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Osmotic deflation of giant vesicles in the rippled gel phase P�0 gives rise to a large variety of novel

faceted shapes. These shapes are also found from a numerical approach by using an elastic surface model.

A shape diagram is proposed based on the model that accounts for the vesicle size and ratios of three

mechanical constants: in-plane shear elasticity and compressibility (usually neglected) and out-of-plane

bending of the membrane. The comparison between experimental and simulated vesicle morphologies

reveals that they are governed by a typical elasticity length, of the order of 1 �m, and must be described

with a large Poisson’s ratio.

DOI: 10.1103/PhysRevLett.108.108303 PACS numbers: 82.70.Uv, 62.20.�x

Probing the structural and mechanical properties of soft
shells by noncontact techniques is a challenging approach
in soft matter and in cell biology, where contacts may
trigger surface and/or cell adhesion and bias results [1].
For instance, morphological changes of fluid-phase lipid
vesicles under osmotic or temperature variations have been
largely studied for the past 30 years. They have shown that
vesicle shapes are governed by the bending energy, the
spontaneous curvature of the two monolayers of the mem-
brane [2] and by their area difference [3]. Surprisingly,
very few studies have concerned the shapes of gel-phase
vesicles [4–6]. In addition to the bending stiffness and the
stretching elasticity, the existence in the gel state of a lipid
bilayer of a nonzero shear modulus is likely to generate
specific deformations and new vesicle shapes. This
was indeed observed in the model of coupled
bilayer cytoskeleton proposed in [7–9] for red blood cells,
and in the buckling instability that occurs under large local
external forces on actin-coated [10] and on gel-phase
vesicles [11]. Here, we report observations of buckling
induced by a nonlocal constraint on gel-phase giant uni-
lamellar vesicles (GUVs, diameter >500 nm) upon defla-
tion induced by applying an isotropic osmotic pressure. We
propose a simple model that captures the major observed
morphologies. The study highlights the relationship be-
tween the elastic properties of the lipid membrane and
the specific faceted shapes taken by the vesicles.

Deflation experiments were performed on DMPC (1,2-
dimyristoyl-sn-glycero-3-phosphocholine) GUVs in the
rippled gel phase P�0 at 15 �C. GUVs were prepared by

electroformation [12] above the main acyl chain crystal-
lization temperature Tm ¼ 23:6 �C [13] in a 100 mM su-
crose solution, and by slowly decreasing the temperature
down to 15 �C with a cooling rate of 0:05 �C=min . In
order to prevent the breaking of the lipid membrane at
the transition, the volume of vesicles was decreased to

adjust to their loss of surface area (� 28% between the
L� fluid and the P�0 rippled phases [14]) by adding a

controlled sucrose solution in the external solution. Gel-
phase GUVs obtained with this protocol were spherical and
presented no observable defects in the membrane. Finally,
GUVs sedimented in an iso-osmolar glucose solution were
kept at 15 �C and osmotically deflated by adding con-
trolled amounts of glucose solution of suitable concentra-
tion in the external solution. GUVs were observed by phase
contrast microscopy. The obtained shapes displayed in
Fig. 1 line (a) show obvious differences with the classical
shapes observed on vesicles in the fluid state [15].
Subjected to the osmotic shock, gel-phase GUVs shrink
and develop a large variety of morphologies, from stoma-
tocytes to concave polyhedra (i.e., sphere paved with de-
pressions). The final faceted state is reached around 40 min
after the beginning of the deflation (the whole process is
limited by diffusion of glucose molecules in the surround-
ing medium), and, thereafter, no shape modification is
observed over several hours, when temperature and osmo-
larity are kept constant.
In order to quantitatively understand these specific

shapes, we model the 2D gel-phase membrane by a surface
with an in-plane Hooke elasticity [16] determined by two
2D phenomenological constants, the Young modulus Y2D

and the 2D Poisson’s ratio �2D, and by an out-of-plane
bending elasticity. We describe the bending contribution by
the Helfrich model [2] that involves only two constants, the
spontaneous curvature C0 and the bending modulus � of
the membrane. An initial vesicle is considered as a spheri-
cal surface of radius R, enclosing a volume V0. As the
vesicle remains spherical during the phase transition to-
wards the P�0 phase, we consider that the vesicle remains

unstrained, which implies C0 ¼ 2=R. Dimensional analy-
sis reveals that three dimensionless parameters control the
shape of the vesicle when its volume decreases from V0 to
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V: the deflation �V
V ¼ V0�V

V0
¼ 1� vr (vr is the reduced

volume), the Föppl-von–Kármán number � ¼ Y2DR
2

�

[17,18], and the Poisson’s ratio �2D (maximum value 1,
for incompressible surfaces). The numerical study is per-
formed by reducing the volume of the initial vesicle in
small steps (� 0:6% of V0), searching at each stage an
equilibrium shape with the SURFACE EVOLVER software as
presented in [19]. This quasistatic deflation has been simu-

lated for a wide range of parameters (0 � �V
V � 0:7; 1:8 �

� � 2430; 0 � �2D � 0:98). Values of � well below 104

ensure the absence of singularities due to the intrinsic
defects of the numerical mesh [20]. Two typical sequences
of deflation are shown in Fig. 4(b), paths 1 and 2. The
spherical symmetry of the vesicle is first conserved under
small deflation. Then concave facets (or depressions) ap-
pear on the vesicle. The facets proliferate (number of facets
Ntransient) with a further volume reduction, until they com-
pletely pave the surface of the vesicle. The shapes are then
characterized by a maximum number (N) of facets. A
subsequent deflation only affects the concavity of the
facets. These faceted shapes, consistent with experimental
observations, are associated with local minimum energy
values [19]. Energy considerations are detailed in
Supplemental Material [21]: stretching and bending ener-
gies of faceted shapes increase with deflation. The total
energy of metastable multifaceted shapes is higher than
that of bowl shapes (single depression); tendency also
observed in Ref. [18] where � ¼ 1

3 . Typically, there is a

factor 1 to 5 when the number of facets increases from 1 to
6. We then explored the metastability lines related to multi-

faceted conformations in the ( �VV , �, �2D) space. Vesicles

sufficiently deflated to have the maximum number of facets
succeed each other always in the same order upon increas-
ing their radius, as illustrated in Fig. 1 line (b). This
succession provides a way to quantify the shapes: for
some of them indeed (discocyte, 3-blades, tetrahedron,
cube, etc.), it is possible to unambiguously determine N.
When the notion of number of facets becomes questionable
(e.g. bean, nipple), an indirect attribution can be done by
continuity in the succession. For N > 6, shapes are con-
cave polyhedra, bulged (i.e., with a protuberance on the

rims that separate two faces) or not. For N ¼ 6, 8, 12, 20,
vesicle shapes display soft regular polyhedra as in the case
of viruses [17] and desiccated pollens [22].
This quantitative shape description allows us to study

numerically the influence of � and �2D on N. As shown in
Fig. 2, for all �2D ranging between 0 and 0.98, N gathers
on a quasilinear master curve as a function offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=12ð1� �2

2DÞ
q

. Dimensionally, this latter quantity can

be considered as a reduced radius R=deq, where

deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� �2

2DÞ�=Y2D

q
is homogeneous to a length.

Within the frame of thin shells deformation theory, this
scaling law can easily be understood [16]. A thin isotropic
shell of thickness d and radius R submitted to a uniform
pressure buckles by reversion of a spherical cap of size

L � ffiffiffiffiffiffiffi
dR

p
[16]. The maximum number of facets that pave

the full surface of the initial sphere therefore scales like

N / R2

L2 � R
d . This relation replaced in a 3D context yields

the numerical scaling obtained in Fig. 2. It is important to

FIG. 1 (color online). (a) Experimental shapes for deflated gel-phase GUVs (vr ¼ 0:6) for increasing radii. Black scale bar: 5 �m.
(b) Numerical simulations: each shape is characterized by the number of depressions N (see text). N ¼ 0: sphere, oblate, untwined
chestnut; N ¼ 1: stomatocyte; N ¼ 2: discocyte, asymmetric discocyte, bean, crisp; N ¼ 3: nipple, 3 blades (or knizocyte), twisted
3 blades, bladed nipple; N ¼ 4: tetrahedron, 4 blades. N ¼ 5: dumbbell with triangular leg; N ¼ 6: cube, dumbbell with square leg,
bulged cube; N ¼ 7: dumbbell with 5-star leg.

FIG. 2 (color online). SURFACE EVOLVER simulations: variation
of N with the reduced radius R=deq. Black j: �2D ¼ 0 to 0.25;

blue d: �2D ¼ 0:3 to 0.5. red r: �2D ¼ 0:55 to 0.75. Green 4:
�2D ¼ 0:8 to 0.90. Gray�: �2D ¼ 0:92 to 0.98. Master curve: for
R> 0:59deq, N ¼ 1:15ðR=deq � 0:59Þ (gray line).
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note that (i) this scaling law keeps its validity for a range of
parameters much larger than those valid for a thin shell of
an isotropic material (case which reduces to �2D ¼ �3D < 1

2

[19] and � � 1 in the linear approximation), and (ii) the
nonzero shear energy of the membrane is responsible for
the existence of a typical length of deformation, while in
systems only governed by the bending energy, the only
length scale is the radius of the object [15]. For �2D > 1

2

(maximum value for bulk materials), deq has no direct 3D

equivalent. It is not necessarily a thickness, but a character-
istic elastic length of the membrane, that gives the typical

size of the deformations on the sphere:
ffiffiffiffiffiffiffiffiffiffi
deqR

p
.

Making up for the lack of experimental 3D images,
experimental values of N were determined by comparing
phase contrast microscopy observations to numerical
shapes. Figure 3 shows a plot of N measured in this way
as a function of the initial GUV radius for three reduced
volumes and more than 1300 vesicles. In all cases, the
number of facets on the vesicles had reached its maximum
value and remained constant upon further deflation. The
variation of N with R is consistent with the numerical
linear dependence obtained previously in Fig. 2, and allows
the experimental determination of deq � 1:8 �m. This

value is several orders of magnitude greater than both
bilayer thickness (� 5 nm), and periodic undulations of
the rippled phase (amplitude �1–11 nm and wavelength
�15–55 nm) [23]. Therefore, despite their relatively small
thickness, the vesicles in gel phase cannot be regarded as
‘‘thin shells’’ (i.e., ‘‘of an isotropic material’’), where deq is

the thickness. This typical elastic length can be rewritten

deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1þ �2DÞ�=�2D

p
, where �2D is the elastic area

compressibility (or ‘‘stretching’’) modulus. By taking
�� 100kBT [14], we find �2D � 1 �N=m. This value is
very weak compared to that given in [14], which corre-
sponds to partial unfolding of the ripples and was measured
by micropipette aspiration on vesicles weakly tensed,
where undulations at a scale larger than ripples were
flattened out. Our low value of �2D might be linked to
fluctuations at a mesoscopic scale, larger than the individ-
ual ripples size but smaller than the vesicle radius. In the
absence of a specific theory for the fluctuations of solid
membranes, our study, which unambiguously shows a
micron-size value for the characteristic length of deforma-
tion, provides a clue for a possible entropic origin of the
area compressibility modulus.
The diagram of vesicles morphology, determined nu-

merically and characterized by the number of facets, either
Ntransient or N, is represented in Fig. 4 in the plane (vr,
R=deq) for three values of �2D. It displays two clearly

distinct zones: the N-domain where the number of facets
has reached its maximum (in which one should find the
experimental morphologies of Fig. 1), and the Ntransient

domain. The coincidence of both experimental and nu-
merical N domains requires that �2D is at least equal to
0.8. Its maximum acceptable limit is 0.95, for which shapes
differ from those displayed in Fig. 1 (e.g., depressions are
surrounded by spicules; these poorly compressible surfaces
will be treated in a subsequent publication).
This high value of Poisson’s ratio value confirms the fact

that gel-phase GUVs cannot simply be regarded as thin
shells of isotropic bulk material [16], where �2D ¼ �3D �
0:5. The discrepancy between the lipid membrane thick-
ness and the typical elasticity length may be understood by
the anisotropic nature of the constitutive material, i.e., the
rippled lipid bilayer, that has different properties in its
average plane, and in the perpendicular direction. The
agreement between experimental and numerical vesicle
shapes nevertheless shows the relevancy of this 2D elastic
model based on in-plane isotropy, shear modulus and
Helfrich curvature energy [24]. Our simulations show a
universal sequence of shapes and provide an alphabet to
quantitatively interpret deflated morphologies in various
experimental systems. More generally, the simulations
reveal that the Poisson’s ratio, which generally varies
over a narrow range of values and is then often neglected
in favor of � in thin shell descriptions, has a crucial role
when it approaches 1. Our study explores a wide range of
elastic constants suitable to describe many materials, from
thin shells of isotropic material (�2D � 0:5) to surfaces
with no shear elasticity (�2D � 1), like fluid vesicles.
Moderate values of the Föppl-von Kármán constant and
small spontaneous curvatures are in a range of values
different from that involved in transitions of viral shells,
and act in another way on the object shapes [20]. Besides

FIG. 3 (color online). Experimental value of N as a function of
the GUV radius. The inset shows the occurrence of N for several
ranges of radii (black, j: 2–3 �m; green, 4: 3–5 �m; purple,
r: 5–7 �m; red, �: 7–9 �m; orange, .: 9–12 �m), for vr ¼
0:6; solid lines are Gaussian fits. r.m.s. values of each size
distribution are taken as the vertical error bar in the main
diagram. Black h: vr ¼ 0:6; blue r: vr ¼ 0:45; red d: vr ¼
0:35. Curves drawn for different vr show no notable differences.
The gray line is the master curve of Fig. 2 with deq � 1:8 �m.
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giving quantitative clues on relative elastic features of gel-
phase lipid vesicles through mere observations, this study
offers interesting insights into the structured, reproducible
and stable shapes, that can be obtained through the defor-
mation of simple soft objects.
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