], PuLSE / SAVE [7]
and ROMANTIC [1], [9] approaches, but targeting the
Dedal [12], [8] ADL. The second goal is to pro-
vide the foundations for managing conformance checking
(Bauhaus [4], [2], DiscoTect [11], PuLSE / SAVE [7]), evo-
lution, co-evolution (PuLSE / SAVE [7], Huang et al. [5])
and maintenance using the formal rules that have previ-
ously [8] been defined in Dedal.

However none of the studied methods intends to extract
raw information of how the software is implemented.
Moreover, all the discussed approaches only deal with two
levels of abstraction (i.e., implementation and architecture)
that may not correspond to the same paradigms (code
vs component-based architecture description). Indeed three
component-based architecture descriptions are essential for
maintaining, evolving, tracking software life-cycle since
it gives a more global and direct understanding to the
architect which can get an overview of the code structure
by managing components. Moreover, even the approaches
which seem to fit with the discussed one, either recover
architecture in a semi automatic manner from execution
trace of software (i.e., DiscoTect [11]) or do not reconstruct

raw architecture such as ROMANTIC [1], [9] approach
which performs re-engineering of the deployed architecture
by clustering classes into bigger semantic components that
encapsulate classes.

This is why a retro-engineering approach is proposed
that builds three-level component-based architecture de-
scription from structural artifacts.

V. Conclusion and Future Work

This paper introduces an approach for software architec-
ture reconstruction, using three levels of architecture mod-
els (Assembly, Configuration, Specification). An aspect
of future work will be to improve and refine the extraction
of the Specification for making it more abstract.

Real Spring projects have already been identified in
open-source repositories in order to perform large scale
experimentations on evolution and reuse. Getting projects
from open-source repositories will also allow the imple-
mentation of versioning mechanisms.

References

[1] Z. Alshara, A. D. Seriai, C. Tibermacine, H. L. Bouziane, C. Dony,
and A. Shatnawi. Materializing architecture recovered from object-
oriented source code in component-based languages. In 10th
ECSA Proc., volume 9839 of LNCS, pages 309–325, Copenhagen,
Denmark, Nov. / Dec. 2016. Springer.

[2] A. Christl, R. Koschke, and M. A. Storey. Equipping the reflexion
method with automated clustering. In 12th WCRE Proc., pages
10–98, Pittsburgh, USA, Nov. 2005.

[3] S. Ducasse and D. Pollet. Software architecture reconstruction: A
process-oriented taxonomy. IEEE TSE, 35(4):573–591, 2009.

[4] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in
source code. IEEE TSE, 29(3):210–224, 2003.

[5] G. Huang, H. Mei, and F. Q. Yang. Runtime recovery and
manipulation of software architecture of component-based systems.
Automated Software Engineering, 13(2):257–281, April 2006.

[6] R. Johnson, J. Hoeller, K. Donald, C. Sampaleanu, R. Harrop, et al.
The spring framework – reference documentation. Interface, 21:27,
2004.

[7] J. Knodel, M. Lindvall, D. Muthig, and M. Naab. Static evaluation
of software architectures. In 10th CSMR Proc., pages 279–294,
Bari, Italy, March 2006. IEEE.

[8] A. Mokni, C. Urtado, S. Vauttier, M. Huchard, and H. Y. Zhang.
A formal approach for managing component-based architecture
evolution. SCP, 127:24–49, 2016.

[9] A. Shatnawi, A. D. Seriai, H. Sahraoui, and Z. Alshara. Reverse
engineering reusable software components from object-oriented
APIs. JSS, 131:442–460, 2017.

[10] C. Stoermer and L. O’Brien. Map–mining architectures for product
line evaluations. In IEEE / IFIP WICSA Proc., pages 35–44,
Amsterdam, The Netherlands, Aug. 2001.

[11] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman.
DiscoTect: a system for discovering architectures from running
systems. In 26th ICSE Proc., pages 470–479, Edinburgh, UK, May
2004.

[12] H. Y. Zhang, C. Urtado, and S.Vauttier. Architecture-centric
component-based development needs a three-level ADL. In 4th
ECSA Proc., volume 6285 of LNCS, pages 295–310, Copenhagen,
Denmark, Aug. 2010. Springer.


