E. S. Kuh and R. A. Rohrer, The state-variable approach to network analysis, Proceedings of the IEEE, vol.53, issue.7, pp.672-686, 1965.
DOI : 10.1109/proc.1965.3991

C. Ho, A. Ruehli, and P. Brennan, The modified nodal approach to network analysis, IEEE Transactions on circuits and systems, vol.22, issue.6, pp.504-509, 1975.

G. Hachtel, R. Brayton, and F. Gustavson, The sparse tableau approach to network analysis and design, IEEE Transactions on circuit theory, vol.18, issue.1, pp.101-113, 1971.
DOI : 10.1109/tct.1971.1083223

K. Meerkotter and R. Scholz, Digital simulation of nonlinear circuits by wave digital filter principles, Circuits and Systems, pp.720-723, 1989.
DOI : 10.1109/iscas.1989.100452

D. T. Yeh, J. S. Abel, and J. O. Smith, Automated physical modeling of nonlinear audio circuits for real-time audio effects-part i: Theoretical development, IEEE transactions on audio, speech, and language processing, vol.18, issue.4, pp.728-737, 2010.
DOI : 10.1109/tasl.2009.2033978

M. Holters and U. Zölzer, A generalized method for the derivation of non-linear state-space models from circuit schematics, Signal Processing Conference (EUSIPCO), pp.1073-1077, 2015.

K. J. Werner, V. Nangia, J. O. Smith, I. , and J. S. Abel, Resolving wave digital filters with multiple/multiport nonlinearities, Proc. 18th Conf. Digital Audio Effects, pp.387-394, 2015.

E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2006.

A. Van-der-schaft and D. Jeltsema, Port-hamiltonian systems theory: An introductory overview, Foundations and Trends in Systems and Control, vol.1, issue.2-3, pp.173-378, 2014.

A. Van-der-schaft, Port-hamiltonian systems: an introductory survey, Proceedings of the International Congress of Mathematicians, vol.III, pp.1339-1365, 2006.

R. Brayton and J. Moser, A theory of nonlinear networks. i, Quarterly of Applied Mathematics, vol.22, issue.1, pp.1-33, 1964.

, A theory of nonlinear networks. ii, Quarterly of applied mathematics, vol.22, pp.81-104, 1964.

A. J. Van-der-schaft, On the relation between porthamiltonian and gradient systems, IFAC Proceedings Volumes, vol.44, pp.3321-3326, 2011.

D. Jeltsema and J. M. Scherpen, A dual relation between port-hamiltonian systems and the brayton-moser equations for nonlinear switched rlc circuits, Automatica, vol.39, issue.6, pp.969-979, 2003.

, Proceedings of the 21 st International Conference on Digital Audio Effects (DAFx-18), 2018.

A. Falaize and T. Hélie, Simulation of an analog circuit of a wah pedal: a port-Hamiltonian approach, 135th convention of the Audio Engineering Society, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01107056

, Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano, Journal of Sound and Vibration, vol.390, pp.289-309, 2017.

N. Lopes and T. Hélie, Energy Balanced Model of a Jet Interacting With a Brass Player's Lip, Acta Acustica united with Acustica, vol.102, issue.1, pp.141-154, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01245426

A. Falaize and T. Hélie, Passive simulation of electrodynamic loudspeakers for guitar amplifiers: a port-Hamiltonian approach, International Symposium on Musical Acoustics, pp.1-5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01161071

A. Falaize and T. Hélie, Passive guaranteed simulation of analog audio circuits: A port-hamiltonian approach, Applied Sciences, vol.6, issue.10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01390501

W. Millar, Some general theorems for non-linear systems possessing resistance, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.42, issue.333, pp.1150-1160, 1951.
DOI : 10.1080/14786445108561361

C. Cherry, Some general theorems for non-linear systems possessing reactance, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol.42, issue.333, pp.1161-1177, 1951.
DOI : 10.1080/14786445108561362

R. I. Mclachlan, G. Quispel, and N. Robidoux, Geometric integration using discrete gradients, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.357, issue.1754, pp.1021-1045, 1999.

E. Celledoni, V. Grimm, R. Mclachlan, D. Mclaren, D. O'neale et al., Preserving energy resp. dissipation in numerical PDEs using the 'average vector field' method, Journal of Computational Physics, vol.231, issue.20, pp.6770-6789, 2012.

B. D. Tellegen, A general network theorem, with applications, Philips Res Rep, vol.7, pp.256-269, 1952.

I. Y. Dorfman, Dirac structures of integrable evolution equations, Physics Letters A, vol.125, issue.5, pp.240-246, 1987.
DOI : 10.1016/0375-9601(87)90201-5

T. Courant and A. Weinstein, Action hamiltoniennes de groupes, Troisieme théoreme de Lie (Lyon, 1986), vol.27, pp.39-49, 1988.

P. Deuflhard, Newton methods for nonlinear problems: affine invariance and adaptive algorithms

. Springer, , vol.35, 2011.

G. Wanner and E. Hairer, Solving ordinary differential equations II: Stiff and Differential-Algebraic Problems, vol.14, 1991.

J. C. Butcher, Numerical methods for ordinary differential equations, 2016.

R. Müller and T. Hélie, Trajectory anti-aliasing on guaranteed-passive simulation of nonlinear physical systems, Proc. 20th Conf. Digital Audio Effects, 2017.

M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numerica, vol.19, pp.209-286, 2010.

E. Celledoni, H. Marthinsen, and B. Owren, An introduction to lie group integrators-basics, new developments and applications, Journal of Computational Physics, vol.257, pp.1040-1061, 2014.

A. Iserles, H. Z. Munthe-kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta numerica, vol.9, pp.215-365, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01328729