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Abstract

Icing has been identified as a major hazard for aviation safety since the
beginning of aeronautical engineering. This paper is focused on ice crystal
icing (ICI) which is related to ice accretion for an aircraft in flight in the
presence of ice particles. Liquid water is necessary for the ice crystals to
stick to the walls of the internal components of an aircraft engine. Emphasis
is put on the glaciated conditions where the required liquid water comes
from the melting of the ice crystals themselves when they enter a warm
environment (the engine core). ICI represents an important concern for flight
safety in addition to classical supercooled water icing where the accreted ice
only derives from the instantaneous freezing of supercooled liquid droplets
when they hit an obstacle. A semi-empirical model which accounts for the
influence of the ice crystals on the mass and momentum balance equations
is proposed. It accounts for the liquid transport in the porous ice layer and
for the ice crystal sticking efficiency. The physics is extremely complicated
and not completely understood. Therefore, several adjustable parameters
are used in the model. However, the model predictions agree well with the
existing experimental data. In particular, the model is able to predict typical
conical accretion shapes that are never found in classical supercooled water
icing conditions. Moreover, the influence of the ice crystal melting ratio on
the accretion shapes is properly accounted for.
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Introduction

Icing has been identified as a major hazard for aviation safety since the
beginning of aeronautical engineering. Liquid water freezing may cause per-
formance degradation such as loss of lift and increased drag due to local ice
accumulation, erroneous flight parameters displayed inside the cockpit due
to probe clogging or in the most severe cases loss of engine thrust, engine
damage and even engine flame-out.

Among the possible causes of icing for aircraft in flight, supercooled wa-
ter icing (SWI) where ice accretion is the result of the impact of supercooled
droplets, can be considered as the primary hazard (Fluid Dynamics Panel
Working Group 20, 1997; Civil Aviation Authority of New Zealand, 2000).
Supercooling is a thermodynamically unstable state for liquid droplets where
a phase change to solid state can be initiated when the droplets hit an ob-
stacle like a wing, a probe or a blade inside an engine. Supercooled droplets
appear in the atmosphere at low temperatures in the range of −40 ◦C to
0 ◦C.

Icing may also be the result of impact and deposition of ice particles.
Beside supercooled water icing, ice crystal icing (ICI) represents as well a
severe threat for flight safety (Mason et al., 2006). Ice crystals are found
in (sub)-tropical regions (Bravin et al., 2015) in the vicinity of convective
clouds at the altitude of ∼ 7000 m where supercooled droplets usually do
not exist. In theses regions of deep convective systems, engine rollback,
flameout or stall and damage to downstream compressors from shed ice have
been observed. As reported by Mason et al. (2006), the power-loss incidents
that have occured since 1990 result from atmospheric ice crystals entering
the engine core.

With no liquid water, the ice particles do not adhere to cold airframe
surfaces and bounce off. Regarding the presence of liquid water which is nec-
essary for the ice crystals to stick, two origins are possible. On the one hand,
the liquid water may come from supercooled liquid droplets mixed with the
ice cores in mixed phase clouds at atmospheric temperatures above −40 ◦C.
These atmospheric conditions are referred to “mixed phase conditions” and
are encountered at temperatures below 0 ◦C. On the other hand, the liquid
water may come from the melted part of the ice crystals themselves. This
regime is referred to “glaciated conditions” and is often associated to engine
conditions characterized by a wet bulb temperature above the freezing point.
Both glaciated and mixed phase conditions occur in convective clouds and
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have been present during engine power-loss and damage events (Mason et al.,
2006).

Among the experiments performed below 0 ◦C at mixed phase conditions,
ice accretion tests have been performed at the COX icing research tunnel
(Al-Khalil et al., 2003; Miller et al., 1997) on a NACA0012 airfoil. Low
total water contents (from 0.3 g.m−3 to 1.4 g.m−3) have been investigated.
Similarly to supercooled water icing, glaze and rime ice shapes have been
observed. Since 1990 and due to the engine powerloss events (Mason et al.,
2006), the NASA Propulsion System Laboratory (PSL) has been upgraded to
have a capability for ice crystal generation for engine research activities under
simulated altitude conditions (Goodwin and Dischinger, 2014). Ice particles
are generated by the spray bar technique where the injected liquid droplets
are forced to freeze to generate ice particles. The shaved ice method has been
dropped since it appeared impractical for such a large facility (Griffin et al.,
2014). Mixed phase conditions have been tested experimentally at RATFac
from NRC with an hemispheric test model (Currie and Fuleki, 2016). For the
coldest conditions, with a wet bulb temperature from −8 ◦C to −5.5 ◦C, the
right end of the plateau (see below) has not been exhibited since accretion
remains possible with supercooled liquid droplets only. For low melting ratios
(∼ 14.4 %), accretion shapes with a constant cone angle of ∼ 90 ◦ has been
observed (Currie and Fuleki, 2016). At higher melting ratios, the cone angle
has become smaller as observed for past experiments where the wet bulb
temperature was higher than the freezing point (glaciated conditions, see
below). A detailed review dedicated to the experimental studies in mixed
phase conditions can be found in Baumert et al. (2018).

Regarding the glaciated conditions, the melt ratio of the ice particles is
driven by the local relative humidity or, which is equivalent, by the wet bulb
temperature. The importance of the wet bulb temperature as primary scaling
factor in matching accretion shapes has been demonstrated by Currie et al.
(2013) at RATFac for two different pressures (34.5 kPa and 69 kPa). Both
Mach number and total water content are being held constant. The wet bulb
temperature has little influence on accretion growth beyond its effect on the
particle melting (Currie et al., 2013). For the icing conditions where the
melting ratio is adjusted by the addition of supplemental supercooled liquid
water, similar ice accretions are obtained in comparison with conditions with
natural melting of the ice crystals (Currie et al., 2013). For melting ratios
ranging from 5 to 35 %, significant ice accretion rates have been reported
by NASA and NRC studies at RATFac (Currie et al., 2012, 2013, 2014).
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This “plateau” (see Fig. 1) is characterized by a left and a right boundary
where icing severity decreases strongly. At low melting ratios (left limit) the

Figure 1: “Plateau” effect: plateau of almost constant icing severity, which drastically
decreases at its left and right limits. Reprinted from Currie and Fuleki (2015) with
permission from SAE.

ice particles do not contain enough liquid water to stick to the model wall.
On the other hand and for large melting ratios (right limit), the amount of
liquid water is larger so that the ice particles do not stick and are washed off
the surface (Currie et al., 2014). Moreover, erosion effects are strong enough
to prevent ice accretion. For intermediate melting ratio, conical ice shapes
are observed (Currie et al., 2013, 2014). The influence of the Mach number,
total water content (TWC) and pressure (34.5 kPa and 69 kPa) on icing
rates have been investigated (Currie et al., 2013, 2014; Currie and Fuleki,
2016). It is shown that the sticking efficiency is almost independant of the
Mach number and TWC at normal incidence, near the stagnation point. On
the other hand, they are strongly dependant on these parameters at oblique
impingement angles (Currie et al., 2014). At the high Mach number of 0.65,
ice accretion only occurs with the smallest ice particles with a diameter of
30 µm (Currie and Fuleki, 2016). Concerning the influence of total water
content, icing severity is significantly increased with TWC at M = 0.25, but
to a lesser extent at M = 0.4 (Currie et al., 2014). The very large accretions
obtained at high TWC are subject to shedding and experimental works have
been conducted at NRC on this topic (Currie et al., 2012; Mason et al., 2011).
In Currie and Fuleki (2015), an instrument, denoted the Ice Properties Probe
(IPP), has been developed to measure the volumetric liquid water content
of a mixed phase deposit at 0 ◦C to quantify the erosion-related mechanical
properties of ice-water mixtures.

The works discussed above are related to accretion tests. To feed the the-
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oretical models, more fundamental studies have been performed, especially
about ice crystal impingement. In Hauk et al. (2015), Hauk (2015), Roisman
and Tropea (2015), impingements on solid heated and unheated surfaces have
been investigated, the surface being covered or not by a liquid layer. The
modeling of the ice crystal melting process has been addressed in Hauk et al.
(2014, 2016).

Regarding numerical simulation and modeling, previous works dedicated
to ice crystal icing have been attempted. In Lozowski et al. (1979), all the
impinging ice crystals (or at least a sufficient fraction to freeze all the existing
water on the cylinder surface) are supposed to stick when the surface is fully
wet. For dry surfaces, all the ice particles bounce off the wall. In Mazzawy
(2007), the wall liquid film may splash due to ice crystal impingement. For
the so called “zero net mass” model, the amount of liquid water which is
splashed out of the wetted surface is equal to the amount of impinging ice
crystal. Realistic configurations like partially melted ice particles which stick
to the wall and add to the film height are out of the scope of this model. In
Wright et al. (2010), modifications have been made to GlennICE for handling
ice particles impacts. Improvements concern the solid ice particle trajectory
equations (thermal and dynamic), mass loss prediction due to erosion and the
extension of the Messinger’s mass and energy balance equations (Messinger,
1953) to take into account the presence of ice crystals among the impinging
particles. In Habashi and Nilamdeen (2011), the shallow-water icing model
(SWIM) has been extended to ice crystal icing. In the rime region, it is
assumed that all ice crystals bounce off the surface which is not realistic for
partially melted ice particles. Erosion or film splashing are not considered.
In Rios Pabon (2012), a multi-layer model is proposed. However, the classical
Messinger’s formulation is used to compute the runback mass fluxes without
taking into account the porosity of the slushy ice deposit.

In Villedieu et al. (2014) the models for trajectory, impingement and
accretion have been adapted to the ice crystal icing regime. However, the
model for the ice crystal sticking efficiency is based on the presence of a
liquid film on the wall which is not necessary for partially melted ice crystals.
Erosion phenomena are not taken into account in Villedieu et al. (2014).
Ice shedding phenomena, which are typically not predicted by the classical
Messinger models but which are common in warm icing conditions, are taken
into account in Bennani et al. (2014), Bennani (2014) or Kintea et al. (2016).
The HAIC European project has been the opportunity for existing icing tools
to be equipped with an ice crystal capability (Iuliano et al., 2015; Ayan et al.,
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2015).
The objective of this paper is to derive a comprehensive accretion model

for glaciated conditions. The proposed model is based on three main fea-
tures. Firstly, the classical Messinger model (Messinger, 1953) is extended
to account for the presence of ice crystals in the mass and the energy balance
equations. In particular, contrary to Messinger (1953), a part of the unfrozen
liquid water may remain trapped in the pores of the accreted ice layer in-
stead of running backward, leading to a slushy accretion. Secondly, based on
available experimental results (Currie et al., 2014), an empirical expression
is derived for the ice crystal sticking efficiency. Lastly, the model accounts
for the influence of erosion phenomena which play a very important role in
the case of ice crytal icing contrary to the case of supercooled water icing.
As the physics is extremely complicated and not completely understood, the
proposed correlative models are based on macroscopic experimental observa-
tions. However, and this is the point of the models proposed in this paper,
they are able to reproduce the tendencies observed experimentally such as
the steady-state conical ice shapes, the plateau effect or the sensitivity of the
ice shape with the Mach number. Of course, none of these phenomena are
hard embedded in the models, but are direct consequences observed by the
application of the latter.

In a first part, the models are described. The extended version of the
Messinger balance equations for ICI is presented. The model for the ice crys-
tal sticking efficiency as well as the erosion model are presented. In a second
part, the numerical overview is proposed where the tools are presented. The
experimental database used for the model calibration and validation is pre-
sented in a third part. The fourth part is dedicated to computational setup
and model calibration. In a fifth part, the models are validated. Finally,
conclusions are drawn.

1. Model description

Ice crystal icing is a combination of several physical phenomena which
need to be modeled. Firstly, ice crystals of different shapes, sizes and veloci-
ties impact onto a solid substrate. Some of them may stick to the substrate
provided that there is some liquid water. The ice particle deposited mass rate
is determined by the sticking efficiency coefficient which has to be modeled.
Secondly, the ice layer over the substrate is a porous media. Therefore, a
part of the liquid water remains trapped and accumulates in the pores of the
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ice layer. This leads to a new formulation of the runback model for the liquid
water. Finally, a part of the accreted ice is ejected by the impacting ice crys-
tals. This phenomenon is described by the erosion model. In this section,
the extended Messinger balance for ice particles is presented as well as the
new formulation of the runback model. Then, the model for the ice crystal
sticking efficiency is presented. Finally, the erosion model is described.

1.1. The extended Messinger balance

Several authors (Wright et al., 2010; Villedieu et al., 2014) have already
adapted Messinger’s mass and energy balance equations to take into account
the presence of ice crystals among the impinging particles. The corresponding
models are described in Wright et al. (2010) and Villedieu et al. (2014).

1.1.1. Overview and notations

Here, to introduce the notations, the general form of the mass balance
equation is written:{

ṁS
acc + ṁL

Mess = ṁrbi + ṁdep − ṁevs − ṁer

ṁL
Mess = ṁL

acc + ṁrbo
(1)

where ṁrbi is the incoming runback liquid water mass rate, ṁdep is the particle
deposited mass rate, ṁevs is the evaporated/sublimated mass rate, ṁL

Mess is
the net liquid water mass rate (i.e. the mass rate corresponding to the liquid
water which does not evaporate, sublimate or freeze during the corresponding
time step), ṁS

acc is the accreted ice mass rate and ṁer is the erosion mass rate.
The mass rate ṁL

Mess is splitted between ṁL
acc and ṁrbo which respectively

stand for the mass rate of liquid water which remains trapped inside the
porous ice layer and the mass rate of running back liquid water. All the
terms are summarized in Fig. 2. The particle deposited mass rate ṁdep

derives from the impinging mass rate ṁimp through the sticking efficiency εs
(Sec. 1.2). The impinging ice crystals are melted so that the liquid ṁL

imp and
the solid ṁS

imp impinging mass rates are given by:

ṁL
imp = ηm · ṁimp

ṁS
imp = (1− ηm) · ṁimp

(2)

where ηm is the melting ratio of the impinging ice crystals.
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Solid ice

Liquid waterṁimp

ṁrbi

ṁimp − ṁdep

ṁer

ṁrbo

ṁevs

ṁL
acc + ṁS

acc

Figure 2: Messinger mass balance. Extension to ice crystal icing. ṁimp, ṁdep, ṁevs, ṁer,
ṁrbi, ṁrbo, ṁL

acc and ṁS
acc are respectively the mass rates for impinging ice particles,

deposited ice particles, evaporation/sublimation, erosion, incoming runback liquid water,
outgoing runback liquid water, liquid water trapped in the pores of the accreted ice layer
and solid ice accretion.
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1.1.2. Runback model

In the classical Messinger model (Messinger, 1953), the hypothesis that
the liquid water may not locally accumulate and is carried downstream by
the air flow (ṁL

acc = 0 and ṁrbo = ṁL
Mess) may be justified in the case of

supercooled water icing where the frozen droplets form a solid non porous ice
layer. But, for ice crystal icing conditions, there are experimental evidences
(Currie et al., 2013, 2014) that liquid water may be trapped among the
accreted ice particles, leading to the formation of slushy ice deposits. The
porosity Φ of the accreted ice is defined as:

Φ =
ṁL

acc/ρL + ṁair/ρa
ṁL

acc/ρL + ṁair/ρa + ṁS
acc/ρS

(3)

where ṁair is the mass rate of air which remains trapped inside the porous
ice layer. ρL, ρS and ρa are respectively the densities of liquid water, solid
ice and air. If the porous ice layer is not compacted in some manner, the
porosity Φ is about 40 % since this is a typical value for close-packing spheres.
Actually, Φ is ranged between 26 % for a face-centered cubic or a hexagonal
close-packed distribution and 66 % for a diamond cubic structure. Φ = 0.5
is chosen here. Therefore, the liquid water may accumulate in the porous
ice layer. To account for these phenomena, a model for the runback water
has thus to be proposed like in Trontin et al. (2016). The interstices of the
porous ice can be filled with both liquid water and air (see Eq. (3)). The
volume occupied by the liquid water can thus be written as:

ṁL
acc/ρL = H (ηm) ·

(
ṁL

acc/ρL + ṁair/ρa
)

(4)

where H (ηm) is the ratio of the liquid water in the interstices of the porous
ice. H is a function of ηm ranging between 0 and 1. It is chosen so that in
the case of supercooled water icing (ηm = 1), the hypothesis of the classical
Messinger model (Messinger, 1953) is satisfied (ṁL

acc = 0). The following
expression is then proposed for the function H:

H (ηm) = 1− η2m (5)

so that the classical supercooled water icing actually appears like a degenerate
configuration of the model. Combining Eqs. (4) and (5), ṁL

acc can be written
as:

ṁL
acc/ρL = H (ηm) ·G (Φ) · ṁS

acc/ρS (6)
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where

G (Φ) =
Φ

1− Φ
(7)

G is an increasing function of Φ, which means that the more porous the ice,
the more liquid water can accumulate. For the assumed value of Φ = 0.5 (see
hereinabove), G = 1. In the absence of experimental data dedicated to the
modelling of Φ, this value is chosen for the function G in this study. Given
that ρL ≈ ρS, and according to Eq. (6), the runback model, i.e. the split of
the water mass flow rate ṁL

Mess between ṁL
acc and ṁrbo, is given by:

ṁL
acc = min[H (ηm) ·G (Φ) · ṁS

acc ; ṁL
Mess︸ ︷︷ ︸
1©

]

ṁrbo = ṁL
Mess − ṁL

acc

(8)

Term 1© defines the upper limit value for ṁL
acc which cannot be larger that

the amount of available liquid water ṁL
Mess computed from the Messinger’s

mass and energy balance equations.

1.2. Model for the ice crystal sticking efficiency

The particle deposited mass rate ṁdep is computed from the impinging
mass rate ṁimp thanks to:

ṁdep = εs · ṁimp (9)

where εs denotes the sticking efficiency. εs is computed according to the
following empirical model:

εs = F (ηm) (10)

where the function F has to meet the following conditions:

1. In the absence of liquid water, pure ice crystals (ηm = 0) bounce off
the wall (εs = 0). Therefore, F (0) = 0.

2. For the supercooled water icing regime (ηm = 1), all the droplets stick
to the wall (εs = 1). Therefore, F (1) = 1.

3. In the experiments from Currie et al. (2014), it is shown that for a
crowned cylinder, the sticking efficiency near the stagnation point is
a function of the particle melting ratio ηm. More specifically, for low
ηm, εs is a linear function of ηm (see Appendix A.2 dedicated to the
calibration of the model for εs). Therefore, F (ηm) ≈ K# · ηm at low
ηm (with K# an adjustable parameter to be calibrated).
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4. The function F is expected to be a smooth increasing function which
tends to 1 when ηm → 1.

Given all these conditions, the following polynomial expression is chosen for
F :

F (ηm) =
(
K# − 2

)
η3m +

(
3− 2K#

)
η2m +K#ηm (11)

1.3. Erosion model

ṁL
Mess and ṁS

acc are updated to take into account the erosion effects. The
erosion mass rate ṁer is defined as:

ṁer = min

ṁS
acc + ṁL

Mess︸ ︷︷ ︸
(∗)

,min (1, εer) · ṁimp

 (12)

where ṁimp is the ice crystal impinging mass rate. The term (∗) in Eq. (12)
means that the upper limit value for ṁer is ṁS

acc + ṁL
Mess which represents

the total amount of solid (ṁS
acc) and liquid (ṁL

Mess) water available on the
wall. The following empirical model for the erosion efficiency εer is proposed:

εer = E

(
V t
imp

V0

)2

︸ ︷︷ ︸
1©

· yl0
yl0 −min (yl, yl0)︸ ︷︷ ︸

2©

·
[
1 + (l0κ)2

]︸ ︷︷ ︸
3©

(13)

where V t
imp denotes the mean tangential velocity of the impinging ice crystals

and yl is the wall liquid mass fraction defined by:

yl =
ṁL

acc

ṁL
acc + ṁS

acc

(14)

yl = 0 stands for a pure ice layer with no water trapped inside and which
sticks firmly to the wall. yl = 1 is an asymptotic value with only liquid
water. κ is the local curvature of the ice layer surface. E, V0, yl0 and l0
are empirical constants which have to be estimated thanks to experimental
results (see Appendix A).

The term 1© in Eq. (13) is justified from experimental observations where
conical ice shapes in Currie et al. (2013, 2014) and the erosion effects near
the impingement limits in Currie et al. (2012) indicate that the erosion rate
seems to mainly depends on the tangential component of the velocity of the
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impinging ice crystals. Term 2© defines a critical value for yl. For large wall
liquid mass fractions (yl & yl0), the slushy ice deposit at the wall contains too
much liquid water and cannot stick to the wall due to erosion and continuous
shedding phenomena. Term 3© accounts for the smoothing effect of erosion.
The higher the local curvature, the higher the erosion rate.

2. Numerical overview

The numerical tool used to develop and calibrate the aforementioned
models is the ONERA 2D icing tool IGLOO2D (Trontin et al., 2017). An
overview of the tool is proposed in Fig. 3. It is mainly composed of four

Figure 3: IGLOO2D overview. The ONERA 2D icing tool is mainly composed of four
components: the MESH2D grid generation tool, the AERO2D aerodynamic flow solver,
the TRAJ2D trajectory solver and the ACCRET2D ice accretion solver.

components:
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• The MESH2D grid generation tool is dedicated to the building of both
structured, unstructured, and hybrid grids.

• The AERO2D aerodynamic flow solver computes the aerodynamic field
(air pressure, velocity and temperature, recovery temperature, heat
transfer coefficient or local steam mass fraction). It can be obtained
by the resolution of the Navier-Stokes equations or by the coupling
between the resolution of the inviscid equations (potential flow theory
or Euler equations) for the external flow field and the resolution of the
boundary layer equations (Prandtl equations).

• The TRAJ2D trajectory solver is dedicated to the computation of the
particulate flowfield (crystals and droplets). Two solvers respectively
based on a Lagrangian (TRAJL2D) and an Eulerian (TRAJE2D) de-
scription are available. The model dedicated to the ice crystal sticking
efficiency εs (Eq. (10)) is developed in TRAJ2D.

• The ACCRET2D ice accretion solver computes ice accretion from the
outputs provided by the aerodynamic and the dispersed two-phase flow
solvers. The revisited Messinger model for ice crystal icing as well as
the models dedicated to erosion and modified runback are implemented
in ACCRET2D.

From the computational point of view, the total ice accretion time ∆t is
divided intoN sub-steps. The final ice deposit thickness eice computed during
∆t is given by:

eice =
N∑
i=1

eiice (15)

where eiice is the accreted ice thickness computed during the time interval
[ti; ti+1], ti being defined by:

ti =
i− 1

N
∆t (16)

At the beginning ti of each new step, the aerodynamic flow field at the outer
edge of the boundary layer (outer velocity, pressure, temperature, . . . ), the
characteristics of the boundary layer (recovery temperature and heat transfer
coefficient) and the properties of the impinging particles (sticking efficiency,
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temperature, . . . ) are updated. Then the ice growth during [ti; ti+1] is com-
puted by the ACCRET2D solver and the ice deposit shape is updated for the
next time step. The directions used for the ice growth during [ti; ti+1] are the
updated local normal vectors to the transient iced profile. This procedure
known as the multi-timestep method (called hereafter the multistep method)
is detailed in Trontin et al. (2017).

3. Presentation of the experimental database used for model cali-
bration and validation

In 2013 and 2014, NRC performed several ice crystal accretion experi-
ments in their small altitude wind tunnel (Currie et al., 2013, 2014). In these
experiments, ice crystals are produced by a grinder and are entrained in a
jet of sub-freezing air blowing into the inlet of the icing tunnel (≈ −15 ◦C).
Before entering the tunnel, cold airflow mixes with the surrounding warm
air from the altitude cell to produce a mixed-out temperature T0 inside the
tunnel. This mixing may promote ice particle melting when the wet bulb
temperature of the mixed airflow is greater than 0 ◦C. The melting ratio ηm
of the ice crystals was adjustable by adjusting the wet bulb temperature Twb.

The test article is a nominally 2D planar geometry with a crowned cylin-
drical nose (Fig. 4). The test-cases from Currie et al. (2014) used for the

Figure 4: Nominally 2D planar geometry with crowned cylindrical nose. Reprinted from
Currie et al. (2014) with permission from AIAA.
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Run name M0 Twb0,wet ηm
run#17 0.25 0.2 ◦C 6 %
run#77 0.25 1.6 ◦C 11.2 %
run#67 0.25 2.6 ◦C 16.6 %
run#92 0.25 5.0 ◦C 26.4 %
run#101 0.25 6.0 ◦C 40 %

Table 1: Test case description (from Currie et al. (2014)). P0 = 34.5 kPa, T0 = 15 ◦C,
IWC = 6 g.m−3. Run#67 is used to calibrate the empirical models proposed in this
paper. Validation is carried out with runs #17, #77, #92 and #101.

model calibration and validation are detailed in Tab. 1. All the considered
tests correspond to a Mach number M0 of 0.25 and a total pressure P0 of
34.5 kPa (5 psia). The total air temperature T0 is nominally +15 ◦C for all
the tests. The corresponding velocity is 84.5 m.s−1. Therefore the reference
velocity V0 in Eq. (13) is chosen so that:

V0 = 84.5 m.s−1 (17)

The wet bulb temperature was increased from 0 ◦C to +6 ◦C at the given
pressure P0 while holding the injected ice flowrate fixed, thereby producing
the range of desired melt ratios at effectively constant injected IWC (Currie
et al., 2014). The “wet” wet bulb temperature Twb0,wet in Tab. 1 is based
on the total temperature and pressure and is computed after the ice crystals
have been injected (ice spray on). The wet bulb temperatures for runs #17,
#77, #67 and #92 are not provided in Currie et al. (2014). In order to
set these temperatures, data from Currie et al. (2013) are used. Indeed,
the aerodynamics and icing conditions are similar between run#17 (resp.
run#77, run#67 and run#92) from Currie et al. (2014) and run#1286 (resp.
run#1117, run#1139 and run#1123) from Currie et al. (2013). Therefore,
the wet bulb temperature in run#17 (resp. run#77, run#67 and run#92)
is taken to be the same as in run#1286 (resp. run#1117, run#1139 and
run#1123) from Currie et al. (2013). These values are given in Tab. 1.
The only difference is the test article: an hemispherical nose in Currie et al.
(2013) and a crowned cylinder (Currie et al., 2014) in our study, which has
no influence on the farfield wet bulb temperature. Wet bulb temperature for
the run#101 (Tab. 1) has been set to the maximum allowed value +6 ◦C. It
is mentioned in Currie et al. (2014) that the hot-wires from the SEA probe
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used to measure LWC under mixed-phase conditions provide good results
for supercooled liquid droplets. However, they have not been calibrated to
measure LWC in mixed-phase ice-water flows where the water is produced
by the melting of ice crystals. The probe is supposed to underestimate LWC
because it probably does not completely capture liquid water coating the
melting ice crystals (Currie et al., 2014). The measurements at high levels
of impinging (liquid) water mass flux may not provide accurate values since
the response of the hot wires decreases at those conditions (Currie et al.,
2014). That is why in Tab. 1, for the highest melting ratio, ηm = 40 % has
been chosen instead of ηm = 31.4 %. Note that both ηm = 31.4 % and
ηm = 40 % correspond to the right end of the plateau (see Fig. A.14 from
the calibration section in Appendix A.2). Therefore, the uncertainties of the
measurement of liquid water at high melting ratio by the probe (ηm = 31.4 %
or ηm = 40 %) will have no consequences on the qualitative conclusions,
namely the capability of the model to predict the decrease of ice accretion
at high melting ratios.

Regarding the particle size distribution (PSD), the 7-bins distribution
proposed in Currie et al. (2014) is used leading to a mass median diameter
(D50) of 45 µm and a mass mean diameter D43 of 52.7 µm. Since the publi-
cation of the experimental results in Currie et al. (2014), the procedure used
to calculate the PSD from shadowgraphs (Knezevici et al., 2013) has been
modified slightly, resulting in small changes in the PSD (Currie et al., 2015).
The revised D50 and D43 are 57 µm and 69.7 µm respectively. The 9-bin
representation of the revised PSD is detailed in Currie et al. (2015). It is
shown in Appendix A.4 that using either D43 = 52.7 µm or D43 = 69.7 µm as
an input for the diameter of the injected particles leads to similar computed
ice shapes.

Figure 5 shows experimental views of accretion shapes obtained by Currie
et al. (2014) for the cases presented in Tab. 1. Except for run#67 at ηm =
16.6 % , all the runs shown in Fig. 5 reached steady-state (Currie et al.,
2014).

4. Computational setup and model calibration

Run#67 (Tab. 1) is the best documented case from the database pre-
sented in Sec. 3 since the ice shapes are provided at different times as well
as the time evolution of the ice thickness at the tip. For this reason, the
operating conditions for run#67 were selected to calibrate the main param-
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(a) (b)

(c) (d)

(e)

Figure 5: Variation of accretion growth with ηm for the crowned cylinder at M0 = 0.25,
P0 = 34.5 kPa and IWC = 6 g.m−3. The cases are presented in Tab. 1. ttip is the ice
thickness at the stagnation point. Reprinted from Currie et al. (2014) with permission
from AIAA.
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eters of the models described in Sec. 1. The calibration process as well as
the computational process used in this study are detailed in Appendix A.

5. Model validation

This section shows how the models presented in Sec. 1 are capable of re-
producing the experimental trends observed in Currie et al. (2014). First of
all, numerical simulations allow the calculation of stationary ice thicknesses
whose conical shape is in agreement with that obtained experimentally. Sec-
ondly, the existence of optimal icing conditions as a function of the melt-
ing ratio of ice crystals (the so-called ”plateau” effect) is well represented.
Thirdly, the fraction of liquid water in the slushy ice layer predicted by the
runback model is consistent with the one measured experimentally. Finally,
the effects of the Mach number on the ice shape is well taken into account
by the model.

Runs #17, #77, #92 and #101 from the database of Currie et al. (2014)
(see Tab. 1) have been used to validate the models. Although they derive
from the same experimental database as run #67 used for calibration, they
are sufficiently different from this latter (notably regarding the melting ratio)
to be used as validation cases for the models. Run #67 alone is not enough
to validate the correlations between the experimental observations and the
numerical results. For instance, regarding the plateau effect (Fig. 1), that
is to say the influence of the ice crystal melting ratio (ηm) on the final ice
shape, the model cannot be validated only with run #67 which corresponds
to a single melting ratio. The use of the whole database (from run #17 to run
#101) with the whole range of melting ratios allows to validate the model for
the plateau effect. In the meantime, a validation can be found in Baumert
et al. (2018) on the basis of the experiments conducted at TU Braunschweig
under mixed-phase conditions.

5.1. Stationary conical ice shapes

Figure 6 shows the time evolution of the computed ice shapes for runs
#17, #77, #92 and #101. In Currie et al. (2014), except for run#67, all
the runs reached steady-state. This trend is found in numerical simulations
where, except near the stagnation point, a stationary conical ice shape is
obtained. Near the stagnation point, a thin dendritic ice shape grows. This
has no physical justification and it is located in an area where the component
of the impact velocity is mainly normal to the wall and where the influence of
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Figure 6: Model validation (runs #17, #77, #92 and #101). A stationary conical ice
shape is obtained.
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the erosion model is the lowest (Eq. (13)). The formation of these dentrites
is one of the weaknesses of the proposed model, although attenuated by the
term 3© of the erosion model (Eq. (13)).

5.2. Plateau effect

It has been shown in Struk et al. (2011), Currie et al. (2012, 2014) and
Knezevici et al. (2012, 2013) that significant ice accretion has been observed
for melting ratios ηm ranging from 5 to 35 percent, with a “plateau” of almost
constant icing severity, which drastically decreases at its left and right limits
(see Fig. 1). Figure 7 shows the computed ice shapes obtained for runs #17,
#67, #77, #92 and #101 (light blue). A comparison with the experimental
steady state ice thicknesses at the tip (red dashed line) is proposed. For
run#67, the experimental ice shape at t = 382 s is provided. The present

Figure 7: Model validation: Plateau effect. Computed ice shapes for run#17, #67, #77,
#92 and #101. Comparison between the experimental (red dashed line) and the computed
(blue curve) steady state ice thicknesses at the tip.

model is able to capture the so-called “plateau” effect at least for the left
part of the plateau (low melting ratios). This is less the case for high melting
ratios where the decrease of ice accretion is not as drastic as expected. There
are two possible explanations for these discrepancies. Firstly, for high melting
ratios, the adhesion of the slushy ice layer to the wall is reduced due to the
high liquid water content of the ice. Thus, shedding phenomena may appear
due to the aerodynamic forces like for run#67 where ice starts to be shed
before reaching steady-state. The version of the model presented in this
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paper does not take into account the shedding process. This process will
be incorporated in future versions of the model. Secondly, for high melting
ratios, ice particles do not stick and are washed off the surface since too much
water is present (Currie et al., 2014). The model for sticking efficiency (Eqs.
(10) and (11)) has been calibrated for small melting ratios (see Sec. 1.2) and
is an increasing function of ηm (Eq. (11)). Therefore, future works should
be dedicated to extend the sticking efficiency model to high melting ratios.

5.3. Consistent runback model

Figure 8 shows the wall liquid mass fractions yl for different ηm. In the ice

Figure 8: Wall liquid mass fraction yl for different melting ratio ηm. yl represents the
amount of liquid water trapped in the pores of the accreted ice layer instead of running
backward, leading to a slushy accretion. yl = 0 stands for a pure ice layer with no water
trapped inside and which sticks firmly to the wall. yl = 1 is an asymptotic value with only
liquid water.

shape as a whole, yl increases with the melting rate ηm, which is consistent
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with an increase in the erosion rate with the melting ratio. Figure 9 compares
the wall liquid mass fraction yl obtained by the model with that measured
experimentally by the IPP (yexpl ) for the cylindrical test article at M0 = 0.25,
P0 = 34.5 kPa and 4 < IWC < 12 g.m−3 (see Fig. 14 from Currie and Fuleki
(2015)). The values for yl with the corresponding error bars have been derived
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Figure 9: Model validation. Comparison between the computed yl and the experimental
yexpl measured by the IPP for the cylindrical test article at M0 = 0.25, P0 = 34.5 kPa and
4 < IWC < 12 g.m−3 (Fig. 14 from Currie and Fuleki (2015)). The straight line yl = ηm
is also drawn showing that the wall liquid mass fraction yl is larger than the ice particle
melting ratio ηm. This trend is properly addressed by the model.

from Fig. 8. The straight line yl = ηm is also represented (blue line). For
all melting ratios, the wall liquid mass fraction is greater than the melting
ratio of the impinging ice crystals (yl > ηm). This tendency, which is well
taken into account by the model, means that there is more liquid water in the
slushy ice layer at the wall than in the partially melted ice crystals impinging
the body. This additional water comes from the melting of the ice crystals
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Run name M0 Twb0,wet ηm
run#233 0.4 0.9 ◦C 8.6 %
run#238 0.4 2.1 ◦C 14 %
run#243 0.4 2.7 ◦C 17.2 %
run#246 0.4 3.8 ◦C 21.4 %

Table 2: Mach number effect. Test case description (from Currie et al. (2014)). P0 =
34.5 kPa, T0 = 15 ◦C, IWC = 6 g.m−3.

when they stick to the wall. This water supply, resulting from Messinger’s
thermodynamic balance equations, is well reproduced by the model. On
the other hand, the model is not able to predict the plateau for yl obtained
experimentally for ηm > 0.2. Instead, the model predicts a linear increase of
yl with the melting ratio of the ice crystals. This weakness in the model is
due on the one hand to a poor estimation of the porosity of the slushy ice
layer at the wall (see Eq. (3)). On the other hand, further studies are needed
to determine the dependence of ṁL

acc on the melting ratio ηm (see function
H, Eq. (5)).

5.4. Mach number influence

The figure 10 shows the effect of the Mach number on the ice shape. The
test cases derived from Currie et al. (2014) are summarized in Tab. 2. In the
absence of further information on experimental data, it has been assumed
that the correspondence between the “wet” wet bulb temperature Twb0,wet

and the ice crystal melting ratio ηm is the same for both Mach numbers
0.25 and 0.4. This means that for fixed T0, P0 and Twb0,wet, moving from
M0 = 0.25 to M0 = 0.4 results in increasing the relative humidity of the air
in the numerical simulations.

The ice thickness at the stagnation point is well predicted by the model
when the Mach number is raised from 0.25 to 0.4. This validates the term(

V t
imp

V0

)2
of the erosion model (Eq. (12)). For the higher melting ratios, the

model is not capable of reproducing the trend observed by the experimental
results, i.e. a total absence of ice accretion. Like for M0 = 0.25 at high
melting ratios, the shedding phenomenon as well as the decrease in the
sticking efficiency εs are not taken into account in the models proposed here.
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Figure 10: Model validation: Mach number effect (runs #233, #238, #243 and #246, see
Tab. 2). M0 = 0.4, P0 = 34.5 kPa and T0 = 15 ◦C. Comparison between the experimental
(red dashed line) and the computed (blue curve) steady state ice thicknesses at the tip.
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Conclusions

In this article, an extension of the Messinger model for the ice crystal
icing regime has been presented. Glaciated conditions have been studied.
Due to the great complexity and very incomplete knowledge of the physical
phenomena involved, the proposed model has a high degree of empiricism,
whether it is to take into account erosion, sticking or transport phenomena
within the ice layer. Much work remains to be done to improve the model
and reduce empiricism. Ongoing work is on rewriting the erosion mass rate
model in terms of dimensionless numbers (using impact angle, particle ki-
netic energy and ice layer cohesion energy). In particular, future versions of
the models for erosion and sticking efficiency will have to include the influ-
ence of the ice particle diameter since it has a significant effect on accretion
(Knezevici et al., 2012, 2013).

Through experiments conducted by NRC’s icing team (Currie et al.,
2014), the various adjustable model parameters have been calibrated to en-
sure that the model is capable of reproducing a large number of tests with
acceptable accuracy for applications and without further parameter modifi-
cation. In particular, the model makes it possible to account for the existence
of a ”plateau” in terms of melting ratios for which the rate of ice growth is
maximum. Another important contribution of the model is its ability to pre-
dict conical accretion shapes due to erosion that are never found in normal
icing conditions (supercooled water icing).

In the meantime, the models have been validated under mixed-phase
conditions on the basis of the experiments conducted at TU Braunschweig
in the framework of HAIC (Baumert et al., 2018).
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Appendix A. Computational setup and model calibration

Appendix A.1. Computational setup

The simulations have been performed with a 2D solver by considering the
midspan shape of the test article. Figure A.11(a) shows the clean crowned
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cylinder profile used in the study. The chord length is 35.2 cm. A C-grid
topology (see Fig. A.11(b)) has been used with a farfield boundary condi-
tion at the outer bound. Figure A.11(c) shows the aerodynamic flow field
(pressure) computed with the inviscid flow solver EULER2D. Figure A.11(d)
shows the ice particle trajectories colored by the mass mean diameter D43

and computed with the Lagrangian trajectory solver TRAJL2D. The post
impact secondary particles are created after the shattering of the impacting
particles on the body. They are computed in agreement with the models
described in Trontin et al. (2016). They have not been taken into account in
this study.

Space (grid) and time (influence of the number of time steps N, see Sec.
2) convergence studies have been carried out for run#67. The adjustable
parameters used in the models are the ones defined from the calibration
section (Eq. (A.2)). Figure A.12 shows the ice shapes obtained from the
numerical computations for different grids (64, 128 and 256 nodes on the
profile, Fig. A.12(a)). For each computation, N = 100 was selected for
the temporal discretization. Note that for the case with 128 nodes on the
profile, two kinds of grids have been used: one with a uniform repartition
of the nodes along the profile (called 128/uniform grid) and the other one
where the leading edge is refined (called 128/refined grid, see Fig. A.12(b)).
Figure A.12(a) shows that 128 nodes on the profile with a grid refinement
near the stagnation point are enough to compute accurately the ice shape.
Using the 128/refined grid, the influence of the number of steps N necessary
in the multistep methodology has also been studied. Figure A.13 shows the
influence of N (from N = 10 to N = 200) on the computed ice shapes. Only
50 steps are necessary to compute accurately the ice shape, except near the
stagnation point where 100 steps are necessary. The use of 200 steps does not
provide any further improvement on the prediction of the ice shape. Given
these results, a 128/refined grid with N = 100 for the multistep approach
has been used in all the computations presented in the rest of the paper.

Appendix A.2. Calibration of the model for the sticking efficiency εs

The constant K# in the expression of the sticking efficiency (Eq. (11)) has
been obtained from the Currie et al. (2014) experiments. It is shown that for
a crowned cylinder, the stagnation point sticking efficiency is a function of the
particle melting ratio ηm (see Fig. A.14). In the experiments, the apparent
local sticking efficiency actually results from the competition between two
independant phenomena: the accretion of new incoming ice crystals and the
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(a) (b)

(c) (d)

Figure A.11: Crowned cylinder (see Fig. 4). Main outputs from the MESH2D, AERO2D
and TRAJ2D solvers of IGLOO2D (see Fig. 3). (a): clean profile ; (b): C-grid topology
; (c): aerodynamic flow field (pressure) ; (d): ice particle trajectories colored by the
diameter D43.
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(a) (b)

Figure A.12: (a): space (grid) convergence. Two kinds of grids are presented: “uniform
grids” with a uniform repartition of the nodes along the profile and “refined grids” where
the leading edge is refined. Several mesh sizes are used with 64, 128 and 256 nodes on the
profile. (b): the 128/refined grid is presented.

Figure A.13: Influence of the number of steps N (see Eq. (15)) on the ice shape. The
128/refined grid is used. Finally, a 128/refined grid with N = 100 for the multistep
approach is used in all the computations presented in this paper.
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Figure A.14: Crowned cylinder (see Fig. 4). Stagnation point sticking efficiency variation
with ηm at M0 = 0.25 and M0 = 0.4. P0 = 34.5 kPa (Currie et al., 2014). The function
F is plotted with K# = 2.5 (Eq. (11)).

erosion of the accreted ice layer by impinging particles. At numerical level,
each of these phenomena can be described separately. This is not the case
for the experimental observations where only the apparent sticking efficiency
is measurable, which combines both the partial sticking of the ice particles
and the erosion effects. However, the erosion rate depending mainly on the
tangential impact velocity, it is minimum near the stagnation point where
the velocity is mainly normal to the wall. Therefore, near the stagnation
point, the experimental observations from Currie et al. (2014) can be used
to estimate K# (Eq. (11)), at least at early times. Taking into account the
results from Fig. A.14 (issued from Currie et al. (2014)) gives:

K# = 2.5 (A.1)
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Appendix A.3. Calibration of the erosion model. Parameters l0, E and yl0
The choice for l0, E and yl0 has been determined after several guesses

based on computations with run#67:
l0 = l0,opt = 0.015 c
E = Eopt = 0.3
yl0 = yl0,opt = 0.6

(A.2)

where c is the cylinder diameter. In this section, an estimation of the influence
of a relative variation of the parameters l0, E and yl0 on the ice shape as well
as a validation of the values retained in Eq. (A.2) are proposed.

Regarding the threshold curvature κ0 = l−1
0 , the length l0 may be inter-

preted as the onset length scale below which erosion smoothing occurs. It
is expected to depend on the characteristic length scale of the model. l0 is
expected to be much lower than the cylinder radius since the erosion smooth-
ing effect does not play any role at this macroscopic scale. Therefore, as far
as only the primary stage of the accretion process is concerned, the local
curvature κ of the ice layer surface is such as κ � κ0 and it is possible to
replace the erosion model (Eq. (13)) by :

εer = E

(
V t
imp,c

V0

)2

· yl0
yl0 −min (yl, yl0)

(A.3)

To justify this assumption, the dimensionless local curvature (absolute value)
|κ| along the iced profile is represented in Fig. A.15. At early times (t = 31 s,
Fig. A.15, left), |κ| · l0 ≤ 0.48 on the whole profile, which justifies a posteriori
the previous hypothesis (κ � κ0) leading to Eq. (A.3). At moderate times
(t = 148 s, Fig. A.15, right) and except in the very near region of the
stagnation point where |κ| · l0 ≈ 2.0, the approximation κ � κ0 leading to
Eq. (A.3) is justified elsewhere on the iced profile. In Fig. A.16, the influence
of l0 (l0 = ll0,opt ± 25 %) is studied at t = 31 s and t = 148 s, the parameters
E and yl0 being set to the values in Eq. (A.2). As expected, the final ice
shape is not influenced by l0 at early times. At moderate times (t = 148 s),
differences are observed near the stagnation point whereas the ice shape far
from the stagnation point shows a conical shape which does not depend on
the smoothing parameter l0. Thus, it is possible to study independently the
influences of E and yl0 on the one hand and l0 on the other hand. The
calibration of E and yl0 has been performed by comparing the numerical ice
shapes with the experimental ones at the beginning of the accretion process
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Figure A.15: Run#67. Dimensionless curvatures of the ice layer surface at early (t = 31 s)
and moderate (t = 148 s) spray times. E = Eopt, yl0 = yl0,opt and l0 = l0,opt. At early
and moderate times, and except in the very near region of the stagnation point, the
approximation κ� κ0 (κ · l0 � 1) is justified which leads to the simplified version of the
erosion model (Eq. (A.3)).
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Figure A.16: Run#67. Influence of l0 (l0 = ll0,opt ± 25 %) at t = 31 s (early time) and
t = 148 s (moderate time). E = Eopt and yl0 = yl0,opt. At early and moderate times, the
ice shape far from the stagnation point shows a conical shape which does not depend on
the smoothing parameter l0.
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(early and moderate times) far from the stagnation point. Later times have
been used for the calibration of l0.

Appendix A.3.1. Calibration of E and yl0
Figure A.17 shows such a comparison at t = 31 s and t = 148 s for

different values of E (E = 0.75Eopt, E = Eopt and E = 1.25Eopt) and yl0
(yl0 = 0.75yl0,opt, yl0 = yl0,opt and yl0 = 1.25yl0,opt), the parameter l0 being
set to ll0,opt. At t = 31 s, the influence of E and yl0 on the ice shape is not
conclusive. For a given yl0, the influence of E is low whereas the influence
of yl0 at a given E is more significant. At early times (t ≤ 31 s), the ice
shape remains influenced by the initial cylindrical shape of the clean profile.
Therefore, the impinging particle velocity is almost normal to the wall and the
corresponding erosion rate is low (Eq. (A.3)). At moderate times (t = 148 s),
far from the stagnation point, the configuration (E = Eopt; yl0 = yl0,opt) is
the more accurate (Fig. A.17). This remains true near the stagnation point.

It is worth noticing that E has a strong influence on the cone angle and
that the accretion rate is largely overestimated (Fig. A.18) when the erosion
model is switched off (E = 0).

Appendix A.3.2. Calibration of l0
If the numerical simulation of run#67 is continued until t = 382 s, the

results presented in Fig. A.19 are obtained. Moderate times (t = 148 s) are
shown again for the record. It can be seen that a thin unphysical dendritic
ice shape is formed at the stagnation point for l0 = 0. This anomalous protu-
berance cannot be smoothed by the erosion effects since only the tangential
velocity (which is close to 0 in the vicinity of the stagnation point) is involved
in the erosion model of Eq. (13). Hence a finite value to l0 must be given to
enforce the regularizing effect of the term

[
1 + (l0κ)2

]
in the vicinity of the

stagnation point. At moderate times (t = 148 s), the more accurate numeri-
cal results compared to the experimental ones are obtained for l0 = 1.25l0,opt.
At larger times (t = 382 s), they are obtained for l0 = 0.75l0,opt. Therefore,
l0 = l0,opt has been taken on.

Appendix A.4. Influence of the mass mean diameter D43

The influence of the particle mass mean diameter D43 is studied in Fig.
A.20 at t = 382 s. Three different particle size distributions (PSD) are
compared (see 3):
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Figure A.17: Calibration of the erosion model (run#67). Influence of the parameters
E and yl0 at early (t = 31 s) and moderate (t = 148 s) times. Sensitivity analysis:
E = Eopt ± 25 % and yl0 = yl0,opt ± 25 %. Eopt and yl0,opt are defined in Eq. (A.2). The
parameter l0 is set to ll0,opt (Eq. (A.2)).
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Figure A.18: Calibration of the erosion model (run#67). Influence of the activation of
the erosion model at early (t = 31 s) and moderate (t = 148 s) times. E (Eq. (13)) has
a strong influence on the cone angle and the accretion rate is largely overestimated when
the erosion model is switched off (E = 0).
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Figure A.19: Calibration of the erosion model (run#67). Influence of the parameter l0 at
moderate (t = 148 s) and large (t = 382 s) times. Sensitivity analysis: l0 = ll0,opt ± 25 %.
ll0,opt is defined in Eq. (A.2). The parameters E and yl0 are respectively set to Eopt and
yl0,opt (Eq. (A.2)).
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Figure A.20: Influence of the particle mass mean diameter D43 (run#67) at large times
(t = 382 s). Two diameters are compared: D43 = 52.7 µm (from Currie et al. (2014),
blue solid line) and D43 = 69.7 µm (revisited, from Currie et al. (2015), green and orange
dashed lines). For the revised distribution (D43 = 69.7 µm), both the 1-bin (green dashed
line) and the 9-bin (orange dashed line) are represented. The computed ice shapes are
similar.
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• PSD1: the 1-bin distribution derived from the 7-bins distribution pro-
posed in Currie et al. (2014) so that D43 = 52.7 µm (blue solid line,
Fig. A.20).

• PSD2: the 1-bin distribution derived from the revised 9-bin distribution
detailed in Currie et al. (2015) so that D43 = 69.7 µm (green dashed
line, Fig. A.20).

• PSD3: the revised 9-bin distribution itself detailed in Currie et al.
(2015) so that D43 = 69.7 µm (orange dashed line, Fig. A.20).

The numerical ice shapes obtained with PSD1 and PSD2 are very close which
confirms the weak dependency of the final ice shapes on the particle size
distribution uncertainties. Indeed, neither the erosion (Eq. (13)) nor the
sticking efficiency (Eq. (10)) models depend on the particle diameter. As far
as particle trajectories are concerned, D43 has an influence but, here, since
D43 is quite large, trajectories are almost ballistic and the influence of D43

remains limited (Fig. A.11(d)). Regarding PSD2 and PSD3, D43 = 69.7 µm
for both distributions and the computed ice shapes are similar. Since the
computational cost is quite larger for the 9-bin distribution than for the 1-
bin distribution, this justifies why all the computations in this paper have
been done with the 1-bin distribution PSD1.
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