Spectral stability of inviscid roll-waves

Abstract : We carry out a systematic analytical and numerical study of spectral stability of dis-continuous roll wave solutions of the inviscid Saint Venant equations, based on a periodic Evans-Lopatinsky determinant analogous to the periodic Evans function of Gardner in the (smooth) viscous case, obtaining a complete spectral stability diagram useful in hydraulic engineering and related applications. In particular, we obtain an explicit low-frequency stability boundary, which, moreover, matches closely with its (numerically-determined) counterpart in the viscous case. This is seen to be related to but not implied by the associated formal first-order Whitham modulation equations.
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01870739
Contributeur : Pascal Noble <>
Soumis le : dimanche 9 septembre 2018 - 11:05:51
Dernière modification le : mardi 27 novembre 2018 - 11:53:56
Document(s) archivé(s) le : lundi 10 décembre 2018 - 12:31:16

Fichier

1803.03484.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Mathew Johnson, Pascal Noble, L Rodrigues, Zhao Yang, Kevin Zumbrun. Spectral stability of inviscid roll-waves. Communications in Mathematical Physics, Springer Verlag, In press, 〈10.1007/s00220-018-3277-7〉. 〈hal-01870739〉

Partager

Métriques

Consultations de la notice

107

Téléchargements de fichiers

20