N

N

Semantic IoT Gateway: Towards Automated (Generation
of Privacy-Preserving Smart Contracts in the Internet of
Things
Faiza Loukil, Chirine Ghedira-Guegan, Khouloud Boukadi, Benharkat
Aicha-Nabila

» To cite this version:

Faiza Loukil, Chirine Ghedira-Guegan, Khouloud Boukadi, Benharkat Aicha-Nabila. Semantic IoT
Gateway: Towards Automated Generation of Privacy-Preserving Smart Contracts in the Internet
of Things. 26th International Conference on Cooperative Information Systems (CooplS), Oct 2018,
Valletta, Malta. pp.207-225, 10.1007/978-3-030-02610-3_ 12 . hal-01871490

HAL Id: hal-01871490
https://hal.science/hal-01871490
Submitted on 8 Dec 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01871490
https://hal.archives-ouvertes.fr

Semantic IoT Gateway: Towards Automated
Generation of Privacy-Preserving Smart
Contracts in the Internet of Things

Faiza Loukil', Chirine Ghedira-Guegan?, Khouloud Boukadi®, and Aicha
Nabila Benharkat*

1 University of Lyon, University Jean Moulin Lyon 3, CNRS, LIRIS, FRANCE
faiza.loukil@liris.cnrs.fr
2 University of Lyon, University Jean Moulin Lyon 3, iaelyon school of Management,
CNRS, LIRIS, FRANCE; chirine.ghedira-guegan@liris.cnrs.fr
3 Mir@cl Laboratory, Sfax University, Tunisia
khouloud.boukadi@fsegs.usf.tn
4 University of Lyon, INSALyon, CNRS, LIRIS, FRANCE
nabila.benharkat@liris.cnrs.fr

Abstract. The Internet of Things paradigm has brought opportuni-
ties to meet several challenges by interconnecting IoT resources, such as
sensors, actuators, and gateways on a massive scale. The IoT gateways
play an important role in the IoT applications to bridge between sensor
networks and the external environment through the Internet. Typically,
the IoT gateways collect and send the data collected from sensors and
actuators to external platforms where they will be remotely analyzed.
However, the users desire a more adapted IoT gateway that can improve
the IoT data privacy preservation before sending them to these external
platforms. Thus, an IoT gateway that enables a better control over the
set of private IoT resources and protects the collected personal data and
their privacy is required. For this purpose, we propose a Semantic IoT
Gateway that helps implement a dynamic and flexible privacy-preserving
solution for the IoT domain. First, it enables to match between the data
consumer’s terms of service and the data owner’s privacy preferences by
generating an adapted privacy policy. Second, it converts the privacy
policy into a custom smart contract. Finally, it connects a set of pri-
vate IoT resources to a distributed network using the blockchain tech-
nology to host the generated smart contracts. A smart contract is an
executable code that runs on top of the blockchain to facilitate, exe-
cute and enforce an agreement between untrusted parties without the
involvement of a trusted third party. Our proposal, which is highlighted
through an example and experimentation on a real-world use-case, has
given the expected results.

1 Introduction

The Internet of Things (IoT) is a novel paradigm, the main strength of which
is its high impact on several aspects of everyday’s life and behavior of potential

users. From the point of view of the private user, the most obvious effects of
the IoT introduction will be visible in both working and domestic fields, such as
assisted living, e-health, and enhanced learning. Similarly, from the perspective
of the business users, the most apparent consequences will be equally visible
in fields, such as automation and industrial manufacturing, business/process
management, and intelligent transportation of people and goods [3].

Actually, many challenging issues related to the IoT resource characteristics
still need to be addressed. In fact, they have a low computation and an energy ca-
pacity to protect personal data and the user’s privacy. In order to overcome this
problem, another IoT resource type is proposed. This is called IoT Gateway,
the role of which is to collect and send the collected data from IoT sensors and
actuators to external platforms to be remotely analyzed. Moreover, those exter-
nal platforms gather the IoT data and use them to personalize services, optimize
decision-making processes, and predict future trends. However, the IoT data raise
security and privacy concerns. In fact, the users have a little or no control over
the collected data about themselves [10]. For instance, sharing the collected data
by wearable devices with service providers leads to lose the IoT data control and
ownership [10]. Moreover, users have no guarantee that the service provider will
respect the licensing agreement concerning privacy and security protection [10].
Moreover, the used IoT gateways are generic, with basic settings, and do not
preempt the user’s requirements especially concerning the privacy issue.

Motivated by the actual basic role and the need to have a more flexible gate-
way that enables to better control the set of private IoT resources, we propose a
Semantic IoT Gateway as a core component of our proposed end-to-end privacy-
preserving framework for the IoT data based on the blockchain technology, called
PrivBlockchain [9]. The reason behind using the blockchain technology is that
the blockchain is an immutable public record of data secured by a network
of peer-to-peer participants that hosted smart contracts, which are executable
codes that run on top of the blockchain to facilitate, execute and enforce an
agreement between untrusted parties without the involvement of a trusted third
party. Nevertheless, the Semantic IoT Gateway is intended to convert the data
owner’s privacy preferences into smart contracts that will be published within
the blockchain. Moreover, our Semantic IoT Gateway is based on an IoT privacy
ontology, called LIoPY, which is a European legal compliant ontology to preserve
privacy for IoT and defined in our previous work [8]. Thanks to LIoPY use, a
privacy policy can be inferred according to the data owner’s privacy preferences
and the data consumer’s terms of service. This policy is a set of conditions that
the consumer needs to fulfill in order to handle specific shared IoT data. Those
conditions are hosted in a smart contract. Thus, the use of a smart contract
will prevent any privacy violation attempts by enforcing the data privacy re-
quirements and ensuring that the shared data will be handled as expected in the
whole IoT data lifecycle, collection, transmission, storage and processing phases.

This paper is organized as follows. Section 2 deals with the existing re-
searchers who studied how privacy is preserved in the IoT scope. Section 3
presents an overview of the PrivBlockchain framework. Section 4 identifies the

framework’s core components. Section 5 defines the proposed Semantic IoT Gate-
way and explains its components and main functionalities. Section 6 validates
our solution in a healthcare scenario. Section 7 concludes the paper and presents
some future endeavors.

2 Related Work

There are many researchers, who have studied the integration of IoT technology
and semantic modeling or blockchain technology for preserving privacy.

Semantic-based privacy preservation solutions are based on ontologies and
inference rules for developing smart applications. For instance, Celdran et al. [5]
proposed a solution called SeCoMan, in which an ontology is employed to model
the description of entities, reason over data to obtain useful knowledge, and de-
fine context-aware policies. However, privacy protection is fulfilled in a location-
limited level. For their part, Wang et al. [13] proposed an Ontology-based Re-
source Description Model to describe resources in the IoT environment. They
defined a Privacy class that protects the device from illegal access or control.
However, ORDM did not offer fine-grained access control to the sensed data.

Blockchain-based privacy preservation solutions are based on the blockchain
technology for enabling users to preserve their IoT data privacy while eliminating
the need to trust a centralized regulator. For instance, Hashemi et al. [6] proposed
a distributed data storage system, which used blockchain to maintain data access
control and data storage model. For their part, Zyskind et al. [14] proposed a
decentralized personal data management system, which used blockchain to keep
track of both data and access transactions. However, the IoT devices have not
sufficient resources to store the whole blockchain.

To the best of our knowledge, the combination of semantic modeling and
blockchain technology for preserving IoT data privacy has never been explored.

3 PrivBlockchain Overview

Considering the legal rights imposed by the GDPR [11], it is necessary to ensure
the privacy requirement compliance to preserve privacy during the whole data
lifecycle, covering the collection, transmission, storage and processing phases. In
our previous work [9], we have proposed PrivBlockchain, an end-to-end privacy-
preserving framework for the IoT data based on the blockchain technology.
PrivBlockchain aims at enforcing these privacy requirements and obligations
for the IoT environment.

PrivBlockchain is based on the main following principles. User-driven and
transparency: The user is the master of his own data since he has a full con-
trol over the data he shared in the network. Fairness: Using the blockchain in
our end-to-end privacy-preserving framework improves fairness because nobody
could systematically be enforced to lose control over his own data. Distributed
architecture and the lack of a central authority: Each node in the network
directly shares its data with other nodes, without the intervention of any third

or trusted entity to manage the whole network. Fine-granularity: The use of
a smart contract enables the user to implement expressive and granular privacy
policies over our framework.

Figure 1 depicts PrivBlockchain, the proposed architecture that includes two
types of network: first, the private IoT network, which can be a smart home,
smart building, etc. This network includes the IoT resources owned by a data
owner, which can be an individual or an organization. The second network is the
public IoT network, which represents the external domain of the private IoT net-
work. Moreover, we distinguish three IoT network node types, namely private,
public, and storage nodes. Both public and storage IoT nodes belong to the
public network. The private node (i.e., Semantic IoT Gateway or private IoT re-
source) is an IoT node that belongs to both the private and public IoT networks.

Legend

N

;ﬁ Private
K Nodes

Public loT Network
+ Public Blockchain
=0 00

VoS
Smart

Storage N\o%{/{j/ -” '~._C.o:|nt:a:t

—» Has Parent | - \

oo ~
5 S -

Semantic loT Private loT Network -_E_ ,\F‘
Gateway Node

o

Semantic loT
Gateway Node
Private loT Resources

o\ ST .
Fig. 1. PrivBlockchain Architecture

B Public Node

Private loT Network

ﬁ Semantic loT

Gateway Node Private Ledger

Private loT Resources

In the private IoT network, each data owner has one or more high resource
devices, known as the ”Semantic IoT Gateway”, which is responsible for the other
owned IoT resources. The communication between the owned IoT resources by
the data owner (i.e., the private IoT resources) is stored in a private blockchain
called the "private ledger”. The communication between the private IoT nodes
and the other nodes of the public IoT network is stored in a ”public blockchain”.

We outline the proposed framework core components in the following section.

4 PrivBlockchain Core components

This section discusses the main blockchain-based solution components. Indeed,
the PrivBlockchain framework consists of nine core components, such as smart
contract, transaction, private IoT network, private ledger, Semantic IoT Gate-
way, local storage, public IoT network, public blockchain, and storage node.

4.1 Smart contract

Two parties can share a set of conditions by signing a common agreement. This
kind of published agreement within the blockchain is known as a smart contract,
which contains a code and defines a set of functions. For instance, the smart
contract can define the constructor function that enables to create the smart
contract itself. The sender of the transaction (i.e., network node) that invokes
the constructor function becomes the smart contract owner.

A self-destruct function is another example of the functions that can be defined
in a smart contract. Usually, only the smart contract owner can destruct the
contract by invoking this function. A smart contract is likely to be a class that
contains state variables, functions, function modifiers, events, and structures [4].
Besides, it can even call other smart contracts. We represent the smart contract,
which is denoted as SC, as a tuple that has the following form:

SC =< states, functions >

— States: they are variables that hold some data or the owner’s Ethereum
wallet address (i.e., the address in which the smart contract is deployed). We
can distinguish between two state types, namely constant states, which can
never be changed, and writable states, which save states in the blockchain.

— Functions: they are pieces of code that can read or modify states. We can
distinguish between two function types, namely read-only functions, which
are marked as constant in the code and do not require gas to run and write
functions that require gas because the state transitions must be encoded in
a new block of the blockchain.

In order to invoke one smart contract function, a transaction needs to be created.

4.2 Transaction

Communication between IoT resources and network nodes is known as a trans-
action. In our work, we define a set of transaction types. Tagq and Tremove
transactions are generated by a Semantic IoT Gateway to add a new private loT
resource or to remove it from the network. T ocaistore transaction is generated
by IoT resources to locally store the data. Tsso. transaction is generated by IoT
resources to store data on a Storage Node that can be a cloud storage provider.
T Access transaction is generated by an IoT resource, gateway node or IoT network
node to access a shared data. Thjonitor transaction is generated by an IoT net-
work node to periodically receive near real-time collected data by IoT resources.
Moreover, TGet Permissions 1Grant Permissions and TGetSharedResource transactions
are used to ask for permissions to (i) access a specific IoT resource output, (ii)
define a set of permissions to a data consumer by a data owner, and (iii) handle
the shared data by an allowed data consumer. Each transaction contains a set of
parameters, as depicted in figure 2, such as the previous transaction identifier to
chain transactions, the current transaction identifier, and the transaction type.

Transaction | Transaction | Address | Public | Address | Type Contract | Contract | Signature
Identifier Identifier Key Address] | Function

Previous Current Sender | Sender | Receiver | Transaction | [Smart [Smart Sender
Transaction
Name]

Fig. 2. Transaction structure

Lightweight cryptography, such as AES Encryption [7], is used by IoT re-
sources to secure the transactions during the communication. It should be noted
that all the transactions between the IoT resources and the Semantic IoT Gate-
way occur in a private [oT network.

4.3 Private IoT network

The private IoT network is an area, like a smart home or a smart building,
where its owner can control a set of owned IoT resources. Indeed, the private
IoT network includes a set of private IoT resources and Semantic loT Gateway
nodes, which are high resource devices that validate communication between
the private IoT resources and link these private resources with the public IoT
network. In our work, we distinguish between two node types, namely full nodes,
which process every transaction and store the entire blockchain, and light nodes,
which only store the relevant information, such as the gateway node and smart
contract addresses due to their limited resources. In our private IoT network,
the gateway nodes are full nodes while the private IoT resources are light nodes.
Each private IoT network maintains a private ledger.

4.4 Private Ledger

A private ledger is a local private blockchain that enables the data owner to
control his own IoT resources. This blockchain contains the data owner’s private
IoT resource communication and has a set of smart contracts that enforce the
data owner’s privacy preferences on how his IoT resources must behave. Trans-
actions are chained together in a block. Each block in the private ledger contains
a block header, which is the hash of the previous block to keep the blockchain
immutable. Besides, each block contains a list of transactions (see figure 1).

The private ledger is kept and managed by a set of Semantic IoT Gateway nodes.

4.5 Semantic IoT Gateway node

A Semantic IoT Gateway is a device with high memory and storage capabilities.
Each gateway node is responsible for a set of private IoT resources, generates
their keys and adds them to the IoT network. In our proposal, IoT resources with
low memory and storage capabilities, such as a Beaglebone or an Arduino board,
can delegate complicated treatments to the Semantic IoT Gateway. Moreover, it
validates the incoming and the outgoing transactions before adding them to the
private ledger. On the other hand, the Semantic IoT Gateway is considered as a

public node in the public IoT network. In fact, it communicates with both the
public and storage nodes, and stores a copy of the public blockchain to benefit
from the IoT applications that are offered by the public IoT network nodes. For
this purpose, it uses another couple of public and private keys different from the
couple used in the private IoT network to reduce the linkability problem.
Furthermore, the Semantic IoT Gateway manages a local storage.

4.6 Local Storage

Local storage is a storing device, which is used to store data locally. It saves the
collected data by IoT resources for a long-term storage before sending them to
the external storage center, which is the storage node in our case. Each data
block is stored using its Data Block ID. In case of a data center failure, the data
can be restored from the local storage using the unique data identifiers. The
local storage provides an additional capability to the Semantic IoT Gateway to
belong as a public node to the public IoT network.

4.7 Public IoT network

The proposed public IoT network is a peer-to-peer network (P2P) that contains
several nodes with different memory and storage capabilities. The public nodes
can be a gateway, a storage, or a public node. These nodes require a high mem-
ory and storage capabilities to store the public blockchain. Each IoT network
node has a unique pair of public (PK) and private (SK) keys. The former, which
is known by the other public nodes in the IoT network, is used as a unique node
identifier to communicate (send/receive) transactions from the other nodes in
the public IoT network while the latter, which is kept secret to the node, is used
to sign transactions before sending them. Then, the signature is verified using the
node’s PK in the transaction. The digital signature, which is the hash of a digi-
tal asset (i.e., a transaction), improves transaction sender’s authentication (i.e.,
proves that the transaction sender has the appropriate couple of public key and
blockchain address), non-repudiation (i.e., the sender cannot deny having sent
a transaction), and integrity (i.e., proves that a transaction is not altered while
transmitted). Only valid transactions can be added to the public blockchain and
distributed between all the public IoT network nodes. The public IoT network
maintains a public blockchain.

4.8 Public Blockchain

The public blockchain can be seen as the history of all the transactions that
are sent by the public nodes to access or share IoT data in the public IoT net-
work. In fact, it can ensure auditing functions. Hence, our solution offers a non-
repudiation principle compliance, which consists in preventing any public IoT
network node from denying actions that are performed by itself. Furthermore, the
public blockchain contains smart contracts that enforce the data owner’s privacy

preferences on how his data must be handled. In fact, the smart contract can be
considered as data owner’s privacy policy that specifies obligations for handling
the shared IoT data. The public blockchain is stored on public and storage nodes.

4.9 Storage Node

The storage node is proposed as a public IoT network node that offers a storing
service for both public blockchain and data collected by the IoT resources. For
instance, the storage node can be a cloud storage service. Each data owner has
the choice whether to use a different storage node for each of his IoT resources
or the same storage node to store all of his collected IoT data. It is worth noting
that the use of separate storage nodes can reduce privacy hurdles, especially the
linkability issue [12]. Thus, separate databases must be created in such a way
that common attributes are avoided.

After presenting an overall design architecture of PrivBlockchain, we focus on
the core component, which is the Semantic IoT Gateway in the following section.

5 Semantic IoT Gateway

Typically, gateways collect and send the collected data from IoT resources like
sensors and actuators to external platforms in order to be remotely analyzed.
In order to enable a better control over their private IoT resources, a more
flexible gateway is required by the users. For this purpose, we propose a Semantic
IoT Gateway that aims at converting the data owner’s privacy preferences into
smart contracts that will be published within the blockchain to be enforced. As
aforementioned, our Semantic IoT Gateway is based on an IoT privacy ontology,
called LIoPY and defined in our previous work [8].

The architecture of the Semantic IoT Gateway is shown in Figure 3. It in-
cludes four core components, which are: (i) the Semantic Rule Manager, which
aims at matching the data owner’s privacy preferences and the data consumer’s
terms of service in order to generate an adapted privacy policy, (ii) the Smart
Contract Factory, which converts the privacy policy into a custom smart contract
that will be hosted in the blockchain to enforce the privacy requirements. More-
over, it generates three smart contract types, namely PrivacyPermissionSetting,
Ouwnership, and PrivacyPolicy. The two first smart contracts are published in
the private ledger while the third is published in the public blockchain, (iii) the
MQTT Client, which enables the Semantic IoT Gateway to subscribe to the data
consumer’s terms of service and publish the custom smart contract parameters
using the MQTT standard, which is a lightweight publish/subscribe messaging
protocol, and (iv) the Blockchain Client, which is considered as an access point
to the blockchain network to receive a blockchain address and access this latter.

All the Semantic IoT Gateway components interact among them and with the
external network in order to preserve the IoT data privacy. We detail below those
components, the associated processes/workflows, and an example of a smart
contract generation protocol.

" . Subscribe LI
« _gpReceivestheprivacy T _r]
policy smart contract 2 =2
- JORIC: Public Blockchain

Terms of Adapted Privacy Policy

Data Consumer Service smart contract /
Publish‘ parameters r‘.ﬁ' T I
Receives the = 3 l
N 7 —— — —) VS E G 5 _r
TOPIC: terms of service | |5 2 L,—_d
Terms of Service |12 Private Ledger
Subscribe & T B siores
‘ Semantic loT Gateway ‘ @ 4 &
- A MQTT Client Blockchain Client ~_
/l : |Semantic Rule Manager _— ' i
r/ 4 # = e Ownership
A8« Query Engine || policy i’::":act
Ontolo; Smart I
Terms of e 8 Contract
555 Prod Service -% o7 Privacy
ata Producer = o Permission
N (I 8 Adapted Sem’r:g

Smart
Contract

Generate:
.Generates

c

Inference . @ Pri
Creates rivacy
Rule lnference Rule Engine > policy

Rules
Manager
Generates

@Smart Contract

J
N
3 s g
P;IVBCY Creates | privacy) 2 Factory
jirererence Preferences - /
Manager [Predefined /

Functions

=
4]
>
=
s]
-
o
[v)

&
Defines
Privacy
Preferences

9

Fig. 3. Architecture of Semantic IoT Gateway

5.1 Semantic Rule Manager: From privacy preferences to privacy
policy

The Semantic Rule Manager provides the Semantic loT Gateway with semantic
capabilities that enable to infer additional knowledge from the defined concepts
in the European Legal compliant IoT Privacy-preserving ontologY (LIoPY) [8].
The main purpose of our LIoPY ontology is to enable inferring a privacy policy
that aims at protecting privacy during the whole process of collecting, transmit-
ting, storing, and processing the collected data by smart devices.

Figure 4 provides an overview of LIoPY. In order to cover the whole privacy
aspects, the LIoPY contains three main modules, namely IoT resource man-
agement, [oT description, and IoT resource result sharing management. Each
module includes a set of sub-modules. We referred to the data owner’s privacy
preferences by the Privacy_Rule class and to the data consumer’s terms of service
by the Terms_of_Service class. Both of these two classes are associated to a set of
privacy requirements depicted by the Privacy_Attribute class, which has a set of
subclasses, namely Consent, Purpose, Retention, Operation, Condition, and Disclo-
sure. These subclasses specify for what reason, for how long, how, under which
conditions the owner’s data will be handled, and to whom they can be disclosed.
The Semantic Rule Manager is based on our matching algorithm described in [8]
to provide the appropriate policy that matches the privacy requirements of both
Privacy_Rule and Terms_of_Service classes using a set of predefined inference rules.

)

| Privacy Standard & Legislation aslntendedPrivacy

N r Attribute
q ivacyAttribute

Module

StorageLocatiof

Condition J{_Condition dition

Is: Tea a8 I I
Consume:][Concextual_][Owner_Con] l

Access

A -mm[
Action

IoT Resource Management

|
|
|
e e—

I

Physical Location
Data_Storage_Location

isa

[External_Storage] [Local_Storage]

\
3 \\llixkulu
—| Actor_Role
isRelatedTo
o
a

is

e — =

[loT Resources

| isa
|[sosa:Actuator] [

Tsa

b
IJES

Osa:madeSampling

isa

isa

IoT Description Module

Body || Environment

I [Software_Agent] (Gateway] [loT_Devlce }<///
Nﬂnﬂ?c\'icclnpm I

] IoT_Device_Input I

ResultFile

T isStoredOn
isWrittenTo,
- >

J’ | hasQuery ” m

Feature |

/'“/“ s‘,wpcﬂ‘!

I sosa:madeActuation |

l (sosa:Actualion] [sosa:Sampling J

sosa:hasFeatureOfinterest

\

[sosa:FeatureOﬂnterestJ

\

‘ sosa:hasResult
[sosa:Result I

Privacy Access Request & Policy,

hasRequestedOutpyt

i

—

Obligation & Decision |

hasDataObligation)
hasPrivacyRulle

Privacy_Policy

19
pasReates

ey

has\’“‘“‘cyv

Terms_of_Service

hasConsentResponseDecision

Management Module

IoT Resource Result Sharin

[

Privacy_Obligation
I
4(‘(‘0.\'&'DE¢‘-S.
io,
= 0 hasDecision
Decision

Fig. 4. LIoPY Overview

Once a privacy policy is generated by the Semantic Rule Manager, it is con-
verted to a smart contract by the Smart Contract Factory that is detailed below.

5.2 Smart Contract Factory: From privacy policy to smart contract

As aforementioned, three smart contract types are proposed, namely PrivacyPer-

missionSetting, Ownership, and PrivacyPolicy.

The first and second contracts en-

force the data owner’s privacy preferences on how his IoT resources must behave
according to each data output while the third enforces the data owner’s privacy

preferences and requirements on how his data

must be handled once shared.

D C

PrivacyPermissionSetting smart contract. In order to add a new Pri-
vacyPermissionSetting smart contract, the Semantic IoT Gateway creates the
contract and deploys it in the private ledger. Each IoT resource that knows the
smart contract address can use it by invoking its defined functions.

The PrivacyPermissionSetting smart contract is designed to store the permission
for each IoT resource concerning a specific [oT resource output according to the
data owner’s privacy preferences. This smart contract defines a set of functions,
namely: (i) LocalStore function that enables to verify the IoT resource permis-
sion to locally store its collected data, (ii) ExternalStore function that verifies
if the IoT resource has the permission to send the collected data to be stored
on an external storage node, (iii) Read function that verifies if the IoT resource
has the permission to request data from other internal or external IoT resources
after verifying the IoT resource permissions, (iv) Write function that enables an
IoT resource to add and/or modify a requested data collected by other internal
or external IoT resources if the IoT resource is permitted, and (v) Monitor func-
tion that enables to verify the IoT resource permission to receive periodic data
from another IoT resource. Furthermore, the PrivacyPermissionSetting smart
contract includes a self-destruct function. Only the Semantic IoT Gateway can
invoke this function to destruct the smart contract in order to revoke the granted
privacy permissions for all the IoT resources associated with this contract. It is
worth noting that when destructing the smart contract, it will be inoperable,
but its history remains in the private ledger.

Ownership smart contract. The Semantic IoT Gateway creates an Quner-
ship smart contract in order to store its own IoT resource addresses. For each
IoT resource, a set of outputs is added. A PrivacyPermissionSetting contract
is associated with each IoT resource output. Thus, the smart contract address
is stored on the Ownership smart contract and sent to the appropriate IoT re-
source according to its data outputs and granted permissions.

The Ownership smart contract is designed to enforce data owner’s control over
his ToT resources and their outputs. It defines a set of functions, namely: (i)
addNewloTResource function, which enables to add a new IoT resource by in-
dicating an IoT resource address, an IoT resource output, and the address of
the PrivacyPermissionSetting smart contract, which is associated with the IoT
resource output, (ii) modifyloTResource function, which enables to modify the
description of an existing IoT resource except for the set of its outputs, (iii) re-
moveloTResource function, which enables to remove an existing IoT resource,
(iv) addloTResourceQutput function, which enables to add a new output to an
existing IoT resource by indicating a description output and the associated Pri-
vacyPermissionSetting smart contract address, (v) modifyloTResourceOutput
function, which enables to modify the description of an existing IoT resource
output, and (vi) removeloTResourceOutput function, which enables to remove
an existing IoT resource output from an existing IoT resource.

PrivacyPolicy smart contract. A PrivacyPolicy smart contract is created
when a data owner wants to share a new IoT resource output with consumers.
A set of subscribers can be added to the allowed consumer’s list. This smart
contract is designed to enforce the data owner’s privacy preferences on how his
IoT resource outputs must be handled once shared. The PrivacyPolicy smart
contract contains many data fields, such as data hash, data path hash (while the
data path is sent in a private transaction over HTTPS), creation date, and a
set of consumer’s addresses. Each consumer is defined with various permissions.
The defined addConsumer function enables to add a new consumer by indicat-
ing its address, and a set of permissions relevant to the privacy requirements,
such as the allowed action according to the chosen purpose, operation, retention
duration, disclosure limitation, etc. Moreover, a set of conditions can be added
to each existing consumer’s permission, such as the allowed location consumer’s
address, time of day for handling the shared data, and the allowed role of the
consumer’s address. To this end, an addCondition function is defined. When
the retention duration ends, the consumer’s address is automatically removed
from the consumer’s list by invoking the removeConsumer function. Besides,
this function is used when the data owner wants to revoke the permissions of a
specific consumer. In case of the file content modification, the updateFile func-
tion needs to be invoked in order to keep consistency between the file hash that
is stored on blockchain and the off-blockchain stored file content. Similar to the
smart contract owner, a consumer with a write permission can invoke this func-
tion in order to change the hash of the file content. It should be noted that the
use of data hash enables the data integrity.

After presenting the two core components of the Semantic IoT Gateway, we
define an example of a smart contract generation in the following subsection.

5.3 PrivacyPolicy Smart Contract Generation Protocol

Figure 5 depicts the business process of generating and adding a new Privacy-
Policy smart contract to the public blockchain. The parameters of such a smart
contract are only generated in case of a match between the data consumer’s
terms of service and the data owner’s privacy preferences.

Each IoT public node (i.e., data consumer in our case) publishes its terms of
service by creating the appropriate topic according to the data that will be used.
An MQTT broker manages these topic and broadcasts the published messages to
the appropriate subscribers. The Semantic IoT Gateway subscribes on the data
consumer’s terms of service topic and creates a new topic in which it will pub-
lish a set of PrivacyPolicy smart contract parameters. The Broker notifies the
data consumer of the topic creation to subscribe. Once the data consumer pub-
lishes new terms of a service, the privacy policy generation sub-process starts
(see figure 5.A). When the Semantic IoT Gateway node receives the terms of
service, it communicates with the Semantic Rule Manager, which is responsible
for reasoning about the received request and then taking a decision whether to
create or not a privacy policy. First, the Semantic Rule Manager retrieves the
predefined set of inference rules, which are stored on the storage node and shared

“Subscribe to the

 Evaluate the

© Publish its

[Doclmo :

3
2
a smart contract = =

3 ate a topic ad;(:‘ss‘:"";’f“y terms of o ‘ & Sond the data Receive the @ Store the
g & || for its terms of coriacl o service consumer smart contract smart contract
2z =i Agree| plockchain address address addresss
5 % f
3% :
3t |

) o S

] LIGPY +

Infererice Rules
k] ONotiythebata | v i
g rTmumev :;v the | (& Noify the :
i Terms of opic creation
£ Service b Notify the Subscriber
5 Tvic published terms of
; ; : of the published
Topic E service °
: rivacy PrivacyPolicy smart

£ pols sma contract parameters
E Topic

bscribe | [ECreate atopic to

to Terms of

Service

contract

publish the adapted
privacy policy smart

Data Owner LioPY
Instance H

i
i =
Send the terms &2)—
of service Receive the
Terms of

service

—>{(=)

3 Receive the
PPrivacy Policy,

* Add the data

PrivacyPolicy smart
contract parameters

consumer's
blockchain address to
S the smart Contract

ive the

Updates”* ’{'7 ‘
public Blockchain

Match [EGenerate an & Send the
adapted adapted
“Retrieve the [privacy policy privacy policy | |

inference T ’
tules
terms of

y -
privacy policy
| Nomatch| service

Evaluate the terms
of service according
tothe privacy

U Retrieve the
appropriate privacy
preferences

(& Reject the.

Private IoT Network

Send the |
smart
contract |

Translate the
privacy policy to a
custom smart
contract

PrivacyPolicy
Smart Contract |

Predefined

Smart Contract Factory | Semantic Rule Manager | Semantic loT Gateway

Fig. 5. Adding a new PrivacyPolicy smart contract business process notated in BPMN

between all the involved parties. These inference rules help the Semantic Rule
Manager to retrieve the appropriate data owner’s privacy preferences from the
"Data Owner’s LIoPY Instance” base, which is an instance of LIoPY ontology.
Then, the Semantic Rule Manager matches the terms of service with the privacy
preferences to infer an adapted privacy policy. In case of a match, a privacy
policy is created and sent to the Semantic IoT Gateway that will store the pri-
vacy policy on the ”"Data Owner’s LIoPY Instance” base and starts the smart
contract generation sub-process. Otherwise, the Semantic Rule Manager rejects
the terms of service and the process stops. Figure 5.B shows the smart contract
generation Sub-Process in details. In order to generate a new smart contract,
the Semantic IoT Gateway begins by sending the privacy policy to the Smart
Contract Factory, which will transform the privacy policy into a smart contract
using the set of predefined functions. In fact, each privacy policy parameter is
presented by a function on the smart contract. Moreover, some functions are
automatically added to any smart contract regardless of the privacy policy. For
instance, the constructor function, which enables the creation of the smart con-
tract itself is an example of these default functions. Once the smart contract is
created, the Smart Contract Factory sends it to the IoT Gateway.

Once the Semantic IoT Gateway receives the PrivacyPolicy smart contract,
it publishes its parameters. When the data consumer receives the smart contract
parameters, it evaluates them and decides whether to accept or reject them. In
case of a rejection, the process will stop. In case of an agreement, the data con-

sumer communicates its blockchain address to the Semantic IoT Gateway that
starts the smart contract creation sub-process. Thus, it adds the received data
consumer’s blockchain address to the PrivacyPolicy smart contract and broad-
casts a signed transaction that invokes the smart contract constructor to host it
on the blockchain. Once the smart contract is hosted, the Semantic IoT Gateway
sends its address to the data consumer and the process is finished with success.

6 Prototype and validation

We implemented our proposed smart contracts using the Solidity language [2]
and deployed it to the Ethereum test network. Because our system does not
rely on the currency transfer, there is no difference between the real Ethereum
network and the Ethereum test network. Ethereum is currently the most common
blockchain platform for developing smart contracts [4].

We applied our solution to the following scenario from the healthcare domain
in order to validate our solution:

A patient named Alice needs to follow a healthcare protocol, which consists in
practicing some sport activities and eating healthy meals. Alice owns a wearable
device that collects the user’s heart rate. This IoT resource is connected to Alice’s
Semantic IoT Gateway. Alice regularly goes to a modern gym. During the train-
ing, the wearable device collects Alice’s vital parameters and sends them to her
gateway. The latter receives Alice’s sensitive data and decides what information
to send to the hospital to be stored on Alice’s medical base, which is regularly
checked by her doctor. These stored data are analyzed to propose personalized
recommendations for patients. Hence, a need for a break or water notifications
could be sent to Alice when necessary. Moreover, Alice wants to use a ”Healthy
Eating” application, which is offered by the gym with the aim of proposing a set
of healthy meals according to the needed calories for each specific user.

However, Alice is afraid of losing the control over her data once shared. For
this purpose, she uses her Semantic IoT Gateway that checks if the ”Healthy
Eating” application’s terms of service match her privacy preferences. We assume
that Alice’s gateway and the IoT application are connected to the PrivBlockchain
framework and each of them is identified by Ethereum addresses.

The depicted steps by the business process (see figure 5) are implemented to
validate our proposal. First, the data consumer (i.e., ”Healthy Eating” applica-
tion administrator) creates an MQTT message that includes the requested data,
and a set of privacy requirements, such as the use purpose, disclosure, retention
duration, the requested operation, etc. The reason behind the use of JSON for-
mat for the MQTT message’s content is to ensure an easy matching between the
data consumer’s terms of service and the data owner’s privacy preferences, which
are defined on RDF format. Listing 1.1 is an example of MQTT message content.

Listing 1.1. MQTT message content notated in JSON’s format

14

2 "className": "Terms_of_Service",

"individualName": "eatHealthy_TersmsOfService",
"objectProperties": {
"hasRequestedPrivacyAttribute": ["Treatment_Purpose",
"Write", "Retention_180_days", "With_Requester"]
},
"dataProperties": {
"requested_data_name": "Heartrate"

© 00 O U W

10
11 }

“

When the Semantic IoT Gateway received the ”Healthy Eating” application
terms of service, it communicated with the Semantic Rule Manager that decided
if the received terms of service match Alice’s privacy preferences that are already
stored on ” Alice’s LIoPY instance” base. In our case, the Semantic Rule Manager
succeeded in inferring an adapted privacy policy that is depicted in figure 6.

I+ Retention ‘ [* Operation l

- Privacy_Policy
‘ Fo o J 2

+ .
S A= B L
e T \ Writ
“1" @ Terms_of Servic a 28 $ v
: =
ff X

e_for_Heartrate ¥

* @ Treatment_Purpo
* ¢ Privacy Policy |—P se
Alice_Heartrate T
* @ IoT_Device _ z Y\\
| ® Hearirate_Senso 1
e N -
\l‘-'] | *® Consent
1

+ . E ™ + 2
= & Alice_Heartrate |0 ge;ﬁ:ﬁ_rl);?an J it;arw.nsumr_condn

|

* & With_Requester

- Data_Category

*& Personal |
s 1+ sai
= ™ ~_| % Sensitive_Data
i B - Sensitive_Data > ¢ e —
Sensitive - Privacy_Rule

Fig. 6. The generated privacy policy by the Semantic IoT Gateway

|

|
|
v

I;I

Once the privacy policy is created, the Semantic loT Gateway stored it on
7 Alice’s LIoPY instance” base and sent it to the Smart Contract Factory, which
converted the policy into a smart contract using a set of predefined functions.
For instance, if in the privacy policy, the permitted operation is "Write’, then the
updateFile function is added to the custom smart contract. Moreover, the Smart
Contract Factory added a modifier, called AllowedTo Write that aims at verifying
a set of conditions before executing the "Write’ operation. Listing 1.2 shows an
example of code that is included in the generated PrivacyPolicy smart contract.

Listing 1.2. Example of a PrivacyPolicy smart contract including two Solidity prede-
fined functions: updateFile function and AllowedTo Write modifier

1 contract PrivacyPolicy {
2

3 modifier AllowedToWrite(address _account) {

4 require(owner == _account ||

5 (isConsumer[_account] && isAllowedToWrite[_account]
6 &% now < (now + retentionDuration[_account])));

7 -

8 }

9 function updateFile(string new_data_file_name,

10 string new_data_file_path, bytes new_data_hash) public
11 AllowedToWrite (msg.sender) {

12 require(msg.sender == owner) ;

13 sharedFile = File(sharedFile.dataFileId, new_data_file_name,
14 new_data_file_path, new_data_hash, sharedFile.createdDate,
15 now, sharedFile.consumers, sharedFile.storageNode);

16 }

17 ...

18 }

Once the Semantic IoT Gateway received the PrivacyPolicy smart contract
from the Smart Contract Factory, it published its parameters. Figure 7 depicts
the process of publish/subscribe between the Semantic IoT Gateway and the
data consumer. Both Semantic IoT Gateway and the ”Healthy Eating” applica-
tion interacted with a publish/subscribe message broker as MQTT clients, which
we developed in Java using Eclipse Paho [1]. We chose Eclipse Mosquitto as a
broker because it is an open-source message broker that implements the MQTT
standard, which is a lightweight publish/subscribe messaging protocol.

[output -Run Main) <[& Mainjava x

2o

[Jjar]

Building version 2 1.0-SNAPSHOT
en

- MQTT Broker: Dear Semantic IoT Gateway, new terms of service are published —

| Topic:privacy/promise

| Message: ["className™: "Terms_of_Service", "individualName": "eatfealthy TersmsOfService", "objectProperties”: {

"hasC sion”: "Permit”, " vacyAttribute”: ["Write”, "Retention_180_days", "With Requester”, "Treatment_Purpose”]},
"dataProperties”: {"requested data name": "Heartrate®}}

Matching Time: Please wait until Privacy Policy Creation...
Privacy Policy Created !

Conversion Time: Please wait until Smart Contract Creation...

Smart Contract Created !

- MQTT Broker: Dear Data Consumer, new Privacy Policy parameters are published —
| Topic:privacy/policy

| Message: ["className": "Privacy_Policy","individuallName": "eatHealthy TersmsOfService Privacy Policy","ob; iesm: ision": "Permit”,
"hasEffe Pris ": ["NeedForCe t", "Retention_180_day ith, -, dForC: t", "Retention_180_days", "With Requester”],
. tput: "Alice Hear o eme [Tean -

Time to deconnect !

BUILD SUCCESS

Fig. 7. Prototyping of the Publish/Subscribe process

When the data consumer received the smart contract parameters, it evalu-
ated them and decided to agree or reject them. In case of a rejection, Alice cannot
use the ”"Healthy Eating” application because it did not match her privacy pref-
erences. In case of an agreement, the application communicated its blockchain
address to the Semantic IoT Gateway that hosted the smart contract on the
blockchain and sent its address to the ”Healthy Eating” application as depicted

in figure 8.
? @ Createa % signthe it) =)
% transaction to transaction using roa CBEd e Upda(e§ the Sends the PrivacyPolicy
8 store the smart the gateway ' sign % publlc. smart contract address to
S| Receive the m;:m? ;1)"‘ the miner key Tansacten blockchain the data consumer
-‘.;ﬁ custom smart el - : s d N = ‘
z contract .yl Ll '
& Slg"ed Public
Transaction transaction Blockchain
[
valid Add the Send the public blockchain
.§ transaction to the updates to the rest of the
E Check/Mlne public blockchain public loT network nodes
z
= lransacllcn
K] Receive the Rejecl
2 signed
3 transactlon Public
§ transaction Invalid Blockchain

\
@
[
’ contract address
Receive the
PrivacyPolicy smart
contract address

loT Public Node (Data Consumer) | loT Public Nodes (Miners)

|

Fig. 8. Storing the PrivacyPolicy Smart Contract on the public blockchain

7 Conclusion

The blockchain technology is a distributed database that records all the transac-
tions that have ever occurred in the network. The main feature of the blockchain
is that it allows deploying smart contracts. In fact, a smart contract is an exe-
cutable code that runs on top of the blockchain to facilitate, execute and enforce
an agreement between untrusted parties without the involvement of a trusted
third party. Hosting a smart contract in the blockchain can enforce privacy-
preserving in the IoT domain. For this purpose, we defined a Semantic IoT Gate-
way that acts as a bridge between the IoT sensors, actuators and the blockchain
network. For this purpose, we considered the Semantic IoT Gateway as a core
component of our proposed end-to-end privacy-preserving framework for the IoT
data based on the blockchain technology, called PrivBlockchain [9]. The main
functionalities of our proposed Semantic IoT Gateway are: first, to match the
owner’s preferences and the consumer’s requirements in order to infer a privacy
policy using LIoPY, a European legal compliant ontology to preserve privacy
for ToT as well as a set of inference rules [8]. Second, to convert the inferred

privacy policy into a custom smart contract using a set of predefined set of func-
tions written in the Solidity language. Indeed, the use of smart contract aims at
enforcing the privacy requirements when sharing the IoT data. Our experimen-
tation on a real-world use-case has given the expected results and the custom
smart contracts are generated and added to the blockchain with success.

It is possible that the data consumer use or share the data without executing

the smart contract. To overcome this problem, we intend to incorporate a set
of penalties by proposing a new smart contract type. For instance, a payment
would be automatic in case of breaking a contract by sharing data illicitly.

References

1.
2.
3.

10.

11.

12.

13.

14.

Eclipse paho. http://www.eclipse.org/paho/

Solidity language. http://solidity.readthedocs.io/en/develop/

Atzori, L., Tera, A., Morabito, G.: The internet of things: A survey. Computer
networks 54(15), 2787-2805 (2010)

Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

Celdran, A.H., Clemente, F.J.G., Pérez, M.G., Pérez, G.M.: Secoman: A semantic-
aware policy framework for developing privacy-preserving and context-aware smart
applications. IEEE Systems Journal 10(3), 1111-1124 (2016)

Hashemi, S.H., Faghri, F., Rausch, P., Campbell, R.H.: World of empowered iot
users. In: Internet-of-Things Design and Implementation (IoTDI), 2016 IEEE First
International Conference on. pp. 13-24. IEEE (2016)

Landman, D.: Arduino Library for AES Encryption.
https://github.com/DavyLandman/AESLib (2017)

Loukil, F., Ghedira-Guegan, C., Boukadi, K., Benharkat, A.N.: Liopy: A legal
compliant ontology to preserve privacy for the internet of things. In: 2018 IEEE
42nd Annual Computer Software and Applications Conference (COMPSAC). pp.
701-706. IEEE (2018)

Loukil, F., Ghedira-Guegan, C., Boukadi, K., Benharkat, A.N.: Towards an end-
to-end iot data privacy-preserving framework using blockchain technology. In: 19th
International Conference on Web Information Systems Engineering (WISE) (2018)
Maddox, T.: The dark side of wearables: How they’re secretly jeopardizing
your security and privacy. https://www.techrepublic.com/article/the-dark-side-of-
wearables-how-theyre-secretly-jeopardizing-your-security-and-privacy/
Regulation, General Data Protection: Regulation (EU) 2016/679 of the European
Parliament and of the Council of 27 April 2016 on the protection of natural persons
with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46. Official Journal of the European Union (OJ)
59, 1-88 (2016)

Spiekermann, S., Cranor, L.F.: Engineering privacy. IEEE Transactions on software
engineering 35(1), 67-82 (2009)

Wang, S., Hou, Y., Gao, F., Ma, S.: Ontology-based resource description model
for internet of things. In: Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2016 International Conference on. pp. 105-108. IEEE (2016)
Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to protect
personal data. In: Security and Privacy Workshops (SPW), 2015 IEEE. pp. 180-
184. IEEE (2015)

