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Abstract

Numerical simulations of the axisymmetric response of a 2nd grade, fiber-reinforced, elastic cylinder are presented and

discussed. The underlying model accounts for surface strain and for bending and twist, as in conventional theories,

and also includes the non-standard effect of geodesic fiber bending at the constitutive level.
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1. Introduction

Our purpose in this short communication is to illus-

trate the equilibrium response of 2nd grade elastic cylin-

ders in axial tension and compression. The cylinder is re-

garded as a surface composed of intersecting fibers that

offer elastic resistance to stretching, flexure and twist.

Conventional plate and shell theories account for elas-

tic resistance of the surface to strain, twist and normal

bending. In the present model, discussed comprehen-

sively in [1], a non-standard elastic resistance to geodesic

bending is also taken into account (see also [2]). This

latter mode of bending is the source of a strain-gradient

effect, which is not present in the constitutive equations

of conventional theories of plates and shells but which

is nevertheless non-negligible in fiber sheets. The gen-

eral topic is the subject of extensive current research on

pantographic sheets. We refer to [3] for a comprehensive

review and bibliography.

We assume the surface to be in a natural, relaxed

state in a plane configuration wherein the fibers are or-

thogonal, straight and untwisted. The surface is then

mapped to a right circular cylinder capped by rigid rings

at its ends, and subsequently extended or compressed

in the presence of various boundary conditions. The

predicted deformations are obtained using the commer-

cial software package COMSOL MultiphysicsTM . This

code furnishes a particularly convenient platform for

our purpose. In particular, it requires as input only

the explicit expression for the strain-energy function.

The program then constructs an associated weak form

of the relevant equilibrium equations together with its

finite-element implementation. Applications of the fi-

nite element method specific to second-gradient or mi-

cromorphic elasticity [4, 5, 6, 7, 8, 9] are discussed

in [10, 11, 12, 13, 14, 15, 16].

In Section 2 we recall the formulation introduced in [1]

for the strain-energy function together with the under-

lying kinematical framework. This is reduced, in Sec-

tion 3, to a one-dimensional model for axisymmetric de-

formations, with the axial coordinate along the reference

cylinder playing the role of the single space dimension.

Section 4 concludes with a presentation and discussion of
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numerical examples.

2. Strain-energy function, axisymmetry

Our objective is to determine the position field

r(u1, u2) of the surface in equilibrium, where uα are the

Cartesian coordinates of a material point on a plane.

These are taken to be u1 = z and u2 = Rθ, where

z ∈ [−L,L] is the axial coordinate on the right circular

cylinder, of radius R, onto which the plane is mapped,

and θ ∈ [−π, π] is the azimuthal angle on the cylinder.

Thus the plane configuration of the sheet is a rectangle

of length 2L and width 2πR.

The model is based on the strain-energy function [1,

17]

W =w(εL, εM , J) +
1

2
AL |LαLβr,αβ |2 +

1

2
AM |MαMβr,αβ |2 +

1

2
AΓ |LαMβr,αβ |2 , (1)

where AL, AM , AΓ are material constants, Lα and Mα

(α = 1, 2) are the Cartesian components of the unit tan-

gent vectors to the orthogonal fibers on the plane; and

εL =EαβLαLβ , εM = EαβMαMβ ,

J = |LαMβr,α × r,β | (2)

are the extensional fiber strains and the areal dilation,

where

Eαβ =
1

2
(r,α · r,β − δαβ), (3)

in which δαβ is the Kronecker delta, is the Lagrange

strain. Here and elsewhere, r,α = ∂r/∂uα and r,αβ =

∂2r/∂uα∂uβ .

The second and third terms in Eq. (1) attribute en-

ergy to the fiber stretches and their gradients in the di-

rections of the fibers, and to the normal and geodesic

bending of the fibers. The fourth term accounts for twist

of the fibers as the surface deforms, and for the cross

derivatives of the fiber stretches in directions orthogo-

nal to the fibers. The latter derivatives induce stretch

along parallel fibers in a small neighborhood of a mate-

rial point. We refer the interested reader to [1, 17] for a

full discussion of the physical significance of the various

terms represented in Eq. (1).

For the strain-dependent term in Eq. (1) we as-

sume [1, 17]

w(εL, εM , J) =
1

2
(ELε

2
L+EM ε

2
M )−G(ln J +1−J), (4)

where EL,M and G are positive constants. This energy

does not include a term proportional to εLεM and there-

fore does not exhibit a Poisson effect with respect to the

fiber axes. The term involving J penalizes fiber collapse

(J → 0) by imposing unbounded growth of the energy,

whereas the remaining terms are appropriate for small-

to-moderate fiber strains.

In this work we assume the fibers to be straight on

the reference plane and oriented at ±45◦ to the edges of

the rectangle, with

L1 = L2 =

√
2

2
and M1 = −M2 = −

√
2

2
. (5)

We seek axisymmetric deformations that map the

cylinder to the surface of revolution described by

r = r(z)er(θ) + ξ(z)k, (6)

where r and ξ are the radial and axial coordinates of the

circle z = const. of material points on the cylinder, k is

a unit vector aligned with the axis of the cylinder and

er(θ) is the radial unit vector in the cross section of the

cylinder at azimuth θ.

3. One-dimensional formulation

A straightforward calculation furnishes

r,1 = r′er + ξ′k, r,2 =
r

R
eθ (7)

and

r,11 = r′′er + ξ′′k, r,22 = − r

R2
er,

r,12 = r,21 =
r′

R
eθ, (8)
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where (·)′ = d(·)/dz and eθ = k × er is the azimuthal

unit vector in a cross-sectional plane.

From these we obtain the fiber strains

εL = εM =
1

2
(E11 + E22), (9)

where

E11 =
1

2

[
(r′)

2
+ (ξ′)

2 − 1
]

and E22 =
1

2

[( r
R

)2

− 1

]
,

(10)

whereas E12 = 0, and the surface dilation

J =
r

R

[
(r′)

2
+ (ξ′)

2
]1/2

, (11)

together with

|LαLβr,αβ |2 = |MαMβr,αβ |2 =

1

4

[(
r′′ − r

R2

)2

+ 4

(
r′

R

)2

+ (ξ′′)
2

]
(12)

and

|LαMβr,αβ |2 =
1

4

[(
r′′ +

r

R2

)2

+ (ξ′′)
2
]
. (13)

Substitution into Eq. (1) yields a strain-energy func-

tion of the form

W = W (r, r′, r′′, ξ′, ξ′′). (14)

4. Examples

All examples pertain to a cylinder of radius R = 1

cm and length L = 10 cm. We assume the function ξ(z)

to be odd (ξ(−z) = −ξ(z)) and the function r(z) to be

even (r(−z) = r(z)), and thus model the half-cylinder

z = [0, L] with ξ(0) = 0 and r′(0) = 0. The elastic mod-

uli are EL = EM = 1 × 107 N/m and G = 0.2 × 107

N/m. In the 2nd gradient terms in Eq. (1), the mod-

uli are AL = AM = 100 Nm and AΓ = 20 Nm. The

one-dimensional domain is discretized using 250 finite el-

ements with Hermite polynomials of quintic order, and a

sequence of axial displacements is imposed at z = L up

to a maximum absolute value of 3 cm. We note that C1-

continuous cubic Hermite polynomials are sufficient for

our purposes, but quintic Hermite polynomials provide

improved accuracy using the same spacial grid.
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Figure 1: Tension test with fully clamped boundary conditions.

Each color refers to a different imposed axial displacement.
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Figure 2: Compression test with fully clamped boundary condi-

tions. Each color refers to a different imposed axial displacement.

We consider two basic examples. In each of these we

impose r(L) = R and r′(L) = 0 together with various

values of the deformed axial length l = ξ(L). In the first

class of examples we impose ξ′(L) = 1. We refer to this

as a fully clamped boundary. This can be interpreted as

a short rigid collar of length h and radius R glued to the

end of the cylinder. A Taylor expansion furnishes

ξ(L+ h)− ξ(L) = hξ′(L) + o(h), (15)
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whereas the rigidity of the collar implies that ξ(L+ h)−

ξ(L) = h. Our boundary condition provides the leading-

order approximation to this condition for small h. Simi-

lar reasoning justifies the boundary condition r′(L) = 0.

This ensures that r(L+ h) = r(L) at leading order.

Figures 1 and 2 depict the deformed meridians in

equilibrium; i.e., plots of normalized r vs. ξ, correspond-

ing to imposed axial extension or compression.

These exhibit a local effect associated with the bound-

ary conditions, while in the interior of the sheet the ra-

dius approaches a nearly uniform value. This stands in

contrast to the classical necking response of a pure mem-

brane model in tension, in which the membrane radius

decreases monotonically as the symmetry plane z = 0

is approached. However, pure membrane theory is not

appropriate in the present circumstances as it does not

account for the higher-gradient effects associated with

fiber bending and twisting resistance. For small com-

pressive axial displacement, we predict a reduction in ra-

dius relative to its reference value. The radius is seen to

increase as the axial displacement is increased. Presum-

ably this transition to a deformation mode in which the

radius is larger and the fiber curvatures are smaller serves

to lower the overall energy and may be associated with

post-buckling response. This conclusion is not definitive,

however, as we have not conducted an analysis of poten-

tial bifurcation.

A perspective view of the compressed cylinder, show-

ing the deformed fiber trajectories, is provided in Fig-

ure 3. In the practical example of standard cable sleev-

ing, we observe a similar bulging of cylinders composed

of a mesh of woven fibers [18] into surfaces of revolution

having nearly uniform radius over most of their length.

Such deformation modes are also characteristic of McK-

ibben artificial muscles [19].

In the second class of examples we relax the boundary

condition ξ′(L) = 1. In the weak form of the equilibrium

equations, the test function associated with ξ′(L) is work-

conjugate to a double force Wξ′′ acting at z = L [20]. Re-

laxation of the restriction on ξ′(L) therefore ensures the

vanishing of the double force in the weak sense. In general

the double force may be interpreted as a pair of equal and

opposite forces separated by the small distance h that act

to maintain the relative separation ξ(L+h)−ξ(L). A van-

ishing double force means that no agency is operating to

control this separation. Physically, this corresponds to

insertion of the end of the cylinder, as before, into a rigid

collar of radius R. The collar acts as a sleeve and the ma-

terial of the cylinder is free to slide without friction inside

it.
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Figure 3: Perspective view of the compressed cylinder. Lengths are normalized with respect to L.
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Figure 4: Tension test with zero double force. Each color refers to

a different imposed axial displacement.
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Figure 5: Compression test with zero double force. Each color

refers to a different imposed axial displacement.

Figures 4 and 5 depict the deformed surface under

tension and compression with zero double force. The re-

sponse is very similar to that of the fully clamped cylin-

der, but minor quantitative differences are observable.

In general the double force is a vector µ [20] which is

given, in the present circumstances, by

µ = Wr′′er +Wξ′′k. (16)

This is turn generates the edge couple c, per unit length

of the edge z = L, given by c = r′ × µ [20]. Thus,

c = (ξ′Wr′′ − r′Wξ′′)eθ, (17)

which reduces to the familiar bending moment

c = Wr′′eθ (18)

in the case of a fully clamped boundary.
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[14] A. Cazzani, M. Malagù, E. Turco, F. Stochino, Con-

stitutive models for strongly curved beams in the

frame of isogeometric analysis, Mathematics and

Mechanics of Solids 21 (2) (2016) 182–209.

[15] J. Niiranen, V. Balobanov, J. Kiendl, S. B. Hos-

seini, Variational formulations, model comparisons

and numerical methods for Euler–Bernoulli micro-

and nano-beam models, Mathematics and Mechan-

ics of Solidsdoi:10.1177/1081286517739669.

[16] S. Khakalo, J. Niiranen, Isogeometric analysis of

higher-order gradient elasticity by user elements of

a commercial finite element software, Computer-

Aided Design 82 (2017) 154–169.

[17] I. Giorgio, A. Della Corte, F. dell’Isola, D. J.

Steigmann, Buckling modes in pantographic lattices,

Comptes rendus Mecanique 344 (7) (2016) 487–501.

[18] https://www.mcmaster.com [online].

[19] M. G. Antonelli, P. Beomonte Zobel, F. Durante,

T. Raparelli, Numerical modelling and experimen-

tal validation of a McKibben pneumatic muscle ac-

tuator, Journal of Intelligent Material Systems and

Structures 28 (19) (2017) 2737–2748.

[20] D. J. Steigmann, Equilibrium of elastic lattice shells,

Journal of Engineering Mathematics 109 (1) (2018)

47–61.

6

http://dx.doi.org/10.1007/s00161-018-0641-y
http://dx.doi.org/10.1007/s00161-018-0641-y
http://dx.doi.org/10.1177/1081286517739669
https://www.mcmaster.com/#standard-cable-sleeving/=1dlkrak

	Introduction
	Strain-energy function, axisymmetry
	One-dimensional formulation
	Examples

