
HAL Id: hal-01870976
https://inria.hal.science/hal-01870976

Submitted on 10 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Descartes: a PITest engine to detect pseudo-tested
methods - Tool Demonstration

Oscar Luis Vera-Pérez, Martin Monperrus, Benoit Baudry

To cite this version:
Oscar Luis Vera-Pérez, Martin Monperrus, Benoit Baudry. Descartes: a PITest engine to detect
pseudo-tested methods - Tool Demonstration. ASE 2018 - 33rd ACM/IEEE International Conference
on Automated Software Engineering, Tool demonstration track, Sep 2018, Montpellier, France. pp.908-
911, �10.1145/3238147.3240474�. �hal-01870976�

https://inria.hal.science/hal-01870976
https://hal.archives-ouvertes.fr

Descartes: A PITest Engine to Detect Pseudo-Tested Methods
Tool Demonstration

Oscar Luis Vera-Pérez
Inria Rennes - Bretagne Atlantique

Rennes, France
oscar.vera-perez@inria.fr

Martin Monperrus
KTH Royal Institute of Technology

Stockholm, Sweden
martin.monperrus@csc.kth.se

Benoit Baudry
KTH Royal Institute of Technology

Stockholm, Sweden
baudry@kth.se

ABSTRACT
Descartes is a tool that implements extreme mutation operators and
aims at finding pseudo-tested methods in Java projects. It leverages
the efficient transformation and runtime features of PITest. The
demonstration compares Descartes with Gregor, the default muta-
tion engine provided by PITest, in a set of real open source projects.
It considers the execution time, number of mutants created and
the relationship between the mutation scores produced by both
engines. It provides some insights on the main features exposed by
Descartes.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging;

KEYWORDS
pseudo-tested methods, extreme mutation, mutation testing, soft-
ware testing, PITest

1 INTRODUCTION
Mutation analysis or mutation testing [2] evaluates the fault de-
tection capabilities of a test suite. It does so by inserting artificial
bugs in the form of subtle code changes. Then, it verifies if the test
suite is able to detect those changes. The usual outcome from this
analysis is the mutation score, that is, the ratio of planted faults
(mutants) that has been detected to the total of mutants created.

Niedermayr and colleagues [5] recently introduced extreme mu-
tation analysis. It is an alternative to traditional mutation that
performs more coarse-grained transformations by eliminating, at
once, all side effects of a method. For a void method this approach
removes all instructions from its body. If the method is not void ,
then the body is replaced by a single return instruction with a
predefined value. Listing 1 shows a simple Java method and Listing
2 shows two variants or mutants that could be created for this
method using extreme mutation, in this case with constants 0 and
1. Besides removing all side effects, the technique ensures that the
mutated method will always return the same value.

Extreme mutation addresses two challenges of the traditional
approach. It creates much less mutants and can automatically avoid
most transformations that could be equivalent to the original code.
These two aspects are usually quoted as drawbacks that prevent the
wide use of mutation testing in practice [3, 4]. Another benefit of
this approach is that it operates at the method level which eases the
understanding of the underlying testing problem. In addition to the
mutation score, extreme mutation pinpoints a list of worst tested
methods. In particular, the technique higlights methods executed
by the test suite but where no extreme mutant is detected while

running the tests. These methods are labeled as pseudo-tested in
the work of Niedermayr et. al.[5].

In this demonstration, we present Descartes, an extreme muta-
tion engine for PITest [1], a state-of-the-art mutation testing tool
for Java projects. PITest is a popular tool that works with all major
build systems: Ant, Gradle, Maven and can handle JUnit and TestNG
test suites. Descartes brings a set of extreme mutation operators
to PITest and discovers pseudo-tested methods. We also compare
the result provided by Descartes with the outcome of Gregor, the
default mutation engine for PITest. Our goal is to determine if
extreme mutation can be used as a viable trade-off between code
coverage, which assesses only test inputs, and traditional mutation
analysis, which also addresses the oracles but at a very high cost.
This is a novel contribution with respect to the work of Niedermayr
et al whose focus is on checking whether code coverage is a good
indicator of test quality when discerning between system and unit
tests.

1 // Original method

public s t a t i c long factorial(in t n) {

3 i f (n==0) return 0;

long result = 1;

5 for (in t i = 2; i <= n; i++)

result *= i;

7 return result;

}

Listing 1: A simple Java method.

// Extreme mutant 1

2 public s t a t i c long factorial(in t n) { return 0; }

4 // Extreme mutant 2

public s t a t i c long factorial(in t n) { return 1; }

Listing 2: Two mutans created with extreme mutation.

2 AN OVERVIEW OF DESCARTES
Descartes is a tool to automatically detect pseudo-tested methods
in Java programs tested with JUnit test suites. This detection relies
on extreme mutation analysis. We implement this analysis as a
mutation engine for PITest. In PITest’s jargon, a mutation engine is
a plugin that handles the discovery and creation of mutants. Such
a plugin should also manage a set of mutation operators, which are
models of the transformations to be performed.

Our extreme mutation engine provides a set of configurable mu-
tation operators. A mutation operator is configured by specifying
the literal value it should use to modify the method. Descartes
supports literals of all Java primitive types, Strinд, the null value
and has two special operators: one to target void methods and an-
other to return an empty array where possible. The engine does
not mutate constructors.

Figure 1 illustrates the interaction between PITest and Descartes.
PITest handles the inspection of the target project to discover all
dependencies, creates execution units composed by the mutants
and the tests to be executed, and ultimately runs the test cases.
The mutation engine leverages all these functionalities and handles
mutant discovery and creation.

Relying on the infrastructure and architecture of PITest allowed
us to speed up the development of Descartes and its adoption in
production. So far, the biggest challenges we have faced have been:
1) The lack of documentation describing how to create mutation
engines for PITest; 2) The design and implementation of meaningful
mutation operator abstractions and their interaction with the rest
of the PITest framework; 3) Maintaining the engine up to date with
the regular changes and releases of PITest; 4) Making the tool useful
to developers. To overcome this last challenge we have augmented
Descartes with custom reporting capabilities and functionalities
to reduce the number of potential false positives, for example, we
provide method filters based on the method structure rather than
its signature.

To the best of our knowledge, Descartes is the only available
alternative to the default engine provided by PITest. Our project
could be used as an additional supporting material for those who
are willing to create their own extensions.

3 DESCARTES VS GREGOR
Gregor is the default mutation engine for PITest. It provides most
traditional mutation operators 1. These operators work at the in-
struction level. Listing 3 shows examples of the transformations
that can be produced by Gregor over the method exposed in List-
ing 1. The first variant of the method, shown in line 2 negates the
condition in line 3. The second variant, shown in line 11, modifies
the return value by adding 1 in line 16.

1 // Mutant 1. Changes == by !=

public s t a t i c long factorial(in t n) {

3 i f (n!=0) return 0;

long result = 1;

5 for (in t i = 2; i <= n; i++)

result *= i;

7 return result;

}

9
// Gregor mutant 2. Changes the result value by adding 1

11 public s t a t i c long factorial(in t n) {

i f (n==0) return 0;

13 long result = 1;

for (in t i = 2; i <= n; i++)

15 result *= i;

return result + 1;

17 }

Listing 3: Examples of mutants produced by Gregor.

We compare the execution of Gregor and Descartes in a selection
of Java projects. These are all projects that use Maven as main build
system, JUnit as main testing framework and are available form a
version control hosting service, mostly Github.

Table 2 shows the metrics recorded for the comparison. For each
mutation engine the table shows the execution time and number
of mutants created. The “Covered” columns show the number of
mutants actually executed by the test suite and planted in meth-
ods that were mutated by both engines. This distinction removes
1The full list is available here: http://pitest.org/quickstart/mutators/

from the comparison mutants that Gregor may create in methods
not analyzed by Descartes, and vice versa. For example, mutants
created in constructors are left out. The “Killed” columns contain
the number of mutants from the respective “Covered” column that
were detected (killed) by the test suite. The “Score” columns show
the corresponding mutation score, that is the ratio of “Killed” to
“Covered”.

Table 1: Extreme mutation operators used in the compari-
son.

Method type Transformations

void Empties the method
Reference types Returns null
boolean Returns true or false
byte,short,int,long Returns 0 or 1
float,double Returns 0.0 or 0.1
char Returns ‘ ’ or ‘A’
String Returns “” or “A”
T[] Returns new T[]{}

For Gregor, all standard mutation operators were used. Descartes
used the same mutation operators as Niedermayrs et. al. [5] plus
two additional transformations, one to return null for reference
types and another to return an empty array. The full list of extreme
mutation operators is shown in table 1.

One can observe that Descartes creates much less mutants than
Gregor which is reflected in the difference between the times to ex-
ecute the analysis of each engine. In all cases, Descartes completed
the task in much less time. Some interesting contrasts in this matter
come from projects like Spoon where Descartes took a little less
than two hours and a half while Gregor took more than 56 hours,
Java Git with one hour and a half for extreme mutation and 16
hours for Gregor and Jaxen XPath Engine with less than two
minutes against nearly 25 minutes. While the number of mutants
created and covered affects the execution time, the tests themselves
play an important role as they can involve heavy computation.
Take, for example, the difference between Apache Commons Lang
and SCIFIO with similar numbers of mutants and very different
execution times.

As for the scores, one can notice that there is a certain correla-
tion between the values obtained by both engines. Figure 2 shows
a scatter plot, in which each point represents a project. The coordi-
nates for each point are given by the scores, the x axis corresponds
to the score from Descartes while the y represents the score from
Gregor. The figure corroborates the tendency for a positive mono-
tonic correlation between both scores, which means that, if the
score with Gregor is high, it is more likely that the mutation score
with Descartes will be also high. The Spearman correlation coeffi-
cient results in 0.6 for the projects studied with a p-value of 0.003,
which indeed indicates that there is a moderate positive correlation.
Anyways, there are cases such as SCIFIO and XWiki Rendering
Engine which produce a medium to low mutation score with Gre-
gor and scores above 83% with Descartes.

2

http://pitest.org/quickstart/mutators/

Figure 1: Interconnection between PITest and Descartes.

Table 2: List of projects used to compare both engines, the execution time for the analysis, the number of mutants created,
mutants covered and placed in methods targeted by both tools, mutants killed and the mutation score.

Descartes Gregor
Project Time Created Covered Killed Score Time Created Covered Killed Score

AuthZForce PDP Core 0:08:00 626 378 358 94.71 1:23:50 7296 3536 3188 90.16
Amazon Web Services SDK 1:32:23 161758 3090 2732 88.41 6:11:22 2141689 17406 13536 77.77
Apache Commons CLI 0:00:13 271 256 246 96.09 0:01:26 2560 2455 2183 88.92
Apache Commons Codec 0:02:02 979 912 875 95.94 0:07:57 9233 8687 7765 89.39
Apache Commons Collections 0:01:41 3558 1556 1463 94.02 0:05:41 20394 8144 7073 86.85
Apache Commons IO 0:02:16 1164 1035 968 93.53 0:12:48 8809 7633 6500 85.16
Apache Commons Lang 0:02:07 3872 3261 3135 96.14 0:21:02 30361 25431 22120 86.98
Apache Flink 0:14:04 4935 2781 2373 85.33 2:29:45 43619 21350 16647 77.97
Google Gson 0:01:08 848 657 617 93.91 0:05:34 7353 6179 5079 82.20
Jaxen XPath Engine 0:01:31 1252 953 921 96.64 0:24:40 12210 9002 6041 67.11
JFreeChart 0:05:48 7210 4686 3775 80.56 0:41:28 89592 47305 28080 59.36
Java Git 1:30:08 7152 5007 4507 90.01 16:02:03 78316 54441 40756 74.86
Joda-Time 0:03:39 4525 3996 3827 95.77 0:16:32 31233 26443 21911 82.86
JOpt Simple 0:00:37 412 397 379 95.47 0:01:36 2271 2136 2000 93.63
jsoup 0:02:43 1566 1248 1197 95.91 0:12:49 14054 11092 8771 79.08
SAT4J Core 0:53:09 2304 804 617 76.74 10:55:50 17163 7945 5489 69.09
Apache PdfBox 0:44:07 7559 3185 2548 80.00 6:20:25 79763 32753 20226 61.75
SCIFIO 0:24:14 3627 1235 1158 93.77 3:12:11 62768 19615 9496 48.41
Spoon 2:24:55 4713 3452 3171 91.86 56:47:57 43916 34694 27519 79.32
Urban Airship Client Library 0:07:25 3082 2362 2242 94.92 0:11:31 17345 11015 8956 81.31
XWiki Rendering Engine 0:10:56 5534 3099 2594 83.70 2:07:19 112605 50472 26292 52.09

4 PSEUDO-TESTED METHODS
The results of extreme mutation are not limited to produce a score
for a given project. The proposal of Niedermayr et. al. [5] classifies
methods according to the extreme mutant detection. A method
is said to be pseudo-tested if it is covered by the test suite but
no related extreme mutant is killed. These methods are the worst
tested in the code base. Extreme mutation provides a framework
to detect such methods more efficiently than traditional mutation
testing.

Listing 4 shows a method belonging to one of the projects in-
cluded in table 2. It was found to be pseudo-tested by Descartes.
Only two extreme mutations are required to detect that the value
of this method is not correctly verified by the test suite, if verified

1 public s t a t i c boolean isValidXmlChar(in t ch) {

return (ch == 0x9)

3 || (ch == 0xA)

|| (ch == 0xD)

5 || (ch >= 0x20 && ch <= 0xD7FF)

|| (ch >= 0xE000 && ch <= 0xFFFD)

7 || (ch >= 0x10000 && ch <= 0x10FFFF);

}

Listing 4: Real example of a pseudo-tested method.

at all, while Gregor created 45 mutants. This is an example of the
utility of extreme mutation.

Nevertheless, the result of Descartes is coarse-grained. Methods
where extreme mutants are killed are not exempt from having

3

Figure 2: Visual correlation between scores

testing issues. Listing 5 shows a real example of a method where
all extreme mutants were detected but Gregor created mutants that
survived the analysis. In particular one of the traditional mutation
operators changed the value of Lonд.MIN_VALUE in line 2. The
modification was unnoticed by the test suite, which indicates that
the corner case is not being tested. This level of detail can not be
reached with the use of extreme mutation alone.

For a deep analysis regarding the utility in practice of Descartes
in the search of pseudo-tested methods we invite the reader to
check our work on the matter [6]. There, we analyze whether
these methods are valid hints to improve existing test cases and we
provide a set of testing issues found with the help of Descartes in
real and well tested open-source projects.

public long subtract(long instant , long value) {

2 i f (value == Long.MIN_VALUE)

throw new ArithmeticException (...);

4 return add(instant , -value);

}

Listing 5: Example of a non pseudo-tested method.

5 DEMONSTRATION SCOPE
The demonstration will be directed to researchers and developers
who wish to experiments with traditional and extreme mutation.
It will be focused on the practical comparison of both mutation
approaches. We will discuss how to interpret the results given by
Descartes and how practitioners can use these results to enhance
their test suites. We will show examples of real testing faults found
with the use of the extreme mutation engine. The demo will also
showcase the integration of Descartes and the latest check Github
API 2 to discover pseudo-tested methods in commits and pull re-
quests.

6 SUPPORTING MATERIALS
All materials related to the tool are available online. Herewe provide
a list with the main resources:
• Descartes code repository: Main code repository hosted in
Github. It contains the code, documentation and instructions
to build the tool.
https://github.com/STAMP-project/pitest-descartes

2https://developer.github.com/v3/checks/

• Experimental data: Consists in a set of files with the output
obtained from both mutation engines as well as data concerning
the studied projects.
https://figshare.com/articles/data/6343280

• Experimental material: Github repository with additional
experimental data and scripts to support the analysis and com-
parison of both mutation engines.
https://github.com/STAMP-project/descartes-experiments

• Maven Central artifacts: Compiled versions of Descartes are
available for use from Maven Central.
https://mvnrepository.com/artifact/eu.stamp-project/descartes

• Github Application repository: Code of the prototype appli-
cation to integrate Descartes in a Github repository.
https://github.com/STAMP-project/descartes-github-app

ACKNOWLEDGMENTS
This work has been supported by the EU Project STAMP ICT-16-10
No.731529.

REFERENCES
[1] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony

Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo). In
Proceedings of the 25th International Symposium on Software Testing and Analysis
(ISSTA 2016). ACM, New York, NY, USA, 449–452. https://doi.org/10.1145/2931037.
2948707

[2] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1979. Program
mutation: A new approach to program testing. Infotech State of the Art Report,
Software Testing 2, 1979 (1979), 107–126.

[3] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Józala. 2014.
Overcoming the Equivalent Mutant Problem: A Systematic Literature Review
and a Comparative Experiment of Second Order Mutation. IEEE Transactions on
Software Engineering 40, 1 (Jan. 2014), 23–42. https://doi.org/10.1109/TSE.2013.44

[4] Jakub Možucha and Bruno Rossi. 2016. Is Mutation Testing Ready to Be
Adopted Industry-Wide?. In Product-Focused Software Process Improvement (Lec-
ture Notes in Computer Science). Springer, Cham, 217–232. https://doi.org/10.1007/
978-3-319-49094-6_14

[5] Rainer Niedermayr, Elmar Juergens, and Stefan Wagner. 2016. Will my tests tell
me if I break this code?. In Proceedings of the International Workshop on Continuous
Software Evolution and Delivery. ACM Press, New York, NY, USA, 23–29. https:
//doi.org/10.1145/2896941.2896944

[6] Oscar Luis Vera-Pérez, Benjamin Danglot, Martin Monperrus, and Benoit Baudry.
2018. A Comprehensive Study of Pseudo-tested Methods. arXiv:1807.05030 [cs]
(July 2018). http://arxiv.org/abs/1807.05030 arXiv: 1807.05030.

4

https://github.com/STAMP-project/pitest-descartes
https://figshare.com/articles/data/6343280
https://github.com/STAMP-project/descartes-experiments
https://mvnrepository.com/artifact/eu.stamp-project/descartes
https://github.com/STAMP-project/descartes-github-app
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/TSE.2013.44
https://doi.org/10.1007/978-3-319-49094-6_14
https://doi.org/10.1007/978-3-319-49094-6_14
https://doi.org/10.1145/2896941.2896944
https://doi.org/10.1145/2896941.2896944
http://arxiv.org/abs/1807.05030

	Abstract
	1 Introduction
	2 An overview of Descartes
	3 Descartes VS Gregor
	4 Pseudo-tested methods
	5 Demonstration scope
	6 Supporting Materials
	References

